FFmpeg
 All Data Structures Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
takdec.c
Go to the documentation of this file.
1 /*
2  * TAK decoder
3  * Copyright (c) 2012 Paul B Mahol
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * TAK (Tom's lossless Audio Kompressor) decoder
25  * @author Paul B Mahol
26  */
27 
28 #include "libavutil/internal.h"
29 #include "libavutil/samplefmt.h"
30 #include "tak.h"
31 #include "avcodec.h"
32 #include "dsputil.h"
33 #include "internal.h"
34 #include "unary.h"
35 
36 #define MAX_SUBFRAMES 8 ///< max number of subframes per channel
37 #define MAX_PREDICTORS 256
38 
39 typedef struct MCDParam {
40  int8_t present; ///< decorrelation parameter availability for this channel
41  int8_t index; ///< index into array of decorrelation types
42  int8_t chan1;
43  int8_t chan2;
44 } MCDParam;
45 
46 typedef struct TAKDecContext {
47  AVCodecContext *avctx; ///< parent AVCodecContext
50  GetBitContext gb; ///< bitstream reader initialized to start at the current frame
51 
52  int uval;
53  int nb_samples; ///< number of samples in the current frame
55  unsigned int decode_buffer_size;
56  int32_t *decoded[TAK_MAX_CHANNELS]; ///< decoded samples for each channel
57 
59  int8_t sample_shift[TAK_MAX_CHANNELS]; ///< shift applied to every sample in the channel
61  int nb_subframes; ///< number of subframes in the current frame
62  int16_t subframe_len[MAX_SUBFRAMES]; ///< subframe length in samples
64 
65  int8_t dmode; ///< channel decorrelation type in the current frame
66 
67  MCDParam mcdparams[TAK_MAX_CHANNELS]; ///< multichannel decorrelation parameters
68 
69  int8_t coding_mode[128];
71  DECLARE_ALIGNED(16, int16_t, residues)[544];
73 
74 static const int8_t mc_dmodes[] = { 1, 3, 4, 6, };
75 
76 static const uint16_t predictor_sizes[] = {
77  4, 8, 12, 16, 24, 32, 48, 64, 80, 96, 128, 160, 192, 224, 256, 0,
78 };
79 
80 static const struct CParam {
81  int init;
82  int escape;
83  int scale;
84  int aescape;
85  int bias;
86 } xcodes[50] = {
87  { 0x01, 0x0000001, 0x0000001, 0x0000003, 0x0000008 },
88  { 0x02, 0x0000003, 0x0000001, 0x0000007, 0x0000006 },
89  { 0x03, 0x0000005, 0x0000002, 0x000000E, 0x000000D },
90  { 0x03, 0x0000003, 0x0000003, 0x000000D, 0x0000018 },
91  { 0x04, 0x000000B, 0x0000004, 0x000001C, 0x0000019 },
92  { 0x04, 0x0000006, 0x0000006, 0x000001A, 0x0000030 },
93  { 0x05, 0x0000016, 0x0000008, 0x0000038, 0x0000032 },
94  { 0x05, 0x000000C, 0x000000C, 0x0000034, 0x0000060 },
95  { 0x06, 0x000002C, 0x0000010, 0x0000070, 0x0000064 },
96  { 0x06, 0x0000018, 0x0000018, 0x0000068, 0x00000C0 },
97  { 0x07, 0x0000058, 0x0000020, 0x00000E0, 0x00000C8 },
98  { 0x07, 0x0000030, 0x0000030, 0x00000D0, 0x0000180 },
99  { 0x08, 0x00000B0, 0x0000040, 0x00001C0, 0x0000190 },
100  { 0x08, 0x0000060, 0x0000060, 0x00001A0, 0x0000300 },
101  { 0x09, 0x0000160, 0x0000080, 0x0000380, 0x0000320 },
