00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00028 #include "libavutil/log.h"
00029 #include "swresample_internal.h"
00030
00031 #ifndef CONFIG_RESAMPLE_HP
00032 #define FILTER_SHIFT 15
00033
00034 #define FELEM int16_t
00035 #define FELEM2 int32_t
00036 #define FELEML int64_t
00037 #define FELEM_MAX INT16_MAX
00038 #define FELEM_MIN INT16_MIN
00039 #define WINDOW_TYPE 9
00040 #elif !defined(CONFIG_RESAMPLE_AUDIOPHILE_KIDDY_MODE)
00041 #define FILTER_SHIFT 30
00042
00043 #define FELEM int32_t
00044 #define FELEM2 int64_t
00045 #define FELEML int64_t
00046 #define FELEM_MAX INT32_MAX
00047 #define FELEM_MIN INT32_MIN
00048 #define WINDOW_TYPE 12
00049 #else
00050 #define FILTER_SHIFT 0
00051
00052 #define FELEM double
00053 #define FELEM2 double
00054 #define FELEML double
00055 #define WINDOW_TYPE 24
00056 #endif
00057
00058
00059 typedef struct ResampleContext {
00060 const AVClass *av_class;
00061 FELEM *filter_bank;
00062 int filter_length;
00063 int ideal_dst_incr;
00064 int dst_incr;
00065 int index;
00066 int frac;
00067 int src_incr;
00068 int compensation_distance;
00069 int phase_shift;
00070 int phase_mask;
00071 int linear;
00072 double factor;
00073 } ResampleContext;
00074
00078 static double bessel(double x){
00079 double v=1;
00080 double lastv=0;
00081 double t=1;
00082 int i;
00083 static const double inv[100]={
00084 1.0/( 1* 1), 1.0/( 2* 2), 1.0/( 3* 3), 1.0/( 4* 4), 1.0/( 5* 5), 1.0/( 6* 6), 1.0/( 7* 7), 1.0/( 8* 8), 1.0/( 9* 9), 1.0/(10*10),
00085 1.0/(11*11), 1.0/(12*12), 1.0/(13*13), 1.0/(14*14), 1.0/(15*15), 1.0/(16*16), 1.0/(17*17), 1.0/(18*18), 1.0/(19*19), 1.0/(20*20),
00086 1.0/(21*21), 1.0/(22*22), 1.0/(23*23), 1.0/(24*24), 1.0/(25*25), 1.0/(26*26), 1.0/(27*27), 1.0/(28*28), 1.0/(29*29), 1.0/(30*30),
00087 1.0/(31*31), 1.0/(32*32), 1.0/(33*33), 1.0/(34*34), 1.0/(35*35), 1.0/(36*36), 1.0/(37*37), 1.0/(38*38), 1.0/(39*39), 1.0/(40*40),
00088 1.0/(41*41), 1.0/(42*42), 1.0/(43*43), 1.0/(44*44), 1.0/(45*45), 1.0/(46*46), 1.0/(47*47), 1.0/(48*48), 1.0/(49*49), 1.0/(50*50),
00089 1.0/(51*51), 1.0/(52*52), 1.0/(53*53), 1.0/(54*54), 1.0/(55*55), 1.0/(56*56), 1.0/(57*57), 1.0/(58*58), 1.0/(59*59), 1.0/(60*60),
00090 1.0/(61*61), 1.0/(62*62), 1.0/(63*63), 1.0/(64*64), 1.0/(65*65), 1.0/(66*66), 1.0/(67*67), 1.0/(68*68), 1.0/(69*69), 1.0/(70*70),
00091 1.0/(71*71), 1.0/(72*72), 1.0/(73*73), 1.0/(74*74), 1.0/(75*75), 1.0/(76*76), 1.0/(77*77), 1.0/(78*78), 1.0/(79*79), 1.0/(80*80),
00092 1.0/(81*81), 1.0/(82*82), 1.0/(83*83), 1.0/(84*84), 1.0/(85*85), 1.0/(86*86), 1.0/(87*87), 1.0/(88*88), 1.0/(89*89), 1.0/(90*90),
00093 1.0/(91*91), 1.0/(92*92), 1.0/(93*93), 1.0/(94*94), 1.0/(95*95), 1.0/(96*96), 1.0/(97*97), 1.0/(98*98), 1.0/(99*99), 1.0/(10000)
00094 };
00095
00096 x= x*x/4;
00097 for(i=0; v != lastv; i++){
00098 lastv=v;
00099 t *= x*inv[i];
00100 v += t;
00101 }
