00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023 #include "avcodec.h"
00024 #include "dsputil.h"
00025 #include "bytestream.h"
00026 #include "libavutil/audioconvert.h"
00027 #include "libavutil/avassert.h"
00028 #include "libavutil/opt.h"
00029
00035 #define MAX_CHANNELS 2
00036 #define MAX_BYTESPERSAMPLE 3
00037
00038 #define APE_FRAMECODE_MONO_SILENCE 1
00039 #define APE_FRAMECODE_STEREO_SILENCE 3
00040 #define APE_FRAMECODE_PSEUDO_STEREO 4
00041
00042 #define HISTORY_SIZE 512
00043 #define PREDICTOR_ORDER 8
00044
00045 #define PREDICTOR_SIZE 50
00046
00047 #define YDELAYA (18 + PREDICTOR_ORDER*4)
00048 #define YDELAYB (18 + PREDICTOR_ORDER*3)
00049 #define XDELAYA (18 + PREDICTOR_ORDER*2)
00050 #define XDELAYB (18 + PREDICTOR_ORDER)
00051
00052 #define YADAPTCOEFFSA 18
00053 #define XADAPTCOEFFSA 14
00054 #define YADAPTCOEFFSB 10
00055 #define XADAPTCOEFFSB 5
00056
00061 enum APECompressionLevel {
00062 COMPRESSION_LEVEL_FAST = 1000,
00063 COMPRESSION_LEVEL_NORMAL = 2000,
00064 COMPRESSION_LEVEL_HIGH = 3000,
00065 COMPRESSION_LEVEL_EXTRA_HIGH = 4000,
00066 COMPRESSION_LEVEL_INSANE = 5000
00067 };
00070 #define APE_FILTER_LEVELS 3
00071
00073 static const uint16_t ape_filter_orders[5][APE_FILTER_LEVELS] = {
00074 { 0, 0, 0 },
00075 { 16, 0, 0 },
00076 { 64, 0, 0 },
00077 { 32, 256, 0 },
00078 { 16, 256, 1280 }
00079 };
00080
00082 static const uint8_t ape_filter_fracbits[5][APE_FILTER_LEVELS] = {
00083 { 0, 0, 0 },
00084 { 11, 0, 0 },
00085 { 11, 0, 0 },
00086 { 10, 13, 0 },
00087 { 11, 13, 15 }
00088 };
00089
00090
00092 typedef struct APEFilter {
00093 int16_t *coeffs;
00094 int16_t *adaptcoeffs;
00095 int16_t *historybuffer;
00096 int16_t *delay;
00097
00098 int avg;
00099 } APEFilter;
00100
00101 typedef struct APERice {
00102 uint32_t k;
00103 uint32_t ksum;
00104 } APERice;
00105
00106 typedef struct APERangecoder {
00107 uint32_t low;
00108 uint32_t range;
00109 uint32_t help;
00110 unsigned int buffer;
00111 } APERangecoder;
00112
00114 typedef struct APEPredictor {
00115 int32_t *buf;
00116
00117 int32_t lastA[2];
00118
00119 int32_t filterA[2];
00120 int32_t filterB[2];
00121
00122 int32_t coeffsA[2][4];
00123 int32_t coeffsB[2][5];
00124 int32_t historybuffer[HISTORY_SIZE + PREDICTOR_SIZE];
00125 } APEPredictor;
00126
00128 typedef struct APEContext {
00129 AVClass *class;
00130 AVCodecContext *avctx;
00131 AVFrame frame;
00132 DSPContext dsp;
00133 int channels;
00134 int samples;
00135 int bps;
00136
00137 int fileversion;
00138 int compression_level;
00139 int fset;
00140 int flags;
00141
00142 uint32_t CRC;
00143 int frameflags;
00144 APEPredictor predictor;
00145
00146 int32_t *decoded_buffer;
00147 int decoded_size;
00148 int32_t *decoded[MAX_CHANNELS];
00149 int blocks_per_loop;
00150
00151 int16_t* filterbuf[APE_FILTER_LEVELS];
00152
00153 APERangecoder rc;
00154 APERice riceX;
00155 APERice riceY;
00156 APEFilter filters[APE_FILTER_LEVELS][2];
00157
00158 uint8_t *data;
00159 uint8_t *data_end;
00160 int data_size;
00161 const uint8_t *ptr;
00162
00163 int error;
00164 } APEContext;
00165
00166
00167
00168 static av_cold int ape_decode_close(AVCodecContext *avctx)
00169 {
00170 APEContext *s = avctx->priv_data;
00171 int i;
00172
00173 for (i = 0; i < APE_FILTER_LEVELS; i++)
00174 av_freep(&s->filterbuf[i]);
00175
00176 av_freep(&s->decoded_buffer);
