00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00029
00030
00031 #include <math.h>
00032 #include <stddef.h>
00033 #include <stdio.h>
00034
00035 #include "avcodec.h"
00036 #include "get_bits.h"
00037 #include "dsputil.h"
00038 #include "fft.h"
00039
00040 #include "atrac.h"
00041 #include "atrac1data.h"
00042
00043 #define AT1_MAX_BFU 52
00044 #define AT1_SU_SIZE 212
00045 #define AT1_SU_SAMPLES 512
00046 #define AT1_FRAME_SIZE AT1_SU_SIZE * 2
00047 #define AT1_SU_MAX_BITS AT1_SU_SIZE * 8
00048 #define AT1_MAX_CHANNELS 2
00049
00050 #define AT1_QMF_BANDS 3
00051 #define IDX_LOW_BAND 0
00052 #define IDX_MID_BAND 1
00053 #define IDX_HIGH_BAND 2
00054
00058 typedef struct {
00059 int log2_block_count[AT1_QMF_BANDS];
00060 int num_bfus;
00061 float* spectrum[2];
00062 DECLARE_ALIGNED(16, float, spec1)[AT1_SU_SAMPLES];
00063 DECLARE_ALIGNED(16, float, spec2)[AT1_SU_SAMPLES];
00064 DECLARE_ALIGNED(16, float, fst_qmf_delay)[46];
00065 DECLARE_ALIGNED(16, float, snd_qmf_delay)[46];
00066 DECLARE_ALIGNED(16, float, last_qmf_delay)[256+23];
00067 } AT1SUCtx;
00068
00072 typedef struct {
00073 AT1SUCtx SUs[AT1_MAX_CHANNELS];
00074 DECLARE_ALIGNED(16, float, spec)[AT1_SU_SAMPLES];
00075
00076 DECLARE_ALIGNED(16, float, low)[256];
00077 DECLARE_ALIGNED(16, float, mid)[256];
00078 DECLARE_ALIGNED(16, float, high)[512];
00079 float* bands[3];
00080 DECLARE_ALIGNED(16, float, out_samples)[AT1_MAX_CHANNELS][AT1_SU_SAMPLES];
00081 FFTContext mdct_ctx[3];
00082 int channels;
00083 DSPContext dsp;
00084 } AT1Ctx;
00085
00087 static const uint16_t samples_per_band[3] = {128, 128, 256};
00088 static const uint8_t mdct_long_nbits[3] = {7, 7, 8};
00089
00090
00091 static void at1_imdct(AT1Ctx *q, float *spec, float *out, int nbits,
00092 int rev_spec)
00093 {
00094 FFTContext* mdct_context = &q->mdct_ctx[nbits - 5 - (nbits > 6)];
00095 int transf_size = 1 << nbits;
00096
00097 if (rev_spec) {
00098 int i;
00099 for (i = 0; i < transf_size / 2; i++)
00100 FFSWAP(float, spec[i], spec[transf_size - 1 - i]);
00101 }
00102 ff_imdct_half(mdct_context, out, spec);
00103 }
00104
00105
00106 static int at1_imdct_block(AT1SUCtx* su, AT1Ctx *q)
00107 {
00108 int band_num, band_samples, log2_block_count, nbits, num_blocks, block_size;
00109 unsigned int start_pos, ref_pos = 0, pos = 0;
00110
00111 for (band_num = 0; band_num < AT1_QMF_BANDS; band_num++) {
00112 float *prev_buf;
00113 int j;
00114
00115 band_samples = samples_per_band[band_num];
00116 log2_block_count = su->log2_block_count[band_num];
00117
00118
00119
00120 num_blocks = 1 << log2_block_count;
00121
00122 if (num_blocks == 1) {
00123
00124
00125 block_size = band_samples >> log2_block_count;
00126
00127
00128 nbits = mdct_long_nbits[band_num] - log2_block_count;
00129
00130 if (nbits != 5 && nbits != 7 && nbits != 8)
00131 return -1;
00132 } else {
00133 block_size = 32;
00134 nbits = 5;
00135 }
00136
00137 start_pos = 0;
00138 prev_buf = &su->spectrum[1][ref_pos + band_samples - 16];
00139 for (j=0; j < num_blocks; j++) {
00140 at1_imdct(q, &q->spec[pos], &su->spectrum[0][ref_pos + start_pos], nbits, band_num);