00102 return v;
00103 }
00104
00112 static int build_filter(FELEM *filter, double factor, int tap_count, int phase_count, int scale, int type){
00113 int ph, i;
00114 double x, y, w;
00115 double *tab = av_malloc(tap_count * sizeof(*tab));
00116 const int center= (tap_count-1)/2;
00117
00118 if (!tab)
00119 return AVERROR(ENOMEM);
00120
00121
00122 if (factor > 1.0)
00123 factor = 1.0;
00124
00125 for(ph=0;ph<phase_count;ph++) {
00126 double norm = 0;
00127 for(i=0;i<tap_count;i++) {
00128 x = M_PI * ((double)(i - center) - (double)ph / phase_count) * factor;
00129 if (x == 0) y = 1.0;
00130 else y = sin(x) / x;
00131 switch(type){
00132 case 0:{
00133 const float d= -0.5;
00134 x = fabs(((double)(i - center) - (double)ph / phase_count) * factor);
00135 if(x<1.0) y= 1 - 3*x*x + 2*x*x*x + d*( -x*x + x*x*x);
00136 else y= d*(-4 + 8*x - 5*x*x + x*x*x);
00137 break;}
00138 case 1:
00139 w = 2.0*x / (factor*tap_count) + M_PI;
00140 y *= 0.3635819 - 0.4891775 * cos(w) + 0.1365995 * cos(2*w) - 0.0106411 * cos(3*w);
00141 break;
00142 default:
00143 w = 2.0*x / (factor*tap_count*M_PI);
00144 y *= bessel(type*sqrt(FFMAX(1-w*w, 0)));
00145 break;
00146 }
00147
00148 tab[i] = y;
00149 norm += y;
00150 }
00151
00152
00153 for(i=0;i<tap_count;i++) {
00154 #ifdef CONFIG_RESAMPLE_AUDIOPHILE_KIDDY_MODE
00155 filter[ph * tap_count + i] = tab[i] / norm;
00156 #else
00157 filter[ph * tap_count + i] = av_clip(lrintf(tab[i] * scale / norm), FELEM_MIN, FELEM_MAX);
00158 #endif
00159 }
00160 }
00161 #if 0
00162 {
00163 #define LEN 1024
00164 int j,k;
00165 double sine[LEN + tap_count];
00166 double filtered[LEN];
00167 double maxff=-2, minff=2, maxsf=-2, minsf=2;
00168 for(i=0; i<LEN; i++){
00169 double ss=0, sf=0, ff=0;
00170 for(j=0; j<LEN+tap_count; j++)
00171 sine[j]= cos(i*j*M_PI/LEN);
00172 for(j=0; j<LEN; j++){
00173 double sum=0;
00174 ph=0;
00175 for(k=0; k<tap_count; k++)
00176 sum += filter[ph * tap_count + k] * sine[k+j];
00177 filtered[j]= sum / (1<<FILTER_SHIFT);
00178 ss+= sine[j + center] * sine[j + center];
00179 ff+= filtered[j] * filtered[j];
00180 sf+= sine[j + center] * filtered[j];
00181 }
00182 ss= sqrt(2*ss/LEN);
00183 ff= sqrt(2*ff/LEN);
00184 sf= 2*sf/LEN;
00185 maxff= FFMAX(maxff, ff);
00186 minff= FFMIN(minff, ff);
00187 maxsf= FFMAX(maxsf, sf);
00188 minsf= FFMIN(minsf, sf);
00189 if(i%11==0){
00190 av_log(NULL, AV_LOG_ERROR, "i:%4d ss:%f ff:%13.6e-%13.6e sf:%13.6e-%13.6e\n", i, ss, maxff, minff, maxsf, minsf);
00191 minff=minsf= 2;
00192 maxff=maxsf= -2;
00193 }
00194 }
00195 }
00196 #endif
00197
00198 av_free(tab);
00199 return 0;
00200 }
00201
00202 ResampleContext *swri_resample_init(ResampleContext *c, int out_rate, int in_rate, int filter_size, int phase_shift, int linear, double cutoff){
00203 double factor= FFMIN(out_rate * cutoff / in_rate, 1.0);
00204 int phase_count= 1<<phase_shift;
00205