00177 av_freep(&s->data);
00178 s->decoded_size = s->data_size = 0;
00179
00180 return 0;
00181 }
00182
00183 static av_cold int ape_decode_init(AVCodecContext *avctx)
00184 {
00185 APEContext *s = avctx->priv_data;
00186 int i;
00187
00188 if (avctx->extradata_size != 6) {
00189 av_log(avctx, AV_LOG_ERROR, "Incorrect extradata\n");
00190 return AVERROR(EINVAL);
00191 }
00192 if (avctx->channels > 2) {
00193 av_log(avctx, AV_LOG_ERROR, "Only mono and stereo is supported\n");
00194 return AVERROR(EINVAL);
00195 }
00196 s->bps = avctx->bits_per_coded_sample;
00197 switch (s->bps) {
00198 case 8:
00199 avctx->sample_fmt = AV_SAMPLE_FMT_U8;
00200 break;
00201 case 16:
00202 avctx->sample_fmt = AV_SAMPLE_FMT_S16;
00203 break;
00204 case 24:
00205 avctx->sample_fmt = AV_SAMPLE_FMT_S32;
00206 break;
00207 default:
00208 av_log_ask_for_sample(avctx, "Unsupported bits per coded sample %d\n",
00209 s->bps);
00210 return AVERROR_PATCHWELCOME;
00211 }
00212 s->avctx = avctx;
00213 s->channels = avctx->channels;
00214 s->fileversion = AV_RL16(avctx->extradata);
00215 s->compression_level = AV_RL16(avctx->extradata + 2);
00216 s->flags = AV_RL16(avctx->extradata + 4);
00217
00218 av_log(avctx, AV_LOG_DEBUG, "Compression Level: %d - Flags: %d\n",
00219 s->compression_level, s->flags);
00220 if (s->compression_level % 1000 || s->compression_level > COMPRESSION_LEVEL_INSANE || !s->compression_level) {
00221 av_log(avctx, AV_LOG_ERROR, "Incorrect compression level %d\n",
00222 s->compression_level);
00223 return AVERROR_INVALIDDATA;
00224 }
00225 s->fset = s->compression_level / 1000 - 1;
00226 for (i = 0; i < APE_FILTER_LEVELS; i++) {
00227 if (!ape_filter_orders[s->fset][i])
00228 break;
00229 FF_ALLOC_OR_GOTO(avctx, s->filterbuf[i],
00230 (ape_filter_orders[s->fset][i] * 3 + HISTORY_SIZE) * 4,
00231 filter_alloc_fail);
00232 }
00233
00234 ff_dsputil_init(&s->dsp, avctx);
00235 avctx->channel_layout = (avctx->channels==2) ? AV_CH_LAYOUT_STEREO : AV_CH_LAYOUT_MONO;
00236
00237 avcodec_get_frame_defaults(&s->frame);
00238 avctx->coded_frame = &s->frame;
00239
00240 return 0;
00241 filter_alloc_fail:
00242 ape_decode_close(avctx);
00243 return AVERROR(ENOMEM);
00244 }
00245
00251 #define CODE_BITS 32
00252 #define TOP_VALUE ((unsigned int)1 << (CODE_BITS-1))
00253 #define SHIFT_BITS (CODE_BITS - 9)
00254 #define EXTRA_BITS ((CODE_BITS-2) % 8 + 1)
00255 #define BOTTOM_VALUE (TOP_VALUE >> 8)
00256
00258 static inline void range_start_decoding(APEContext *ctx)
00259 {
00260 ctx->rc.buffer = bytestream_get_byte(&ctx->ptr);
00261 ctx->rc.low = ctx->rc.buffer >> (8 - EXTRA_BITS);
00262 ctx->rc.range = (uint32_t) 1 << EXTRA_BITS;
00263 }
00264
00266 static inline void range_dec_normalize(APEContext *ctx)
00267 {
00268 while (ctx->rc.range <= BOTTOM_VALUE) {
00269 ctx->rc.buffer <<= 8;
00270 if(ctx->ptr < ctx->data_end) {
00271 ctx->rc.buffer += *ctx->ptr;
00272 ctx->ptr++;
00273 } else {
00274 ctx->error = 1;
00275 }
00276 ctx->rc.low = (ctx->rc.low << 8) | ((ctx->rc.buffer >> 1) & 0xFF);
00277 ctx->rc.range <<= 8;
00278 }
00279 }
00280
00287 static inline int range_decode_culfreq(APEContext *ctx, int tot_f)
00288 {
00289 range_dec_normalize(ctx);
00290 ctx->rc.help = ctx->rc.range / tot_f;
00291 return ctx->rc.low / ctx->rc.help;
00292 }
00293
00299 static inline int range_decode_culshift(APEContext *ctx, int shift)
