00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023 #define ALT_BITSTREAM_READER_LE
00024 #include "avcodec.h"
00025 #include "dsputil.h"
00026 #include "get_bits.h"
00027 #include "bytestream.h"
00028 #include "libavutil/audioconvert.h"
00029 #include "libavutil/avassert.h"
00030
00036 #define BLOCKS_PER_LOOP 4608
00037 #define MAX_CHANNELS 2
00038 #define MAX_BYTESPERSAMPLE 3
00039
00040 #define APE_FRAMECODE_MONO_SILENCE 1
00041 #define APE_FRAMECODE_STEREO_SILENCE 3
00042 #define APE_FRAMECODE_PSEUDO_STEREO 4
00043
00044 #define HISTORY_SIZE 512
00045 #define PREDICTOR_ORDER 8
00046
00047 #define PREDICTOR_SIZE 50
00048
00049 #define YDELAYA (18 + PREDICTOR_ORDER*4)
00050 #define YDELAYB (18 + PREDICTOR_ORDER*3)
00051 #define XDELAYA (18 + PREDICTOR_ORDER*2)
00052 #define XDELAYB (18 + PREDICTOR_ORDER)
00053
00054 #define YADAPTCOEFFSA 18
00055 #define XADAPTCOEFFSA 14
00056 #define YADAPTCOEFFSB 10
00057 #define XADAPTCOEFFSB 5
00058
00063 enum APECompressionLevel {
00064 COMPRESSION_LEVEL_FAST = 1000,
00065 COMPRESSION_LEVEL_NORMAL = 2000,
00066 COMPRESSION_LEVEL_HIGH = 3000,
00067 COMPRESSION_LEVEL_EXTRA_HIGH = 4000,
00068 COMPRESSION_LEVEL_INSANE = 5000
00069 };
00072 #define APE_FILTER_LEVELS 3
00073
00075 static const uint16_t ape_filter_orders[5][APE_FILTER_LEVELS] = {
00076 { 0, 0, 0 },
00077 { 16, 0, 0 },
00078 { 64, 0, 0 },
00079 { 32, 256, 0 },
00080 { 16, 256, 1280 }
00081 };
00082
00084 static const uint8_t ape_filter_fracbits[5][APE_FILTER_LEVELS] = {
00085 { 0, 0, 0 },
00086 { 11, 0, 0 },
00087 { 11, 0, 0 },
00088 { 10, 13, 0 },
00089 { 11, 13, 15 }
00090 };
00091
00092
00094 typedef struct APEFilter {
00095 int16_t *coeffs;
00096 int16_t *adaptcoeffs;
00097 int16_t *historybuffer;
00098 int16_t *delay;
00099
00100 int avg;
00101 } APEFilter;
00102
00103 typedef struct APERice {
00104 uint32_t k;
00105 uint32_t ksum;
00106 } APERice;
00107
00108 typedef struct APERangecoder {
00109 uint32_t low;
00110 uint32_t range;
00111 uint32_t help;
00112 unsigned int buffer;
00113 } APERangecoder;
00114
00116 typedef struct APEPredictor {
00117 int32_t *buf;
00118
00119 int32_t lastA[2];
00120
00121 int32_t filterA[2];
00122 int32_t filterB[2];
00123
00124 int32_t coeffsA[2][4];
00125 int32_t coeffsB[2][5];
00126 int32_t historybuffer[HISTORY_SIZE + PREDICTOR_SIZE];
00127 } APEPredictor;
00128
00130 typedef struct APEContext {
00131 AVCodecContext *avctx;
00132 AVFrame frame;
00133 DSPContext dsp;
00134 int channels;
00135 int samples;
00136
00137 int fileversion;
00138 int compression_level;
00139 int fset;
00140 int flags;
00141
00142 uint32_t CRC;
00143 int frameflags;
00144 APEPredictor predictor;
00145
00146 int32_t decoded0[BLOCKS_PER_LOOP];
00147 int32_t decoded1[BLOCKS_PER_LOOP];
00148
00149 int16_t* filterbuf[APE_FILTER_LEVELS];
00150
00151 APERangecoder rc;
00152 APERice riceX;
00153 APERice riceY;
00154 APEFilter filters[APE_FILTER_LEVELS][2];
00155
00156 uint8_t *data;
00157 uint8_t *data_end;
00158 const uint8_t *ptr;
00159
00160 int error;
00161 } APEContext;
00162
00163
00164