00206 if (!c || c->phase_shift != phase_shift || c->linear!=linear || c->factor != factor
00207 || c->filter_length != FFMAX((int)ceil(filter_size/factor), 1)) {
00208 c = av_mallocz(sizeof(*c));
00209 if (!c)
00210 return NULL;
00211
00212 c->phase_shift = phase_shift;
00213 c->phase_mask = phase_count - 1;
00214 c->linear = linear;
00215 c->factor = factor;
00216 c->filter_length = FFMAX((int)ceil(filter_size/factor), 1);
00217 c->filter_bank = av_mallocz(c->filter_length*(phase_count+1)*sizeof(FELEM));
00218 if (!c->filter_bank)
00219 goto error;
00220 if (build_filter(c->filter_bank, factor, c->filter_length, phase_count, 1<<FILTER_SHIFT, WINDOW_TYPE))
00221 goto error;
00222 memcpy(&c->filter_bank[c->filter_length*phase_count+1], c->filter_bank, (c->filter_length-1)*sizeof(FELEM));
00223 c->filter_bank[c->filter_length*phase_count]= c->filter_bank[c->filter_length - 1];
00224 }
00225
00226 c->compensation_distance= 0;
00227 if(!av_reduce(&c->src_incr, &c->dst_incr, out_rate, in_rate * (int64_t)phase_count, INT32_MAX/2))
00228 goto error;
00229 c->ideal_dst_incr= c->dst_incr;
00230
00231 c->index= -phase_count*((c->filter_length-1)/2);
00232 c->frac= 0;
00233
00234 return c;
00235 error:
00236 av_free(c->filter_bank);
00237 av_free(c);
00238 return NULL;
00239 }
00240
00241 void swri_resample_free(ResampleContext **c){
00242 if(!*c)
00243 return;
00244 av_freep(&(*c)->filter_bank);
00245 av_freep(c);
00246 }
00247
00248 int swr_set_compensation(struct SwrContext *s, int sample_delta, int compensation_distance){
00249 ResampleContext *c;
00250 int ret;
00251
00252 if (!s || compensation_distance < 0)
00253 return AVERROR(EINVAL);
00254 if (!compensation_distance && sample_delta)
00255 return AVERROR(EINVAL);
00256 if (!s->resample) {
00257 s->flags |= SWR_FLAG_RESAMPLE;
00258 ret = swr_init(s);
00259 if (ret < 0)
00260 return ret;
00261 }
00262 c= s->resample;
00263 c->compensation_distance= compensation_distance;
00264 if (compensation_distance)
00265 c->dst_incr = c->ideal_dst_incr - c->ideal_dst_incr * (int64_t)sample_delta / compensation_distance;
00266 else
00267 c->dst_incr = c->ideal_dst_incr;
00268 return 0;
00269 }
00270
00271 int swri_resample(ResampleContext *c, int16_t *dst, const int16_t *src, int *consumed, int src_size, int dst_size, int update_ctx){
00272 int dst_index, i;
00273 int index= c->index;
00274 int frac= c->frac;
00275 int dst_incr_frac= c->dst_incr % c->src_incr;
00276 int dst_incr= c->dst_incr / c->src_incr;
00277 int compensation_distance= c->compensation_distance;
00278
00279 if(compensation_distance == 0 && c->filter_length == 1 && c->phase_shift==0){
00280 int64_t index2= ((int64_t)index)<<32;
00281 int64_t incr= (1LL<<32) * c->dst_incr / c->src_incr;
00282 dst_size= FFMIN(dst_size, (src_size-1-index) * (int64_t)c->src_incr / c->dst_incr);
00283