00300 {
00301 range_dec_normalize(ctx);
00302 ctx->rc.help = ctx->rc.range >> shift;
00303 return ctx->rc.low / ctx->rc.help;
00304 }
00305
00306
00313 static inline void range_decode_update(APEContext *ctx, int sy_f, int lt_f)
00314 {
00315 ctx->rc.low -= ctx->rc.help * lt_f;
00316 ctx->rc.range = ctx->rc.help * sy_f;
00317 }
00318
00320 static inline int range_decode_bits(APEContext *ctx, int n)
00321 {
00322 int sym = range_decode_culshift(ctx, n);
00323 range_decode_update(ctx, 1, sym);
00324 return sym;
00325 }
00326
00327
00328 #define MODEL_ELEMENTS 64
00329
00333 static const uint16_t counts_3970[22] = {
00334 0, 14824, 28224, 39348, 47855, 53994, 58171, 60926,
00335 62682, 63786, 64463, 64878, 65126, 65276, 65365, 65419,
00336 65450, 65469, 65480, 65487, 65491, 65493,
00337 };
00338
00342 static const uint16_t counts_diff_3970[21] = {
00343 14824, 13400, 11124, 8507, 6139, 4177, 2755, 1756,
00344 1104, 677, 415, 248, 150, 89, 54, 31,
00345 19, 11, 7, 4, 2,
00346 };
00347
00351 static const uint16_t counts_3980[22] = {
00352 0, 19578, 36160, 48417, 56323, 60899, 63265, 64435,
00353 64971, 65232, 65351, 65416, 65447, 65466, 65476, 65482,
00354 65485, 65488, 65490, 65491, 65492, 65493,
00355 };
00356
00360 static const uint16_t counts_diff_3980[21] = {
00361 19578, 16582, 12257, 7906, 4576, 2366, 1170, 536,
00362 261, 119, 65, 31, 19, 10, 6, 3,
00363 3, 2, 1, 1, 1,
00364 };
00365
00372 static inline int range_get_symbol(APEContext *ctx,
00373 const uint16_t counts[],
00374 const uint16_t counts_diff[])
00375 {
00376 int symbol, cf;
00377
00378 cf = range_decode_culshift(ctx, 16);
00379
00380 if(cf > 65492){
00381 symbol= cf - 65535 + 63;
00382 range_decode_update(ctx, 1, cf);
00383 if(cf > 65535)
00384 ctx->error=1;
00385 return symbol;
00386 }
00387
00388 for (symbol = 0; counts[symbol + 1] <= cf; symbol++);
00389
00390 range_decode_update(ctx, counts_diff[symbol], counts[symbol]);
00391
00392 return symbol;
00393 }
00395
00396 static inline void update_rice(APERice *rice, unsigned int x)
00397 {
00398 int lim = rice->k ? (1 << (rice->k + 4)) : 0;
00399 rice->ksum += ((x + 1) / 2) - ((rice->ksum + 16) >> 5);
00400
00401 if (rice->ksum < lim)
00402 rice->k--;
00403 else if (rice->ksum >= (1 << (rice->k + 5)))
00404 rice->k++;
00405 }
00406
00407 static inline int ape_decode_value(APEContext *ctx, APERice *rice)
00408 {
00409 unsigned int x, overflow;
00410
00411 if (ctx->fileversion < 3990) {
00412 int tmpk;
00413
00414 overflow = range_get_symbol(ctx, counts_3970, counts_diff_3970);
00415
00416 if (overflow == (MODEL_ELEMENTS - 1)) {
00417 tmpk = range_decode_bits(ctx, 5);
00418 overflow = 0;
00419 } else
00420 tmpk = (rice->k < 1) ? 0 : rice->k - 1;
00421
00422 if (tmpk <= 16)
00423 x = range_decode_bits(ctx, tmpk);
00424 else if (tmpk <= 32) {
00425 x = range_decode_bits(ctx, 16);
00426 x |= (range_decode_bits(ctx, tmpk - 16) << 16);
00427 } else {
00428 av_log(ctx->avctx, AV_LOG_ERROR, "Too many bits: %d\n", tmpk);
00429 return AVERROR_INVALIDDATA;
00430 }
00431 x += overflow << tmpk;
00432 } else {
00433 int base, pivot;
00434
00435 pivot = rice->ksum >> 5;
00436 if (pivot == 0)
00437 pivot = 1;
00438
00439 overflow = range_get_symbol(ctx, counts_3980, counts_diff_3980);
00440
00441 if (overflow == (MODEL_ELEMENTS - 1)) {