00165 static av_cold int ape_decode_close(AVCodecContext *avctx)
00166 {
00167 APEContext *s = avctx->priv_data;
00168 int i;
00169
00170 for (i = 0; i < APE_FILTER_LEVELS; i++)
00171 av_freep(&s->filterbuf[i]);
00172
00173 av_freep(&s->data);
00174 return 0;
00175 }
00176
00177 static av_cold int ape_decode_init(AVCodecContext *avctx)
00178 {
00179 APEContext *s = avctx->priv_data;
00180 int i;
00181
00182 if (avctx->extradata_size != 6) {
00183 av_log(avctx, AV_LOG_ERROR, "Incorrect extradata\n");
00184 return AVERROR(EINVAL);
00185 }
00186 if (avctx->bits_per_coded_sample != 16) {
00187 av_log(avctx, AV_LOG_ERROR, "Only 16-bit samples are supported\n");
00188 return AVERROR(EINVAL);
00189 }
00190 if (avctx->channels > 2) {
00191 av_log(avctx, AV_LOG_ERROR, "Only mono and stereo is supported\n");
00192 return AVERROR(EINVAL);
00193 }
00194 s->avctx = avctx;
00195 s->channels = avctx->channels;
00196 s->fileversion = AV_RL16(avctx->extradata);
00197 s->compression_level = AV_RL16(avctx->extradata + 2);
00198 s->flags = AV_RL16(avctx->extradata + 4);
00199
00200 av_log(avctx, AV_LOG_DEBUG, "Compression Level: %d - Flags: %d\n",
00201 s->compression_level, s->flags);
00202 if (s->compression_level % 1000 || s->compression_level > COMPRESSION_LEVEL_INSANE) {
00203 av_log(avctx, AV_LOG_ERROR, "Incorrect compression level %d\n",
00204 s->compression_level);
00205 return AVERROR_INVALIDDATA;
00206 }
00207 s->fset = s->compression_level / 1000 - 1;
00208 for (i = 0; i < APE_FILTER_LEVELS; i++) {
00209 if (!ape_filter_orders[s->fset][i])
00210 break;
00211 FF_ALLOC_OR_GOTO(avctx, s->filterbuf[i],
00212 (ape_filter_orders[s->fset][i] * 3 + HISTORY_SIZE) * 4,
00213 filter_alloc_fail);
00214 }
00215
00216 dsputil_init(&s->dsp, avctx);
00217 avctx->sample_fmt = AV_SAMPLE_FMT_S16;
00218 avctx->channel_layout = (avctx->channels==2) ? AV_CH_LAYOUT_STEREO : AV_CH_LAYOUT_MONO;
00219
00220 avcodec_get_frame_defaults(&s->frame);
00221 avctx->coded_frame = &s->frame;
00222
00223 return 0;
00224 filter_alloc_fail:
00225 ape_decode_close(avctx);
00226 return AVERROR(ENOMEM);
00227 }
00228
00234 #define CODE_BITS 32
00235 #define TOP_VALUE ((unsigned int)1 << (CODE_BITS-1))
00236 #define SHIFT_BITS (CODE_BITS - 9)
00237 #define EXTRA_BITS ((CODE_BITS-2) % 8 + 1)
00238 #define BOTTOM_VALUE (TOP_VALUE >> 8)
00239
00241 static inline void range_start_decoding(APEContext *ctx)
00242 {
00243 ctx->rc.buffer = bytestream_get_byte(&ctx->ptr);
00244 ctx->rc.low = ctx->rc.buffer >> (8 - EXTRA_BITS);
00245 ctx->rc.range = (uint32_t) 1 << EXTRA_BITS;
00246 }
00247
00249 static inline void range_dec_normalize(APEContext *ctx)
00250 {
00251 while (ctx->rc.range <= BOTTOM_VALUE) {
00252 ctx->rc.buffer <<= 8;
00253 if(ctx->ptr < ctx->data_end) {
00254 ctx->rc.buffer += *ctx->ptr;
00255 ctx->ptr++;
00256 } else {
00257 ctx->error = 1;
00258 }
00259 ctx->rc.low = (ctx->rc.low << 8) | ((ctx->rc.buffer >> 1) & 0xFF);
00260 ctx->rc.range <<= 8;
00261 }
00262 }
00263
00270 static inline int range_decode_culfreq(APEContext *ctx, int tot_f)
00271 {
00272 range_dec_normalize(ctx);