00284 for(dst_index=0; dst_index < dst_size; dst_index++){
00285 dst[dst_index] = src[index2>>32];
00286 index2 += incr;
00287 }
00288 index += dst_index * dst_incr;
00289 index += (frac + dst_index * (int64_t)dst_incr_frac) / c->src_incr;
00290 frac = (frac + dst_index * (int64_t)dst_incr_frac) % c->src_incr;
00291 }else{
00292 for(dst_index=0; dst_index < dst_size; dst_index++){
00293 FELEM *filter= c->filter_bank + c->filter_length*(index & c->phase_mask);
00294 int sample_index= index >> c->phase_shift;
00295 FELEM2 val=0;
00296
00297 if(sample_index < 0){
00298 for(i=0; i<c->filter_length; i++)
00299 val += src[FFABS(sample_index + i) % src_size] * filter[i];
00300 }else if(sample_index + c->filter_length > src_size){
00301 break;
00302 }else if(c->linear){
00303 FELEM2 v2=0;
00304 for(i=0; i<c->filter_length; i++){
00305 val += src[sample_index + i] * (FELEM2)filter[i];
00306 v2 += src[sample_index + i] * (FELEM2)filter[i + c->filter_length];
00307 }
00308 val+=(v2-val)*(FELEML)frac / c->src_incr;
00309 }else{
00310 for(i=0; i<c->filter_length; i++){
00311 val += src[sample_index + i] * (FELEM2)filter[i];
00312 }
00313 }
00314
00315 #ifdef CONFIG_RESAMPLE_AUDIOPHILE_KIDDY_MODE
00316 dst[dst_index] = av_clip_int16(lrintf(val));
00317 #else
00318 val = (val + (1<<(FILTER_SHIFT-1)))>>FILTER_SHIFT;
00319 dst[dst_index] = (unsigned)(val + 32768) > 65535 ? (val>>31) ^ 32767 : val;
00320 #endif
00321
00322 frac += dst_incr_frac;
00323 index += dst_incr;
00324 if(frac >= c->src_incr){
00325 frac -= c->src_incr;
00326 index++;
00327 }
00328
00329 if(dst_index + 1 == compensation_distance){
00330 compensation_distance= 0;
00331 dst_incr_frac= c->ideal_dst_incr % c->src_incr;
00332 dst_incr= c->ideal_dst_incr / c->src_incr;
00333 }
00334 }
00335 }
00336 *consumed= FFMAX(index, 0) >> c->phase_shift;
00337 if(index>=0) index &= c->phase_mask;
00338
00339 if(compensation_distance){
00340 compensation_distance -= dst_index;
00341 assert(compensation_distance > 0);
00342 }
00343 if(update_ctx){
00344 c->frac= frac;
00345 c->index= index;
00346 c->dst_incr= dst_incr_frac + c->src_incr*dst_incr;
00347 c->compensation_distance= compensation_distance;
00348 }
00349 #if 0
00350 if(update_ctx && !c->compensation_distance){
00351 #undef rand
00352 av_resample_compensate(c, rand() % (8000*2) - 8000, 8000*2);
00353 av_log(NULL, AV_LOG_DEBUG, "%d %d %d\n", c->dst_incr, c->ideal_dst_incr, c->compensation_distance);
00354 }
00355 #endif
00356
00357 return dst_index;
00358 }
00359
00360 int swri_multiple_resample(ResampleContext *c, AudioData *dst, int dst_size, AudioData *src, int src_size, int *consumed){
00361 int i, ret= -1;
00362
00363 for(i=0; i<dst->ch_count; i++){
00364 ret= swri_resample(c, (int16_t*)dst->ch[i], (const int16_t*)src->ch[i], consumed, src_size, dst_size, i+1==dst->ch_count);
00365 }
00366
00367 return ret;
00368 }