00442 overflow = range_decode_bits(ctx, 16) << 16;
00443 overflow |= range_decode_bits(ctx, 16);
00444 }
00445
00446 if (pivot < 0x10000) {
00447 base = range_decode_culfreq(ctx, pivot);
00448 range_decode_update(ctx, 1, base);
00449 } else {
00450 int base_hi = pivot, base_lo;
00451 int bbits = 0;
00452
00453 while (base_hi & ~0xFFFF) {
00454 base_hi >>= 1;
00455 bbits++;
00456 }
00457 base_hi = range_decode_culfreq(ctx, base_hi + 1);
00458 range_decode_update(ctx, 1, base_hi);
00459 base_lo = range_decode_culfreq(ctx, 1 << bbits);
00460 range_decode_update(ctx, 1, base_lo);
00461
00462 base = (base_hi << bbits) + base_lo;
00463 }
00464
00465 x = base + overflow * pivot;
00466 }
00467
00468 update_rice(rice, x);
00469
00470
00471 if (x & 1)
00472 return (x >> 1) + 1;
00473 else
00474 return -(x >> 1);
00475 }
00476
00477 static void entropy_decode(APEContext *ctx, int blockstodecode, int stereo)
00478 {
00479 int32_t *decoded0 = ctx->decoded[0];
00480 int32_t *decoded1 = ctx->decoded[1];
00481
00482 while (blockstodecode--) {
00483 *decoded0++ = ape_decode_value(ctx, &ctx->riceY);
00484 if (stereo)
00485 *decoded1++ = ape_decode_value(ctx, &ctx->riceX);
00486 }
00487 }
00488
00489 static int init_entropy_decoder(APEContext *ctx)
00490 {
00491
00492 if (ctx->data_end - ctx->ptr < 6)
00493 return AVERROR_INVALIDDATA;
00494 ctx->CRC = bytestream_get_be32(&ctx->ptr);
00495
00496
00497 ctx->frameflags = 0;
00498 if ((ctx->fileversion > 3820) && (ctx->CRC & 0x80000000)) {
00499 ctx->CRC &= ~0x80000000;
00500
00501 if (ctx->data_end - ctx->ptr < 6)
00502 return AVERROR_INVALIDDATA;
00503 ctx->frameflags = bytestream_get_be32(&ctx->ptr);
00504 }
00505
00506
00507 ctx->riceX.k = 10;
00508 ctx->riceX.ksum = (1 << ctx->riceX.k) * 16;
00509 ctx->riceY.k = 10;
00510 ctx->riceY.ksum = (1 << ctx->riceY.k) * 16;
00511
00512
00513 ctx->ptr++;
00514
00515 range_start_decoding(ctx);
00516
00517 return 0;
00518 }
00519
00520 static const int32_t initial_coeffs[4] = {
00521 360, 317, -109, 98
00522 };
00523
00524 static void init_predictor_decoder(APEContext *ctx)
00525 {
00526 APEPredictor *p = &ctx->predictor;
00527
00528
00529 memset(p->historybuffer, 0, PREDICTOR_SIZE * sizeof(*p->historybuffer));
00530 p->buf = p->historybuffer;
00531
00532
00533 memcpy(p->coeffsA[0], initial_coeffs, sizeof(initial_coeffs));
00534 memcpy(p->coeffsA[1], initial_coeffs, sizeof(initial_coeffs));
00535 memset(p->coeffsB, 0, sizeof(p->coeffsB));
00536
00537 p->filterA[0] = p->filterA[1] = 0;
00538 p->filterB[0] = p->filterB[1] = 0;
00539 p->lastA[0] = p->lastA[1] = 0;
00540 }
00541
00543 static inline int APESIGN(int32_t x) {
00544 return (x < 0) - (x > 0);
00545 }
00546
00547 static av_always_inline int predictor_update_filter(APEPredictor *p,
00548 const int decoded, const int filter,
00549 const int delayA, const int delayB,
00550 const int adaptA, const int adaptB)
00551 {
00552 int32_t predictionA, predictionB, sign;
00553
00554 p->buf[delayA] = p->lastA[filter];
00555 p->buf[adaptA] = APESIGN(p->buf[delayA]);
00556 p->buf[delayA - 1] = p->buf[delayA] - p->buf[delayA - 1];
00557 p->buf[adaptA - 1] = APESIGN(p->buf[delayA - 1]);
00558
00559 predictionA = p->buf[delayA ] * p->coeffsA[filter][0] +
00560 p->buf[delayA - 1] * p->coeffsA[filter][1] +
00561 p->buf[delayA - 2] * p->coeffsA[filter][2] +