102  { 0x09, 0x00000C0, 0x00000C0, 0x0000340, 0x0000600 },
103  { 0x0A, 0x00002C0, 0x0000100, 0x0000700, 0x0000640 },
104  { 0x0A, 0x0000180, 0x0000180, 0x0000680, 0x0000C00 },
105  { 0x0B, 0x0000580, 0x0000200, 0x0000E00, 0x0000C80 },
106  { 0x0B, 0x0000300, 0x0000300, 0x0000D00, 0x0001800 },
107  { 0x0C, 0x0000B00, 0x0000400, 0x0001C00, 0x0001900 },
108  { 0x0C, 0x0000600, 0x0000600, 0x0001A00, 0x0003000 },
109  { 0x0D, 0x0001600, 0x0000800, 0x0003800, 0x0003200 },
110  { 0x0D, 0x0000C00, 0x0000C00, 0x0003400, 0x0006000 },
111  { 0x0E, 0x0002C00, 0x0001000, 0x0007000, 0x0006400 },
112  { 0x0E, 0x0001800, 0x0001800, 0x0006800, 0x000C000 },
113  { 0x0F, 0x0005800, 0x0002000, 0x000E000, 0x000C800 },
114  { 0x0F, 0x0003000, 0x0003000, 0x000D000, 0x0018000 },
115  { 0x10, 0x000B000, 0x0004000, 0x001C000, 0x0019000 },
116  { 0x10, 0x0006000, 0x0006000, 0x001A000, 0x0030000 },
117  { 0x11, 0x0016000, 0x0008000, 0x0038000, 0x0032000 },
118  { 0x11, 0x000C000, 0x000C000, 0x0034000, 0x0060000 },
119  { 0x12, 0x002C000, 0x0010000, 0x0070000, 0x0064000 },
120  { 0x12, 0x0018000, 0x0018000, 0x0068000, 0x00C0000 },
121  { 0x13, 0x0058000, 0x0020000, 0x00E0000, 0x00C8000 },
122  { 0x13, 0x0030000, 0x0030000, 0x00D0000, 0x0180000 },
123  { 0x14, 0x00B0000, 0x0040000, 0x01C0000, 0x0190000 },
124  { 0x14, 0x0060000, 0x0060000, 0x01A0000, 0x0300000 },
125  { 0x15, 0x0160000, 0x0080000, 0x0380000, 0x0320000 },
126  { 0x15, 0x00C0000, 0x00C0000, 0x0340000, 0x0600000 },
127  { 0x16, 0x02C0000, 0x0100000, 0x0700000, 0x0640000 },
128  { 0x16, 0x0180000, 0x0180000, 0x0680000, 0x0C00000 },
129  { 0x17, 0x0580000, 0x0200000, 0x0E00000, 0x0C80000 },
130  { 0x17, 0x0300000, 0x0300000, 0x0D00000, 0x1800000 },
131  { 0x18, 0x0B00000, 0x0400000, 0x1C00000, 0x1900000 },
132  { 0x18, 0x0600000, 0x0600000, 0x1A00000, 0x3000000 },
133  { 0x19, 0x1600000, 0x0800000, 0x3800000, 0x3200000 },
134  { 0x19, 0x0C00000, 0x0C00000, 0x3400000, 0x6000000 },
135  { 0x1A, 0x2C00000, 0x1000000, 0x7000000, 0x6400000 },
136  { 0x1A, 0x1800000, 0x1800000, 0x6800000, 0xC000000 },
137 };
138 
139 static int set_bps_params(AVCodecContext *avctx)
140 {
141  switch (avctx->bits_per_raw_sample) {
142  case 8:
143  avctx->sample_fmt = AV_SAMPLE_FMT_U8P;
144  break;
145  case 16:
147  break;
148  case 24:
150  break;
151  default:
152  av_log(avctx, AV_LOG_ERROR, "invalid/unsupported bits per sample: %d\n",
153  avctx->bits_per_raw_sample);
154  return AVERROR_INVALIDDATA;
155  }
156 
157  return 0;
158 }
159 
161 {
162  TAKDecContext *s = avctx->priv_data;
163  int shift = 3 - (avctx->sample_rate / 11025);
164  shift = FFMAX(0, shift);
165  s->uval = FFALIGN(avctx->sample_rate + 511 >> 9, 4) << shift;
166  s->subframe_scale = FFALIGN(avctx->sample_rate + 511 >> 9, 4) << 1;
167 }
168 
170 {
171  TAKDecContext *s = avctx->priv_data;
172 
173  ff_tak_init_crc();
174  ff_dsputil_init(&s->dsp, avctx);
175 
176  s->avctx = avctx;