00273 ctx->rc.help = ctx->rc.range / tot_f;
00274 return ctx->rc.low / ctx->rc.help;
00275 }
00276
00282 static inline int range_decode_culshift(APEContext *ctx, int shift)
00283 {
00284 range_dec_normalize(ctx);
00285 ctx->rc.help = ctx->rc.range >> shift;
00286 return ctx->rc.low / ctx->rc.help;
00287 }
00288
00289
00296 static inline void range_decode_update(APEContext *ctx, int sy_f, int lt_f)
00297 {
00298 ctx->rc.low -= ctx->rc.help * lt_f;
00299 ctx->rc.range = ctx->rc.help * sy_f;
00300 }
00301
00303 static inline int range_decode_bits(APEContext *ctx, int n)
00304 {
00305 int sym = range_decode_culshift(ctx, n);
00306 range_decode_update(ctx, 1, sym);
00307 return sym;
00308 }
00309
00310
00311 #define MODEL_ELEMENTS 64
00312
00316 static const uint16_t counts_3970[22] = {
00317 0, 14824, 28224, 39348, 47855, 53994, 58171, 60926,
00318 62682, 63786, 64463, 64878, 65126, 65276, 65365, 65419,
00319 65450, 65469, 65480, 65487, 65491, 65493,
00320 };
00321
00325 static const uint16_t counts_diff_3970[21] = {
00326 14824, 13400, 11124, 8507, 6139, 4177, 2755, 1756,
00327 1104, 677, 415, 248, 150, 89, 54, 31,
00328 19, 11, 7, 4, 2,
00329 };
00330
00334 static const uint16_t counts_3980[22] = {
00335 0, 19578, 36160, 48417, 56323, 60899, 63265, 64435,
00336 64971, 65232, 65351, 65416, 65447, 65466, 65476, 65482,
00337 65485, 65488, 65490, 65491, 65492, 65493,
00338 };
00339
00343 static const uint16_t counts_diff_3980[21] = {
00344 19578, 16582, 12257, 7906, 4576, 2366, 1170, 536,
00345 261, 119, 65, 31, 19, 10, 6, 3,
00346 3, 2, 1, 1, 1,
00347 };
00348
00355 static inline int range_get_symbol(APEContext *ctx,
00356 const uint16_t counts[],
00357 const uint16_t counts_diff[])
00358 {
00359 int symbol, cf;
00360
00361 cf = range_decode_culshift(ctx, 16);
00362
00363 if(cf > 65492){
00364 symbol= cf - 65535 + 63;
00365 range_decode_update(ctx, 1, cf);
00366 if(cf > 65535)
00367 ctx->error=1;
00368 return symbol;
00369 }
00370
00371 for (symbol = 0; counts[symbol + 1] <= cf; symbol++);
00372
00373 range_decode_update(ctx, counts_diff[symbol], counts[symbol]);
00374
00375 return symbol;
00376 }
00378
00379 static inline void update_rice(APERice *rice, int x)
00380 {
00381 int lim = rice->k ? (1 << (rice->k + 4)) : 0;
00382 rice->ksum += ((x + 1) / 2) - ((rice->ksum + 16) >> 5);
00383
00384 if (rice->ksum < lim)
00385 rice->k--;
00386 else if (rice->ksum >= (1 << (rice->k + 5)))
00387 rice->k++;
00388 }
00389
00390 static inline int ape_decode_value(APEContext *ctx, APERice *rice)
00391 {
00392 int x, overflow;
00393
00394 if (ctx->fileversion < 3990) {
00395 int tmpk;
00396
00397 overflow = range_get_symbol(ctx, counts_3970, counts_diff_3970);
00398
00399 if (overflow == (MODEL_ELEMENTS - 1)) {
00400 tmpk = range_decode_bits(ctx, 5);
00401 overflow = 0;
00402 } else
00403 tmpk = (rice->k < 1) ? 0 : rice->k - 1;
00404
00405 if (tmpk <= 16)
00406 x = range_decode_bits(ctx, tmpk);
00407 else {
00408 x = range_decode_bits(ctx, 16);
00409 x |= (range_decode_bits(ctx, tmpk - 16) << 16);
00410 }
00411 x += overflow << tmpk;