00562 p->buf[delayA - 3] * p->coeffsA[filter][3];
00563
00564
00565 p->buf[delayB] = p->filterA[filter ^ 1] - ((p->filterB[filter] * 31) >> 5);
00566 p->buf[adaptB] = APESIGN(p->buf[delayB]);
00567 p->buf[delayB - 1] = p->buf[delayB] - p->buf[delayB - 1];
00568 p->buf[adaptB - 1] = APESIGN(p->buf[delayB - 1]);
00569 p->filterB[filter] = p->filterA[filter ^ 1];
00570
00571 predictionB = p->buf[delayB ] * p->coeffsB[filter][0] +
00572 p->buf[delayB - 1] * p->coeffsB[filter][1] +
00573 p->buf[delayB - 2] * p->coeffsB[filter][2] +
00574 p->buf[delayB - 3] * p->coeffsB[filter][3] +
00575 p->buf[delayB - 4] * p->coeffsB[filter][4];
00576
00577 p->lastA[filter] = decoded + ((predictionA + (predictionB >> 1)) >> 10);
00578 p->filterA[filter] = p->lastA[filter] + ((p->filterA[filter] * 31) >> 5);
00579
00580 sign = APESIGN(decoded);
00581 p->coeffsA[filter][0] += p->buf[adaptA ] * sign;
00582 p->coeffsA[filter][1] += p->buf[adaptA - 1] * sign;
00583 p->coeffsA[filter][2] += p->buf[adaptA - 2] * sign;
00584 p->coeffsA[filter][3] += p->buf[adaptA - 3] * sign;
00585 p->coeffsB[filter][0] += p->buf[adaptB ] * sign;
00586 p->coeffsB[filter][1] += p->buf[adaptB - 1] * sign;
00587 p->coeffsB[filter][2] += p->buf[adaptB - 2] * sign;
00588 p->coeffsB[filter][3] += p->buf[adaptB - 3] * sign;
00589 p->coeffsB[filter][4] += p->buf[adaptB - 4] * sign;
00590
00591 return p->filterA[filter];
00592 }
00593
00594 static void predictor_decode_stereo(APEContext *ctx, int count)
00595 {
00596 APEPredictor *p = &ctx->predictor;
00597 int32_t *decoded0 = ctx->decoded[0];
00598 int32_t *decoded1 = ctx->decoded[1];
00599
00600 while (count--) {
00601
00602 *decoded0 = predictor_update_filter(p, *decoded0, 0, YDELAYA, YDELAYB,
00603 YADAPTCOEFFSA, YADAPTCOEFFSB);
00604 decoded0++;
00605 *decoded1 = predictor_update_filter(p, *decoded1, 1, XDELAYA, XDELAYB,
00606 XADAPTCOEFFSA, XADAPTCOEFFSB);
00607 decoded1++;
00608
00609
00610 p->buf++;
00611
00612
00613 if (p->buf == p->historybuffer + HISTORY_SIZE) {
00614 memmove(p->historybuffer, p->buf,
00615 PREDICTOR_SIZE * sizeof(*p->historybuffer));
00616 p->buf = p->historybuffer;
00617 }
00618 }
00619 }
00620
00621 static void predictor_decode_mono(APEContext *ctx, int count)
00622 {
00623 APEPredictor *p = &ctx->predictor;
00624 int32_t *decoded0 = ctx->decoded[0];
00625 int32_t predictionA, currentA, A, sign;
00626
00627 currentA = p->lastA[0];
00628
00629 while (count--) {
00630 A = *decoded0;
00631
00632 p->buf[YDELAYA] = currentA;
00633 p->buf[YDELAYA - 1] = p->buf[YDELAYA] - p->buf[YDELAYA - 1];
00634
00635 predictionA = p->buf[YDELAYA ] * p->coeffsA[0][0] +
00636 p->buf[YDELAYA - 1] * p->coeffsA[0][1] +
00637 p->buf[YDELAYA - 2] * p->coeffsA[0][2] +
00638 p->buf[YDELAYA - 3] * p->coeffsA[0][3];
00639
00640 currentA = A + (predictionA >> 10);
00641
00642 p->buf[YADAPTCOEFFSA] = APESIGN(p->buf[YDELAYA ]);
00643 p->buf[YADAPTCOEFFSA - 1] = APESIGN(p->buf[YDELAYA - 1]);
00644
00645 sign = APESIGN(A);
00646 p->coeffsA[0][0] += p->buf[YADAPTCOEFFSA ] * sign;
00647 p->coeffsA[0][1] += p->buf[YADAPTCOEFFSA - 1] * sign;
00648 p->coeffsA[0][2] += p->buf[YADAPTCOEFFSA - 2] * sign;
00649 p->coeffsA[0][3] += p->buf[YADAPTCOEFFSA - 3] * sign;
00650
00651 p->buf++;
00652
00653
00654 if (p->buf == p->historybuffer + HISTORY_SIZE) {
00655 memmove(p->historybuffer, p->buf,