178 
179  set_sample_rate_params(avctx);
180 
181  return set_bps_params(avctx);
182 }
183 
184 static void decode_lpc(int32_t *coeffs, int mode, int length)
185 {
186  int i;
187 
188  if (length < 2)
189  return;
190 
191  if (mode == 1) {
192  int a1 = *coeffs++;
193  for (i = 0; i < length - 1 >> 1; i++) {
194  *coeffs += a1;
195  coeffs[1] += *coeffs;
196  a1 = coeffs[1];
197  coeffs += 2;
198  }
199  if (length - 1 & 1)
200  *coeffs += a1;
201  } else if (mode == 2) {
202  int a1 = coeffs[1];
203  int a2 = a1 + *coeffs;
204  coeffs[1] = a2;
205  if (length > 2) {
206  coeffs += 2;
207  for (i = 0; i < length - 2 >> 1; i++) {
208  int a3 = *coeffs + a1;
209  int a4 = a3 + a2;
210  *coeffs = a4;
211  a1 = coeffs[1] + a3;
212  a2 = a1 + a4;
213  coeffs[1] = a2;
214  coeffs += 2;
215  }
216  if (length & 1)
217  *coeffs += a1 + a2;
218  }
219  } else if (mode == 3) {
220  int a1 = coeffs[1];
221  int a2 = a1 + *coeffs;
222  coeffs[1] = a2;
223  if (length > 2) {
224  int a3 = coeffs[2];
225  int a4 = a3 + a1;
226  int a5 = a4 + a2;
227  coeffs += 3;
228  for (i = 0; i < length - 3; i++) {
229  a3 += *coeffs;
230  a4 += a3;
231  a5 += a4;
232  *coeffs = a5;
233  coeffs++;
234  }
235  }
236  }
237 }
238 
239 static int decode_segment(TAKDecContext *s, int8_t mode, int32_t *decoded, int len)
240 {
241  struct CParam code;
242  GetBitContext *gb = &s->gb;
243  int i;
244 
245  if (!mode) {
246  memset(decoded, 0, len * sizeof(*decoded));
247  return 0;
248  }
249 
250  if (mode > FF_ARRAY_ELEMS(xcodes))
251  return AVERROR_INVALIDDATA;
252  code = xcodes[mode - 1];
253 
254  for (i = 0; i < len; i++) {
255  int x = get_bits_long(gb, code.init);
256  if (x >= code.escape && get_bits1(gb)) {
257  x |= 1 << code.init;
258  if (x >= code.aescape) {
259  int scale = get_unary(gb, 1, 9);
260  if (scale == 9) {
261  int scale_bits = get_bits(gb, 3);
262  if (scale_bits > 0) {
263  if (scale_bits == 7) {
264  scale_bits += get_bits(gb, 5);
265  if (scale_bits > 29)
266  return AVERROR_INVALIDDATA;
267  }
268  scale = get_bits_long(gb, scale_bits) + 1;
269  x += code.scale * scale;
270  }
271  x += code.bias;
272  } else
273  x += code.scale * scale - code.escape;
274  } else
275  x -= code.escape;
276  }
277  decoded[i] = (x >> 1) ^ -(x & 1);
278  }
279 
280  return 0;
281 }
282 
283 static int decode_residues(TAKDecContext *s, int32_t *decoded, int length)
284 {
285  GetBitContext *gb = &s->gb;
286  int i, mode, ret;
287 
288  if (length > s->nb_samples)
289  return AVERROR_INVALIDDATA;
290 
291  if (get_bits1(gb)) {
292  int wlength, rval;
293 
294  wlength = length / s->uval;
295 
296  rval = length - (wlength * s->uval);
297 
298  if (rval < s->uval / 2)
299  rval += s->uval;
300  else
301  wlength++;
302 
303  if (wlength <= 1 || wlength > 128)
304  return AVERROR_INVALIDDATA;
305 
306  s->coding_mode[0] = mode = get_bits(gb, 6);
307 
308  for (i = 1; i < wlength; i++) {