00412 } else {
00413 int base, pivot;
00414
00415 pivot = rice->ksum >> 5;
00416 if (pivot == 0)
00417 pivot = 1;
00418
00419 overflow = range_get_symbol(ctx, counts_3980, counts_diff_3980);
00420
00421 if (overflow == (MODEL_ELEMENTS - 1)) {
00422 overflow = range_decode_bits(ctx, 16) << 16;
00423 overflow |= range_decode_bits(ctx, 16);
00424 }
00425
00426 if (pivot < 0x10000) {
00427 base = range_decode_culfreq(ctx, pivot);
00428 range_decode_update(ctx, 1, base);
00429 } else {
00430 int base_hi = pivot, base_lo;
00431 int bbits = 0;
00432
00433 while (base_hi & ~0xFFFF) {
00434 base_hi >>= 1;
00435 bbits++;
00436 }
00437 base_hi = range_decode_culfreq(ctx, base_hi + 1);
00438 range_decode_update(ctx, 1, base_hi);
00439 base_lo = range_decode_culfreq(ctx, 1 << bbits);
00440 range_decode_update(ctx, 1, base_lo);
00441
00442 base = (base_hi << bbits) + base_lo;
00443 }
00444
00445 x = base + overflow * pivot;
00446 }
00447
00448 update_rice(rice, x);
00449
00450
00451 if (x & 1)
00452 return (x >> 1) + 1;
00453 else
00454 return -(x >> 1);
00455 }
00456
00457 static void entropy_decode(APEContext *ctx, int blockstodecode, int stereo)
00458 {
00459 int32_t *decoded0 = ctx->decoded0;
00460 int32_t *decoded1 = ctx->decoded1;
00461
00462 if (ctx->frameflags & APE_FRAMECODE_STEREO_SILENCE) {
00463
00464 memset(decoded0, 0, blockstodecode * sizeof(int32_t));
00465 memset(decoded1, 0, blockstodecode * sizeof(int32_t));
00466 } else {
00467 while (blockstodecode--) {
00468 *decoded0++ = ape_decode_value(ctx, &ctx->riceY);
00469 if (stereo)
00470 *decoded1++ = ape_decode_value(ctx, &ctx->riceX);
00471 }
00472 }
00473 }
00474
00475 static int init_entropy_decoder(APEContext *ctx)
00476 {
00477
00478 if (ctx->data_end - ctx->ptr < 6)
00479 return AVERROR_INVALIDDATA;
00480 ctx->CRC = bytestream_get_be32(&ctx->ptr);
00481
00482
00483 ctx->frameflags = 0;
00484 if ((ctx->fileversion > 3820) && (ctx->CRC & 0x80000000)) {
00485 ctx->CRC &= ~0x80000000;
00486
00487 if (ctx->data_end - ctx->ptr < 6)
00488 return AVERROR_INVALIDDATA;
00489 ctx->frameflags = bytestream_get_be32(&ctx->ptr);
00490 }
00491
00492
00493 ctx->riceX.k = 10;
00494 ctx->riceX.ksum = (1 << ctx->riceX.k) * 16;
00495 ctx->riceY.k = 10;
00496 ctx->riceY.ksum = (1 << ctx->riceY.k) * 16;
00497
00498
00499 ctx->ptr++;
00500
00501 range_start_decoding(ctx);
00502
00503 return 0;
00504 }
00505
00506 static const int32_t initial_coeffs[4] = {
00507 360, 317, -109, 98
00508 };
00509
00510 static void init_predictor_decoder(APEContext *ctx)
00511 {
00512 APEPredictor *p = &ctx->predictor;
00513
00514
00515 memset(p->historybuffer, 0, PREDICTOR_SIZE * sizeof(int32_t));
00516 p->buf = p->historybuffer;
00517
00518
00519 memcpy(p->coeffsA[0], initial_coeffs, sizeof(initial_coeffs));
00520 memcpy(p->coeffsA[1], initial_coeffs, sizeof(initial_coeffs));
00521 memset(p->coeffsB, 0, sizeof(p->coeffsB));
00522
00523 p->filterA[0] = p->filterA[1] = 0;
00524 p->filterB[0] = p->filterB[1] = 0;
00525 p->lastA[0] = p->lastA[1] = 0;
00526 }
00527
00529 static inline int APESIGN(int32_t x) {