00656 PREDICTOR_SIZE * sizeof(*p->historybuffer));
00657 p->buf = p->historybuffer;
00658 }
00659
00660 p->filterA[0] = currentA + ((p->filterA[0] * 31) >> 5);
00661 *(decoded0++) = p->filterA[0];
00662 }
00663
00664 p->lastA[0] = currentA;
00665 }
00666
00667 static void do_init_filter(APEFilter *f, int16_t *buf, int order)
00668 {
00669 f->coeffs = buf;
00670 f->historybuffer = buf + order;
00671 f->delay = f->historybuffer + order * 2;
00672 f->adaptcoeffs = f->historybuffer + order;
00673
00674 memset(f->historybuffer, 0, (order * 2) * sizeof(*f->historybuffer));
00675 memset(f->coeffs, 0, order * sizeof(*f->coeffs));
00676 f->avg = 0;
00677 }
00678
00679 static void init_filter(APEContext *ctx, APEFilter *f, int16_t *buf, int order)
00680 {
00681 do_init_filter(&f[0], buf, order);
00682 do_init_filter(&f[1], buf + order * 3 + HISTORY_SIZE, order);
00683 }
00684
00685 static void do_apply_filter(APEContext *ctx, int version, APEFilter *f,
00686 int32_t *data, int count, int order, int fracbits)
00687 {
00688 int res;
00689 int absres;
00690
00691 while (count--) {
00692
00693 res = ctx->dsp.scalarproduct_and_madd_int16(f->coeffs, f->delay - order,
00694 f->adaptcoeffs - order,
00695 order, APESIGN(*data));
00696 res = (res + (1 << (fracbits - 1))) >> fracbits;
00697 res += *data;
00698 *data++ = res;
00699
00700
00701 *f->delay++ = av_clip_int16(res);
00702
00703 if (version < 3980) {
00704
00705 f->adaptcoeffs[0] = (res == 0) ? 0 : ((res >> 28) & 8) - 4;
00706 f->adaptcoeffs[-4] >>= 1;
00707 f->adaptcoeffs[-8] >>= 1;
00708 } else {
00709
00710
00711
00712 absres = FFABS(res);
00713 if (absres)
00714 *f->adaptcoeffs = ((res & (-1<<31)) ^ (-1<<30)) >>
00715 (25 + (absres <= f->avg*3) + (absres <= f->avg*4/3));
00716 else
00717 *f->adaptcoeffs = 0;
00718
00719 f->avg += (absres - f->avg) / 16;
00720
00721 f->adaptcoeffs[-1] >>= 1;
00722 f->adaptcoeffs[-2] >>= 1;
00723 f->adaptcoeffs[-8] >>= 1;
00724 }
00725
00726 f->adaptcoeffs++;
00727
00728
00729 if (f->delay == f->historybuffer + HISTORY_SIZE + (order * 2)) {
00730 memmove(f->historybuffer, f->delay - (order * 2),
00731 (order * 2) * sizeof(*f->historybuffer));
00732 f->delay = f->historybuffer + order * 2;
00733 f->adaptcoeffs = f->historybuffer + order;
00734 }
00735 }
00736 }
00737
00738 static void apply_filter(APEContext *ctx, APEFilter *f,
00739 int32_t *data0, int32_t *data1,
00740 int count, int order, int fracbits)
00741 {
00742 do_apply_filter(ctx, ctx->fileversion, &f[0], data0, count, order, fracbits);
00743 if (data1)
00744 do_apply_filter(ctx, ctx->fileversion, &f[1], data1, count, order, fracbits);
00745 }
00746
00747 static void ape_apply_filters(APEContext *ctx, int32_t *decoded0,
00748 int32_t *decoded1, int count)
00749 {
00750 int i;
00751
00752 for (i = 0; i < APE_FILTER_LEVELS; i++) {
00753 if (!ape_filter_orders[ctx->fset][i])
00754 break;
00755 apply_filter(ctx, ctx->filters[i], decoded0, decoded1, count,
00756 ape_filter_orders[ctx->fset][i],
00757 ape_filter_fracbits[ctx->fset][i]);
00758 }
00759 }
00760
00761 static int init_frame_decoder(APEContext *ctx)
00762 {
00763 int i, ret;
00764 if ((ret = init_entropy_decoder(ctx)) < 0)
00765 return ret;
00766 init_predictor_decoder(ctx);
00767
00768 for (i = 0; i < APE_FILTER_LEVELS; i++) {
00769 if (!ape_filter_orders[ctx->fset][i])
00770 break;