309  int c = get_unary(gb, 1, 6);
310 
311  switch (c) {
312  case 6:
313  mode = get_bits(gb, 6);
314  break;
315  case 5:
316  case 4:
317  case 3: {
318  /* mode += sign ? (1 - c) : (c - 1) */
319  int sign = get_bits1(gb);
320  mode += (-sign ^ (c - 1)) + sign;
321  break;
322  }
323  case 2:
324  mode++;
325  break;
326  case 1:
327  mode--;
328  break;
329  }
330  s->coding_mode[i] = mode;
331  }
332 
333  i = 0;
334  while (i < wlength) {
335  int len = 0;
336 
337  mode = s->coding_mode[i];
338  do {
339  if (i >= wlength - 1)
340  len += rval;
341  else
342  len += s->uval;
343  i++;
344 
345  if (i == wlength)
346  break;
347  } while (s->coding_mode[i] == mode);
348 
349  if ((ret = decode_segment(s, mode, decoded, len)) < 0)
350  return ret;
351  decoded += len;
352  }
353  } else {
354  mode = get_bits(gb, 6);
355  if ((ret = decode_segment(s, mode, decoded, length)) < 0)
356  return ret;
357  }
358 
359  return 0;
360 }
361 
363 {
364  if (get_bits1(gb))
365  return get_bits(gb, 4) + 1;
366  else
367  return 0;
368 }
369 
370 static int decode_subframe(TAKDecContext *s, int32_t *decoded,
371  int subframe_size, int prev_subframe_size)
372 {
373  GetBitContext *gb = &s->gb;
374  int tmp, x, y, i, j, ret = 0;
375  int dshift, size, filter_quant, filter_order;
376  int tfilter[MAX_PREDICTORS];
377 
378  if (!get_bits1(gb))
379  return decode_residues(s, decoded, subframe_size);
380 
381  filter_order = predictor_sizes[get_bits(gb, 4)];
382 
383  if (prev_subframe_size > 0 && get_bits1(gb)) {
384  if (filter_order > prev_subframe_size)
385  return AVERROR_INVALIDDATA;
386 
387  decoded -= filter_order;
388  subframe_size += filter_order;
389 
390  if (filter_order > subframe_size)
391  return AVERROR_INVALIDDATA;
392  } else {
393  int lpc_mode;
394 
395  if (filter_order > subframe_size)
396  return AVERROR_INVALIDDATA;
397 
398  lpc_mode = get_bits(gb, 2);
399  if (lpc_mode > 2)
400  return AVERROR_INVALIDDATA;
401 
402  if ((ret = decode_residues(s, decoded, filter_order)) < 0)
403  return ret;
404 
405  if (lpc_mode)
406  decode_lpc(decoded, lpc_mode, filter_order);
407  }
408 
409  dshift = get_bits_esc4(gb);
410  size = get_bits1(gb) + 6;
411 
412  filter_quant = 10;
413  if (get_bits1(gb)) {
414  filter_quant -= get_bits(gb, 3) + 1;
415  if (filter_quant < 3)
416  return AVERROR_INVALIDDATA;
417  }
418 
419  s->predictors[0] = get_sbits(gb, 10);
420  s->predictors[1] = get_sbits(gb, 10);
421  s->predictors[2] = get_sbits(gb, size) << (10 - size);
422  s->predictors[3] = get_sbits(gb, size) << (10 - size);
423  if (filter_order > 4) {
424  tmp = size - get_bits1(gb);
425 
426  for (i = 4; i < filter_order; i++) {
427  if (!(i & 3))
428  x = tmp - get_bits(gb, 2);
429  s->predictors[i] = get_sbits(gb, x) << (10 - size);
430  }
431  }
432 
433  tfilter[0] = s->predictors[0] << 6;
434  for (i = 1; i < filter_order; i++) {