00530 return (x < 0) - (x > 0);
00531 }
00532
00533 static av_always_inline int predictor_update_filter(APEPredictor *p,
00534 const int decoded, const int filter,
00535 const int delayA, const int delayB,
00536 const int adaptA, const int adaptB)
00537 {
00538 int32_t predictionA, predictionB, sign;
00539
00540 p->buf[delayA] = p->lastA[filter];
00541 p->buf[adaptA] = APESIGN(p->buf[delayA]);
00542 p->buf[delayA - 1] = p->buf[delayA] - p->buf[delayA - 1];
00543 p->buf[adaptA - 1] = APESIGN(p->buf[delayA - 1]);
00544
00545 predictionA = p->buf[delayA ] * p->coeffsA[filter][0] +
00546 p->buf[delayA - 1] * p->coeffsA[filter][1] +
00547 p->buf[delayA - 2] * p->coeffsA[filter][2] +
00548 p->buf[delayA - 3] * p->coeffsA[filter][3];
00549
00550
00551 p->buf[delayB] = p->filterA[filter ^ 1] - ((p->filterB[filter] * 31) >> 5);
00552 p->buf[adaptB] = APESIGN(p->buf[delayB]);
00553 p->buf[delayB - 1] = p->buf[delayB] - p->buf[delayB - 1];
00554 p->buf[adaptB - 1] = APESIGN(p->buf[delayB - 1]);
00555 p->filterB[filter] = p->filterA[filter ^ 1];
00556
00557 predictionB = p->buf[delayB ] * p->coeffsB[filter][0] +
00558 p->buf[delayB - 1] * p->coeffsB[filter][1] +
00559 p->buf[delayB - 2] * p->coeffsB[filter][2] +
00560 p->buf[delayB - 3] * p->coeffsB[filter][3] +
00561 p->buf[delayB - 4] * p->coeffsB[filter][4];
00562
00563 p->lastA[filter] = decoded + ((predictionA + (predictionB >> 1)) >> 10);
00564 p->filterA[filter] = p->lastA[filter] + ((p->filterA[filter] * 31) >> 5);
00565
00566 sign = APESIGN(decoded);
00567 p->coeffsA[filter][0] += p->buf[adaptA ] * sign;
00568 p->coeffsA[filter][1] += p->buf[adaptA - 1] * sign;
00569 p->coeffsA[filter][2] += p->buf[adaptA - 2] * sign;
00570 p->coeffsA[filter][3] += p->buf[adaptA - 3] * sign;
00571 p->coeffsB[filter][0] += p->buf[adaptB ] * sign;
00572 p->coeffsB[filter][1] += p->buf[adaptB - 1] * sign;
00573 p->coeffsB[filter][2] += p->buf[adaptB - 2] * sign;
00574 p->coeffsB[filter][3] += p->buf[adaptB - 3] * sign;
00575 p->coeffsB[filter][4] += p->buf[adaptB - 4] * sign;
00576
00577 return p->filterA[filter];
00578 }
00579
00580 static void predictor_decode_stereo(APEContext *ctx, int count)
00581 {
00582 APEPredictor *p = &ctx->predictor;
00583 int32_t *decoded0 = ctx->decoded0;
00584 int32_t *decoded1 = ctx->decoded1;
00585
00586 while (count--) {
00587
00588 *decoded0 = predictor_update_filter(p, *decoded0, 0, YDELAYA, YDELAYB,
00589 YADAPTCOEFFSA, YADAPTCOEFFSB);
00590 decoded0++;
00591 *decoded1 = predictor_update_filter(p, *decoded1, 1, XDELAYA, XDELAYB,
00592 XADAPTCOEFFSA, XADAPTCOEFFSB);
00593 decoded1++;
00594
00595
00596 p->buf++;
00597
00598
00599 if (p->buf == p->historybuffer + HISTORY_SIZE) {
00600 memmove(p->historybuffer, p->buf, PREDICTOR_SIZE * sizeof(int32_t));
00601 p->buf = p->historybuffer;
00602 }
00603 }
00604 }
00605
00606 static void predictor_decode_mono(APEContext *ctx, int count)
00607 {
00608 APEPredictor *p = &ctx->predictor;
00609 int32_t *decoded0 = ctx->decoded0;
00610 int32_t predictionA, currentA, A, sign;
00611
00612 currentA = p->lastA[0];