00771 init_filter(ctx, ctx->filters[i], ctx->filterbuf[i],
00772 ape_filter_orders[ctx->fset][i]);
00773 }
00774 return 0;
00775 }
00776
00777 static void ape_unpack_mono(APEContext *ctx, int count)
00778 {
00779 if (ctx->frameflags & APE_FRAMECODE_STEREO_SILENCE) {
00780
00781 av_log(ctx->avctx, AV_LOG_DEBUG, "pure silence mono\n");
00782 return;
00783 }
00784
00785 entropy_decode(ctx, count, 0);
00786 ape_apply_filters(ctx, ctx->decoded[0], NULL, count);
00787
00788
00789 predictor_decode_mono(ctx, count);
00790
00791
00792 if (ctx->channels == 2) {
00793 memcpy(ctx->decoded[1], ctx->decoded[0], count * sizeof(*ctx->decoded[1]));
00794 }
00795 }
00796
00797 static void ape_unpack_stereo(APEContext *ctx, int count)
00798 {
00799 int32_t left, right;
00800 int32_t *decoded0 = ctx->decoded[0];
00801 int32_t *decoded1 = ctx->decoded[1];
00802
00803 if (ctx->frameflags & APE_FRAMECODE_STEREO_SILENCE) {
00804
00805 av_log(ctx->avctx, AV_LOG_DEBUG, "pure silence stereo\n");
00806 return;
00807 }
00808
00809 entropy_decode(ctx, count, 1);
00810 ape_apply_filters(ctx, decoded0, decoded1, count);
00811
00812
00813 predictor_decode_stereo(ctx, count);
00814
00815
00816 while (count--) {
00817 left = *decoded1 - (*decoded0 / 2);
00818 right = left + *decoded0;
00819
00820 *(decoded0++) = left;
00821 *(decoded1++) = right;
00822 }
00823 }
00824
00825 static int ape_decode_frame(AVCodecContext *avctx, void *data,
00826 int *got_frame_ptr, AVPacket *avpkt)
00827 {
00828 const uint8_t *buf = avpkt->data;
00829 APEContext *s = avctx->priv_data;
00830 uint8_t *sample8;
00831 int16_t *sample16;
00832 int32_t *sample24;
00833 int i, ret;
00834 int blockstodecode;
00835 int bytes_used = 0;
00836
00837
00838
00839 av_assert0(s->samples >= 0);
00840
00841 if(!s->samples){
00842 uint32_t nblocks, offset;
00843 int buf_size;
00844
00845 if (!avpkt->size) {
00846 *got_frame_ptr = 0;
00847 return 0;
00848 }
00849 if (avpkt->size < 8) {
00850 av_log(avctx, AV_LOG_ERROR, "Packet is too small\n");
00851 return AVERROR_INVALIDDATA;
00852 }
00853 buf_size = avpkt->size & ~3;
00854 if (buf_size != avpkt->size) {
00855 av_log(avctx, AV_LOG_WARNING, "packet size is not a multiple of 4. "
00856 "extra bytes at the end will be skipped.\n");
00857 }
00858
00859 av_fast_malloc(&s->data, &s->data_size, buf_size);
00860 if (!s->data)
00861 return AVERROR(ENOMEM);
00862 s->dsp.bswap_buf((uint32_t*)s->data, (const uint32_t*)buf, buf_size >> 2);
00863 s->ptr = s->data;
00864 s->data_end = s->data + buf_size;
00865
00866 nblocks = bytestream_get_be32(&s->ptr);
00867 offset = bytestream_get_be32(&s->ptr);
00868 if (offset > 3) {
00869 av_log(avctx, AV_LOG_ERROR, "Incorrect offset passed\n");
00870 s->data = NULL;
00871 return AVERROR_INVALIDDATA;
00872 }
00873 if (s->data_end - s->ptr < offset) {
00874 av_log(avctx, AV_LOG_ERROR, "Packet is too small\n");
00875 return AVERROR_INVALIDDATA;
00876 }
00877 s->ptr += offset;
00878
00879 if (!nblocks || nblocks > INT_MAX) {
00880 av_log(avctx, AV_LOG_ERROR, "Invalid sample count: %u.\n", nblocks);
00881 return AVERROR_INVALIDDATA;
00882 }
00883 s->samples = nblocks;
00884
00885
00886 if (init_frame_decoder(s) < 0) {
00887 av_log(avctx, AV_LOG_ERROR, "Error reading frame header\n");
00888 return AVERROR_INVALIDDATA;
00889 }
00890
00891 bytes_used = avpkt->size;
00892 }
00893