435  int32_t *p1 = &tfilter[0];
436  int32_t *p2 = &tfilter[i - 1];
437 
438  for (j = 0; j < (i + 1) / 2; j++) {
439  x = *p1 + (s->predictors[i] * *p2 + 256 >> 9);
440  *p2 += s->predictors[i] * *p1 + 256 >> 9;
441  *p1++ = x;
442  p2--;
443  }
444 
445  tfilter[i] = s->predictors[i] << 6;
446  }
447 
448  x = 1 << (32 - (15 - filter_quant));
449  y = 1 << ((15 - filter_quant) - 1);
450  for (i = 0, j = filter_order - 1; i < filter_order / 2; i++, j--) {
451  tmp = y + tfilter[j];
452  s->filter[j] = x - ((tfilter[i] + y) >> (15 - filter_quant));
453  s->filter[i] = x - ((tfilter[j] + y) >> (15 - filter_quant));
454  }
455 
456  if ((ret = decode_residues(s, &decoded[filter_order],
457  subframe_size - filter_order)) < 0)
458  return ret;
459 
460  for (i = 0; i < filter_order; i++)
461  s->residues[i] = *decoded++ >> dshift;
462 
463  y = FF_ARRAY_ELEMS(s->residues) - filter_order;
464  x = subframe_size - filter_order;
465  while (x > 0) {
466  tmp = FFMIN(y, x);
467 
468  for (i = 0; i < tmp; i++) {
469  int v = 1 << (filter_quant - 1);
470 
471  if (!(filter_order & 15)) {
472  v += s->dsp.scalarproduct_int16(&s->residues[i], s->filter,
473  filter_order);
474  } else if (filter_order & 4) {
475  for (j = 0; j < filter_order; j += 4) {
476  v += s->residues[i + j + 3] * s->filter[j + 3] +
477  s->residues[i + j + 2] * s->filter[j + 2] +
478  s->residues[i + j + 1] * s->filter[j + 1] +
479  s->residues[i + j ] * s->filter[j ];
480  }
481  } else {
482  for (j = 0; j < filter_order; j += 8) {
483  v += s->residues[i + j + 7] * s->filter[j + 7] +
484  s->residues[i + j + 6] * s->filter[j + 6] +
485  s->residues[i + j + 5] * s->filter[j + 5] +
486  s->residues[i + j + 4] * s->filter[j + 4] +
487  s->residues[i + j + 3] * s->filter[j + 3] +
488  s->residues[i + j + 2] * s->filter[j + 2] +
489  s->residues[i + j + 1] * s->filter[j + 1] +
490  s->residues[i + j ] * s->filter[j ];
491  }
492  }
493  v = (av_clip(v >> filter_quant, -8192, 8191) << dshift) - *decoded;
494  *decoded++ = v;
495  s->residues[filter_order + i] = v >> dshift;
496  }
497 
498  x -= tmp;
499  if (x > 0)
500  memcpy(s->residues, &s->residues[y], 2 * filter_order);
501  }
502 
503  emms_c();
504 
505  return 0;
506 }
507 
508 static int decode_channel(TAKDecContext *s, int chan)
509 {
510  AVCodecContext *avctx = s->avctx;
511  GetBitContext *gb = &s->gb;
512  int32_t *decoded = s->decoded[chan];
513  int left = s->nb_samples - 1;
514  int i = 0, ret, prev = 0;
515 
516  s->sample_shift[chan] = get_bits_esc4(gb);
517  if (s->sample_shift[chan] >= avctx->bits_per_raw_sample)
518  return AVERROR_INVALIDDATA;
519 
520  *decoded++ = get_sbits(gb, avctx->bits_per_raw_sample - s->sample_shift[chan]);
521  s->lpc_mode[chan] = get_bits(gb, 2);
522  s->nb_subframes = get_bits(gb, 3) + 1;
523 
524  if (s->nb_subframes > 1) {
525  if (get_bits_left(gb) < (s->nb_subframes - 1) * 6)