00613
00614 while (count--) {
00615 A = *decoded0;
00616
00617 p->buf[YDELAYA] = currentA;
00618 p->buf[YDELAYA - 1] = p->buf[YDELAYA] - p->buf[YDELAYA - 1];
00619
00620 predictionA = p->buf[YDELAYA ] * p->coeffsA[0][0] +
00621 p->buf[YDELAYA - 1] * p->coeffsA[0][1] +
00622 p->buf[YDELAYA - 2] * p->coeffsA[0][2] +
00623 p->buf[YDELAYA - 3] * p->coeffsA[0][3];
00624
00625 currentA = A + (predictionA >> 10);
00626
00627 p->buf[YADAPTCOEFFSA] = APESIGN(p->buf[YDELAYA ]);
00628 p->buf[YADAPTCOEFFSA - 1] = APESIGN(p->buf[YDELAYA - 1]);
00629
00630 sign = APESIGN(A);
00631 p->coeffsA[0][0] += p->buf[YADAPTCOEFFSA ] * sign;
00632 p->coeffsA[0][1] += p->buf[YADAPTCOEFFSA - 1] * sign;
00633 p->coeffsA[0][2] += p->buf[YADAPTCOEFFSA - 2] * sign;
00634 p->coeffsA[0][3] += p->buf[YADAPTCOEFFSA - 3] * sign;
00635
00636 p->buf++;
00637
00638
00639 if (p->buf == p->historybuffer + HISTORY_SIZE) {
00640 memmove(p->historybuffer, p->buf, PREDICTOR_SIZE * sizeof(int32_t));
00641 p->buf = p->historybuffer;
00642 }
00643
00644 p->filterA[0] = currentA + ((p->filterA[0] * 31) >> 5);
00645 *(decoded0++) = p->filterA[0];
00646 }
00647
00648 p->lastA[0] = currentA;
00649 }
00650
00651 static void do_init_filter(APEFilter *f, int16_t *buf, int order)
00652 {
00653 f->coeffs = buf;
00654 f->historybuffer = buf + order;
00655 f->delay = f->historybuffer + order * 2;
00656 f->adaptcoeffs = f->historybuffer + order;
00657
00658 memset(f->historybuffer, 0, (order * 2) * sizeof(int16_t));
00659 memset(f->coeffs, 0, order * sizeof(int16_t));
00660 f->avg = 0;
00661 }
00662
00663 static void init_filter(APEContext *ctx, APEFilter *f, int16_t *buf, int order)
00664 {
00665 do_init_filter(&f[0], buf, order);
00666 do_init_filter(&f[1], buf + order * 3 + HISTORY_SIZE, order);
00667 }
00668
00669 static void do_apply_filter(APEContext *ctx, int version, APEFilter *f,
00670 int32_t *data, int count, int order, int fracbits)
00671 {
00672 int res;
00673 int absres;
00674
00675 while (count--) {
00676
00677 res = ctx->dsp.scalarproduct_and_madd_int16(f->coeffs, f->delay - order,
00678 f->adaptcoeffs - order,
00679 order, APESIGN(*data));
00680 res = (res + (1 << (fracbits - 1))) >> fracbits;
00681 res += *data;
00682 *data++ = res;
00683
00684
00685 *f->delay++ = av_clip_int16(res);
00686
00687 if (version < 3980) {
00688
00689 f->adaptcoeffs[0] = (res == 0) ? 0 : ((res >> 28) & 8) - 4;
00690 f->adaptcoeffs[-4] >>= 1;
00691 f->adaptcoeffs[-8] >>= 1;
00692 } else {
00693
00694
00695
00696 absres = FFABS(res);
00697 if (absres)
00698 *f->adaptcoeffs = ((res & (-1<<31)) ^ (-1<<30)) >>
00699 (25 + (absres <= f->avg*3) + (absres <= f->avg*4/3));
00700 else
00701 *f->adaptcoeffs = 0;
00702
00703 f->avg += (absres - f->avg) / 16;
00704
00705 f->adaptcoeffs[-1] >>= 1;
00706 f->adaptcoeffs[-2] >>= 1;
00707 f->adaptcoeffs[-8] >>= 1;
00708 }
00709
00710 f->adaptcoeffs++;
00711
00712
00713 if (f->delay == f->historybuffer + HISTORY_SIZE + (order * 2)) {
00714 memmove(f->historybuffer, f->delay - (order * 2),
00715 (order * 2) * sizeof(int16_t));