00141
00142
00143 q->dsp.vector_fmul_window(&q->bands[band_num][start_pos], prev_buf,
00144 &su->spectrum[0][ref_pos + start_pos], ff_sine_32, 0, 16);
00145
00146 prev_buf = &su->spectrum[0][ref_pos+start_pos + 16];
00147 start_pos += block_size;
00148 pos += block_size;
00149 }
00150
00151 if (num_blocks == 1)
00152 memcpy(q->bands[band_num] + 32, &su->spectrum[0][ref_pos + 16], 240 * sizeof(float));
00153
00154 ref_pos += band_samples;
00155 }
00156
00157
00158 FFSWAP(float*, su->spectrum[0], su->spectrum[1]);
00159
00160 return 0;
00161 }
00162
00167 static int at1_parse_bsm(GetBitContext* gb, int log2_block_cnt[AT1_QMF_BANDS])
00168 {
00169 int log2_block_count_tmp, i;
00170
00171 for (i = 0; i < 2; i++) {
00172
00173 log2_block_count_tmp = get_bits(gb, 2);
00174 if (log2_block_count_tmp & 1)
00175 return -1;
00176 log2_block_cnt[i] = 2 - log2_block_count_tmp;
00177 }
00178
00179
00180 log2_block_count_tmp = get_bits(gb, 2);
00181 if (log2_block_count_tmp != 0 && log2_block_count_tmp != 3)
00182 return -1;
00183 log2_block_cnt[IDX_HIGH_BAND] = 3 - log2_block_count_tmp;
00184
00185 skip_bits(gb, 2);
00186 return 0;
00187 }
00188
00189
00190 static int at1_unpack_dequant(GetBitContext* gb, AT1SUCtx* su,
00191 float spec[AT1_SU_SAMPLES])
00192 {
00193 int bits_used, band_num, bfu_num, i;
00194 uint8_t idwls[AT1_MAX_BFU];
00195 uint8_t idsfs[AT1_MAX_BFU];
00196
00197
00198 su->num_bfus = bfu_amount_tab1[get_bits(gb, 3)];
00199
00200
00201
00202
00203 bits_used = su->num_bfus * 10 + 32 +
00204 bfu_amount_tab2[get_bits(gb, 2)] +
00205 (bfu_amount_tab3[get_bits(gb, 3)] << 1);
00206
00207
00208 for (i = 0; i < su->num_bfus; i++)
00209 idwls[i] = get_bits(gb, 4);
00210
00211
00212 for (i = 0; i < su->num_bfus; i++)
00213 idsfs[i] = get_bits(gb, 6);
00214
00215
00216 for (i = su->num_bfus; i < AT1_MAX_BFU; i++)
00217 idwls[i] = idsfs[i] = 0;
00218
00219
00220 for (band_num = 0; band_num < AT1_QMF_BANDS; band_num++) {
00221 for (bfu_num = bfu_bands_t[band_num]; bfu_num < bfu_bands_t[band_num+1]; bfu_num++) {
00222 int pos;
00223
00224 int num_specs = specs_per_bfu[bfu_num];
00225 int word_len = !!idwls[bfu_num] + idwls[bfu_num];
00226 float scale_factor = sf_table[idsfs[bfu_num]];
00227 bits_used += word_len * num_specs;
00228
00229
00230 if (bits_used > AT1_SU_MAX_BITS)
00231 return -1;
00232
00233
00234 pos = su->log2_block_count[band_num] ? bfu_start_short[bfu_num] : bfu_start_long[bfu_num];
00235
00236 if (word_len) {
00237 float max_quant = 1.0 / (float)((1 << (word_len - 1)) - 1);
00238
00239 for (i = 0; i < num_specs; i++) {
00240
00241
00242
00243 spec[pos+i] = get_sbits(gb, word_len) * scale_factor * max_quant;
00244 }
00245 } else {
00246 memset(&spec[pos], 0, num_specs * sizeof(float));
00247 }
00248 }
00249 }
00250
00251 return 0;
00252 }
00253
00254
00255 static void at1_subband_synthesis(AT1Ctx *q, AT1SUCtx* su, float *pOut)
00256 {
00257 float temp[256];
00258 float iqmf_temp[512 + 46];
00259
00260
00261 atrac_iqmf(q->bands[0], q->bands[1], 128, temp, su->fst_qmf_delay, iqmf_temp);
00262