526  return AVERROR_INVALIDDATA;
527 
528  for (; i < s->nb_subframes - 1; i++) {
529  int v = get_bits(gb, 6);
530 
531  s->subframe_len[i] = (v - prev) * s->subframe_scale;
532  if (s->subframe_len[i] <= 0)
533  return AVERROR_INVALIDDATA;
534 
535  left -= s->subframe_len[i];
536  prev = v;
537  }
538 
539  if (left <= 0)
540  return AVERROR_INVALIDDATA;
541  }
542  s->subframe_len[i] = left;
543 
544  prev = 0;
545  for (i = 0; i < s->nb_subframes; i++) {
546  if ((ret = decode_subframe(s, decoded, s->subframe_len[i], prev)) < 0)
547  return ret;
548  decoded += s->subframe_len[i];
549  prev = s->subframe_len[i];
550  }
551 
552  return 0;
553 }
554 
555 static int decorrelate(TAKDecContext *s, int c1, int c2, int length)
556 {
557  GetBitContext *gb = &s->gb;
558  int32_t *p1 = s->decoded[c1] + 1;
559  int32_t *p2 = s->decoded[c2] + 1;
560  int i;
561  int dshift, dfactor;
562 
563  switch (s->dmode) {
564  case 1: /* left/side */
565  for (i = 0; i < length; i++) {
566  int32_t a = p1[i];
567  int32_t b = p2[i];
568  p2[i] = a + b;
569  }
570  break;
571  case 2: /* side/right */
572  for (i = 0; i < length; i++) {
573  int32_t a = p1[i];
574  int32_t b = p2[i];
575  p1[i] = b - a;
576  }
577  break;
578  case 3: /* side/mid */
579  for (i = 0; i < length; i++) {
580  int32_t a = p1[i];
581  int32_t b = p2[i];
582  a -= b >> 1;
583  p1[i] = a;
584  p2[i] = a + b;
585  }
586  break;
587  case 4: /* side/left with scale factor */
588  FFSWAP(int32_t*, p1, p2);
589  case 5: /* side/right with scale factor */
590  dshift = get_bits_esc4(gb);
591  dfactor = get_sbits(gb, 10);
592  for (i = 0; i < length; i++) {
593  int32_t a = p1[i];
594  int32_t b = p2[i];
595  b = dfactor * (b >> dshift) + 128 >> 8 << dshift;
596  p1[i] = b - a;
597  }
598  break;
599  case 6:
600  FFSWAP(int32_t*, p1, p2);
601  case 7: {
602  int length2, order_half, filter_order, dval1, dval2;
603  int tmp, x, code_size;
604 
605  if (length < 256)
606  return AVERROR_INVALIDDATA;
607 
608  dshift = get_bits_esc4(gb);
609  filter_order = 8 << get_bits1(gb);
610  dval1 = get_bits1(gb);
611  dval2 = get_bits1(gb);
612 
613  for (i = 0; i < filter_order; i++) {
614  if (!(i & 3))
615  code_size = 14 - get_bits(gb, 3);
616  s->filter[i] = get_sbits(gb, code_size);
617  }
618 
619  order_half = filter_order / 2;
620  length2 = length - (filter_order - 1);
621 
622  /* decorrelate beginning samples */
623  if (dval1) {
624  for (i = 0; i < order_half; i++) {
625  int32_t a = p1[i];
626  int32_t b = p2[i];
627  p1[i] = a + b;
628  }
629  }
630 
631  /* decorrelate ending samples */
632  if (dval2) {
633  for (i = length2 + order_half; i < length; i++) {
634  int32_t a = p1[i];
635  int32_t b = p2[i];
636  p1[i] = a + b;
637  }
638  }
639 
640 
641  for (i = 0; i < filter_order; i++)
642  s->residues[i] = *p2++ >> dshift;
643 
644  p1 += order_half;
645  x = FF_ARRAY_ELEMS(s->residues) - filter_order;