00716 f->delay = f->historybuffer + order * 2;
00717 f->adaptcoeffs = f->historybuffer + order;
00718 }
00719 }
00720 }
00721
00722 static void apply_filter(APEContext *ctx, APEFilter *f,
00723 int32_t *data0, int32_t *data1,
00724 int count, int order, int fracbits)
00725 {
00726 do_apply_filter(ctx, ctx->fileversion, &f[0], data0, count, order, fracbits);
00727 if (data1)
00728 do_apply_filter(ctx, ctx->fileversion, &f[1], data1, count, order, fracbits);
00729 }
00730
00731 static void ape_apply_filters(APEContext *ctx, int32_t *decoded0,
00732 int32_t *decoded1, int count)
00733 {
00734 int i;
00735
00736 for (i = 0; i < APE_FILTER_LEVELS; i++) {
00737 if (!ape_filter_orders[ctx->fset][i])
00738 break;
00739 apply_filter(ctx, ctx->filters[i], decoded0, decoded1, count,
00740 ape_filter_orders[ctx->fset][i],
00741 ape_filter_fracbits[ctx->fset][i]);
00742 }
00743 }
00744
00745 static int init_frame_decoder(APEContext *ctx)
00746 {
00747 int i, ret;
00748 if ((ret = init_entropy_decoder(ctx)) < 0)
00749 return ret;
00750 init_predictor_decoder(ctx);
00751
00752 for (i = 0; i < APE_FILTER_LEVELS; i++) {
00753 if (!ape_filter_orders[ctx->fset][i])
00754 break;
00755 init_filter(ctx, ctx->filters[i], ctx->filterbuf[i],
00756 ape_filter_orders[ctx->fset][i]);
00757 }
00758 return 0;
00759 }
00760
00761 static void ape_unpack_mono(APEContext *ctx, int count)
00762 {
00763 int32_t *decoded0 = ctx->decoded0;
00764 int32_t *decoded1 = ctx->decoded1;
00765
00766 if (ctx->frameflags & APE_FRAMECODE_STEREO_SILENCE) {
00767 entropy_decode(ctx, count, 0);
00768
00769 av_log(ctx->avctx, AV_LOG_DEBUG, "pure silence mono\n");
00770 return;
00771 }
00772
00773 entropy_decode(ctx, count, 0);
00774 ape_apply_filters(ctx, decoded0, NULL, count);
00775
00776
00777 predictor_decode_mono(ctx, count);
00778
00779
00780 if (ctx->channels == 2) {
00781 memcpy(decoded1, decoded0, count * sizeof(*decoded1));
00782 }
00783 }
00784
00785 static void ape_unpack_stereo(APEContext *ctx, int count)
00786 {
00787 int32_t left, right;
00788 int32_t *decoded0 = ctx->decoded0;
00789 int32_t *decoded1 = ctx->decoded1;
00790
00791 if (ctx->frameflags & APE_FRAMECODE_STEREO_SILENCE) {
00792
00793 av_log(ctx->avctx, AV_LOG_DEBUG, "pure silence stereo\n");
00794 return;
00795 }
00796
00797 entropy_decode(ctx, count, 1);
00798 ape_apply_filters(ctx, decoded0, decoded1, count);
00799
00800
00801 predictor_decode_stereo(ctx, count);
00802
00803
00804 while (count--) {
00805 left = *decoded1 - (*decoded0 / 2);
00806 right = left + *decoded0;
00807
00808 *(decoded0++) = left;
00809 *(decoded1++) = right;
00810 }
00811 }
00812
00813 static int ape_decode_frame(AVCodecContext *avctx, void *data,
00814 int *got_frame_ptr, AVPacket *avpkt)
00815 {
00816 const uint8_t *buf = avpkt->data;
00817 int buf_size = avpkt->size;
00818 APEContext *s = avctx->priv_data;
00819 int16_t *samples;
00820 int i, ret;
00821 int blockstodecode;
00822 int bytes_used = 0;
00823
00824
00825
00826 av_assert0(s->samples >= 0);
00827
00828 if(!s->samples){
00829 uint32_t nblocks, offset;
00830 void *tmp_data;