00894 if (!s->data) {
00895 *got_frame_ptr = 0;
00896 return avpkt->size;
00897 }
00898
00899 blockstodecode = FFMIN(s->blocks_per_loop, s->samples);
00900
00901
00902 av_fast_malloc(&s->decoded_buffer, &s->decoded_size,
00903 2 * FFALIGN(blockstodecode, 8) * sizeof(*s->decoded_buffer));
00904 if (!s->decoded_buffer)
00905 return AVERROR(ENOMEM);
00906 memset(s->decoded_buffer, 0, s->decoded_size);
00907 s->decoded[0] = s->decoded_buffer;
00908 s->decoded[1] = s->decoded_buffer + FFALIGN(blockstodecode, 8);
00909
00910
00911 s->frame.nb_samples = blockstodecode;
00912 if ((ret = avctx->get_buffer(avctx, &s->frame)) < 0) {
00913 av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
00914 return ret;
00915 }
00916
00917 s->error=0;
00918
00919 if ((s->channels == 1) || (s->frameflags & APE_FRAMECODE_PSEUDO_STEREO))
00920 ape_unpack_mono(s, blockstodecode);
00921 else
00922 ape_unpack_stereo(s, blockstodecode);
00923 emms_c();
00924
00925 if (s->error) {
00926 s->samples=0;
00927 av_log(avctx, AV_LOG_ERROR, "Error decoding frame\n");
00928 return AVERROR_INVALIDDATA;
00929 }
00930
00931 switch (s->bps) {
00932 case 8:
00933 sample8 = (uint8_t *)s->frame.data[0];
00934 for (i = 0; i < blockstodecode; i++) {
00935 *sample8++ = (s->decoded[0][i] + 0x80) & 0xff;
00936 if (s->channels == 2)
00937 *sample8++ = (s->decoded[1][i] + 0x80) & 0xff;
00938 }
00939 break;
00940 case 16:
00941 sample16 = (int16_t *)s->frame.data[0];
00942 for (i = 0; i < blockstodecode; i++) {
00943 *sample16++ = s->decoded[0][i];
00944 if (s->channels == 2)
00945 *sample16++ = s->decoded[1][i];
00946 }
00947 break;
00948 case 24:
00949 sample24 = (int32_t *)s->frame.data[0];
00950 for (i = 0; i < blockstodecode; i++) {
00951 *sample24++ = s->decoded[0][i] << 8;
00952 if (s->channels == 2)
00953 *sample24++ = s->decoded[1][i] << 8;
00954 }
00955 break;
00956 }
00957
00958 s->samples -= blockstodecode;
00959
00960 *got_frame_ptr = 1;
00961 *(AVFrame *)data = s->frame;
00962
00963 return bytes_used;
00964 }
00965
00966 static void ape_flush(AVCodecContext *avctx)
00967 {
00968 APEContext *s = avctx->priv_data;
00969 s->samples= 0;
00970 }
00971
00972 #define OFFSET(x) offsetof(APEContext, x)
00973 #define PAR (AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM)
00974 static const AVOption options[] = {
00975 { "max_samples", "maximum number of samples decoded per call", OFFSET(blocks_per_loop), AV_OPT_TYPE_INT, { .i64 = 4608 }, 1, INT_MAX, PAR, "max_samples" },
00976 { "all", "no maximum. decode all samples for each packet at once", 0, AV_OPT_TYPE_CONST, { .i64 = INT_MAX }, INT_MIN, INT_MAX, PAR, "max_samples" },
00977 { NULL},
00978 };
00979
00980 static const AVClass ape_decoder_class = {
00981 .class_name = "APE decoder",
00982 .item_name = av_default_item_name,
00983 .option = options,
00984 .version = LIBAVUTIL_VERSION_INT,
00985 };
00986
00987 AVCodec ff_ape_decoder = {
00988 .name = "ape",
00989 .type = AVMEDIA_TYPE_AUDIO,
00990 .id = AV_CODEC_ID_APE,
00991 .priv_data_size = sizeof(APEContext),
00992 .init = ape_decode_init,
00993 .close = ape_decode_close,
00994 .decode = ape_decode_frame,
00995 .capabilities = CODEC_CAP_SUBFRAMES | CODEC_CAP_DELAY | CODEC_CAP_DR1,
00996 .flush = ape_flush,
00997 .long_name = NULL_IF_CONFIG_SMALL("Monkey's Audio"),
00998 .priv_class = &ape_decoder_class,
00999 };