00263
00264 memcpy( su->last_qmf_delay, &su->last_qmf_delay[256], sizeof(float) * 23);
00265 memcpy(&su->last_qmf_delay[23], q->bands[2], sizeof(float) * 256);
00266
00267
00268 atrac_iqmf(temp, su->last_qmf_delay, 256, pOut, su->snd_qmf_delay, iqmf_temp);
00269 }
00270
00271
00272 static int atrac1_decode_frame(AVCodecContext *avctx, void *data,
00273 int *data_size, AVPacket *avpkt)
00274 {
00275 const uint8_t *buf = avpkt->data;
00276 int buf_size = avpkt->size;
00277 AT1Ctx *q = avctx->priv_data;
00278 int ch, ret, i;
00279 GetBitContext gb;
00280 float* samples = data;
00281
00282
00283 if (buf_size < 212 * q->channels) {
00284 av_log(q,AV_LOG_ERROR,"Not enought data to decode!\n");
00285 return -1;
00286 }
00287
00288 for (ch = 0; ch < q->channels; ch++) {
00289 AT1SUCtx* su = &q->SUs[ch];
00290
00291 init_get_bits(&gb, &buf[212 * ch], 212 * 8);
00292
00293
00294 ret = at1_parse_bsm(&gb, su->log2_block_count);
00295 if (ret < 0)
00296 return ret;
00297
00298 ret = at1_unpack_dequant(&gb, su, q->spec);
00299 if (ret < 0)
00300 return ret;
00301
00302 ret = at1_imdct_block(su, q);
00303 if (ret < 0)
00304 return ret;
00305 at1_subband_synthesis(q, su, q->out_samples[ch]);
00306 }
00307
00308
00309 if (q->channels == 1) {
00310
00311 memcpy(samples, q->out_samples[0], AT1_SU_SAMPLES * 4);
00312 } else {
00313
00314 for (i = 0; i < AT1_SU_SAMPLES; i++) {
00315 samples[i * 2] = q->out_samples[0][i];
00316 samples[i * 2 + 1] = q->out_samples[1][i];
00317 }
00318 }
00319
00320 *data_size = q->channels * AT1_SU_SAMPLES * sizeof(*samples);
00321 return avctx->block_align;
00322 }
00323
00324
00325 static av_cold int atrac1_decode_init(AVCodecContext *avctx)
00326 {
00327 AT1Ctx *q = avctx->priv_data;
00328
00329 avctx->sample_fmt = SAMPLE_FMT_FLT;
00330
00331 q->channels = avctx->channels;
00332
00333
00334 ff_mdct_init(&q->mdct_ctx[0], 6, 1, -1.0/ (1 << 15));
00335 ff_mdct_init(&q->mdct_ctx[1], 8, 1, -1.0/ (1 << 15));
00336 ff_mdct_init(&q->mdct_ctx[2], 9, 1, -1.0/ (1 << 15));
00337
00338 ff_init_ff_sine_windows(5);
00339
00340 atrac_generate_tables();
00341
00342 dsputil_init(&q->dsp, avctx);
00343
00344 q->bands[0] = q->low;
00345 q->bands[1] = q->mid;
00346 q->bands[2] = q->high;
00347
00348
00349 q->SUs[0].spectrum[0] = q->SUs[0].spec1;
00350 q->SUs[0].spectrum[1] = q->SUs[0].spec2;
00351 q->SUs[1].spectrum[0] = q->SUs[1].spec1;
00352 q->SUs[1].spectrum[1] = q->SUs[1].spec2;
00353
00354 return 0;
00355 }
00356
00357
00358 static av_cold int atrac1_decode_end(AVCodecContext * avctx) {
00359 AT1Ctx *q = avctx->priv_data;
00360
00361 ff_mdct_end(&q->mdct_ctx[0]);
00362 ff_mdct_end(&q->mdct_ctx[1]);
00363 ff_mdct_end(&q->mdct_ctx[2]);
00364 return 0;
00365 }
00366
00367
00368 AVCodec atrac1_decoder = {
00369 .name = "atrac1",
00370 .type = AVMEDIA_TYPE_AUDIO,
00371 .id = CODEC_ID_ATRAC1,
00372 .priv_data_size = sizeof(AT1Ctx),
00373 .init = atrac1_decode_init,
00374 .close = atrac1_decode_end,
00375 .decode = atrac1_decode_frame,
00376 .long_name = NULL_IF_CONFIG_SMALL("Atrac 1 (Adaptive TRansform Acoustic Coding)"),
00377 };