00831
00832 if (!buf_size) {
00833 *got_frame_ptr = 0;
00834 return 0;
00835 }
00836 if (buf_size < 8) {
00837 av_log(avctx, AV_LOG_ERROR, "Packet is too small\n");
00838 return AVERROR_INVALIDDATA;
00839 }
00840
00841 tmp_data = av_realloc(s->data, FFALIGN(buf_size, 4));
00842 if (!tmp_data)
00843 return AVERROR(ENOMEM);
00844 s->data = tmp_data;
00845 s->dsp.bswap_buf((uint32_t*)s->data, (const uint32_t*)buf, buf_size >> 2);
00846 s->ptr = s->data;
00847 s->data_end = s->data + buf_size;
00848
00849 nblocks = bytestream_get_be32(&s->ptr);
00850 offset = bytestream_get_be32(&s->ptr);
00851 if (offset > 3) {
00852 av_log(avctx, AV_LOG_ERROR, "Incorrect offset passed\n");
00853 s->data = NULL;
00854 return AVERROR_INVALIDDATA;
00855 }
00856 if (s->data_end - s->ptr < offset) {
00857 av_log(avctx, AV_LOG_ERROR, "Packet is too small\n");
00858 return AVERROR_INVALIDDATA;
00859 }
00860 s->ptr += offset;
00861
00862 if (!nblocks || nblocks > INT_MAX) {
00863 av_log(avctx, AV_LOG_ERROR, "Invalid sample count: %u.\n", nblocks);
00864 return AVERROR_INVALIDDATA;
00865 }
00866 s->samples = nblocks;
00867
00868 memset(s->decoded0, 0, sizeof(s->decoded0));
00869 memset(s->decoded1, 0, sizeof(s->decoded1));
00870
00871
00872 if (init_frame_decoder(s) < 0) {
00873 av_log(avctx, AV_LOG_ERROR, "Error reading frame header\n");
00874 return AVERROR_INVALIDDATA;
00875 }
00876
00877 bytes_used = buf_size;
00878 }
00879
00880 if (!s->data) {
00881 *got_frame_ptr = 0;
00882 return buf_size;
00883 }
00884
00885 blockstodecode = FFMIN(BLOCKS_PER_LOOP, s->samples);
00886
00887
00888 s->frame.nb_samples = blockstodecode;
00889 if ((ret = avctx->get_buffer(avctx, &s->frame)) < 0) {
00890 av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
00891 return ret;
00892 }
00893 samples = (int16_t *)s->frame.data[0];
00894
00895 s->error=0;
00896
00897 if ((s->channels == 1) || (s->frameflags & APE_FRAMECODE_PSEUDO_STEREO))
00898 ape_unpack_mono(s, blockstodecode);
00899 else
00900 ape_unpack_stereo(s, blockstodecode);
00901 emms_c();
00902
00903 if (s->error) {
00904 s->samples=0;
00905 av_log(avctx, AV_LOG_ERROR, "Error decoding frame\n");
00906 return AVERROR_INVALIDDATA;
00907 }
00908
00909 for (i = 0; i < blockstodecode; i++) {
00910 *samples++ = s->decoded0[i];
00911 if(s->channels == 2)
00912 *samples++ = s->decoded1[i];
00913 }
00914
00915 s->samples -= blockstodecode;
00916
00917 *got_frame_ptr = 1;
00918 *(AVFrame *)data = s->frame;
00919
00920 return bytes_used;
00921 }
00922
00923 static void ape_flush(AVCodecContext *avctx)
00924 {
00925 APEContext *s = avctx->priv_data;
00926 s->samples= 0;
00927 }
00928
00929 AVCodec ff_ape_decoder = {
00930 .name = "ape",
00931 .type = AVMEDIA_TYPE_AUDIO,
00932 .id = CODEC_ID_APE,
00933 .priv_data_size = sizeof(APEContext),
00934 .init = ape_decode_init,
00935 .close = ape_decode_close,
00936 .decode = ape_decode_frame,
00937 .capabilities = CODEC_CAP_SUBFRAMES | CODEC_CAP_DELAY | CODEC_CAP_DR1,
00938 .flush = ape_flush,
00939 .long_name = NULL_IF_CONFIG_SMALL("Monkey's Audio"),
00940 };