646  for (; length2 > 0; length2 -= tmp) {
647  tmp = FFMIN(length2, x);
648 
649  for (i = 0; i < tmp; i++)
650  s->residues[filter_order + i] = *p2++ >> dshift;
651 
652  for (i = 0; i < tmp; i++) {
653  int v = 1 << 9;
654 
655  if (filter_order == 16) {
656  v += s->dsp.scalarproduct_int16(&s->residues[i], s->filter,
657  filter_order);
658  } else {
659  v += s->residues[i + 7] * s->filter[7] +
660  s->residues[i + 6] * s->filter[6] +
661  s->residues[i + 5] * s->filter[5] +
662  s->residues[i + 4] * s->filter[4] +
663  s->residues[i + 3] * s->filter[3] +
664  s->residues[i + 2] * s->filter[2] +
665  s->residues[i + 1] * s->filter[1] +
666  s->residues[i ] * s->filter[0];
667  }
668 
669  v = (av_clip(v >> 10, -8192, 8191) << dshift) - *p1;
670  *p1++ = v;
671  }
672 
673  memcpy(s->residues, &s->residues[tmp], 2 * filter_order);
674  }
675 
676  emms_c();
677  break;
678  }
679  }
680 
681  return 0;
682 }
683 
684 static int tak_decode_frame(AVCodecContext *avctx, void *data,
685  int *got_frame_ptr, AVPacket *pkt)
686 {
687  TAKDecContext *s = avctx->priv_data;
688  AVFrame *frame = data;
689  GetBitContext *gb = &s->gb;
690  int chan, i, ret, hsize;
691 
692  if (pkt->size < TAK_MIN_FRAME_HEADER_BYTES)
693  return AVERROR_INVALIDDATA;
694 
695  if ((ret = init_get_bits8(gb, pkt->data, pkt->size)) < 0)
696  return ret;
697 
698  if ((ret = ff_tak_decode_frame_header(avctx, gb, &s->ti, 0)) < 0)
699  return ret;
700 
701  if (avctx->err_recognition & AV_EF_CRCCHECK) {
702  hsize = get_bits_count(gb) / 8;
703  if (ff_tak_check_crc(pkt->data, hsize)) {
704  av_log(avctx, AV_LOG_ERROR, "CRC error\n");
705  return AVERROR_INVALIDDATA;
706  }
707  }
708 
709  if (s->ti.codec != TAK_CODEC_MONO_STEREO &&
711  av_log(avctx, AV_LOG_ERROR, "unsupported codec: %d\n", s->ti.codec);
712  return AVERROR_PATCHWELCOME;
713  }
714  if (s->ti.data_type) {
715  av_log(avctx, AV_LOG_ERROR,
716  "unsupported data type: %d\n", s->ti.data_type);
717  return AVERROR_INVALIDDATA;
718  }
719  if (s->ti.codec == TAK_CODEC_MONO_STEREO && s->ti.channels > 2) {
720  av_log(avctx, AV_LOG_ERROR,
721  "invalid number of channels: %d\n", s->ti.channels);
722  return AVERROR_INVALIDDATA;
723  }
724  if (s->ti.channels > 6) {
725  av_log(avctx, AV_LOG_ERROR,
726  "unsupported number of channels: %d\n", s->ti.channels);
727  return AVERROR_INVALIDDATA;
728  }
729 
730  if (s->ti.frame_samples <= 0) {
731  av_log(avctx, AV_LOG_ERROR, "unsupported/invalid number of samples\n");
732  return AVERROR_INVALIDDATA;
733  }
734 
735  if (s->ti.bps != avctx->bits_per_raw_sample) {
736  avctx->bits_per_raw_sample = s->ti.bps;
737  if ((ret = set_bps_params(avctx)) < 0)
738  return ret;
739  }
740  if (s->ti.sample_rate != avctx->sample_rate) {
741  avctx->sample_rate = s->ti.sample_rate;
742  set_sample_rate_params(avctx);
743  }
744  if (s->ti.ch_layout)
745  avctx->channel_layout = s->ti.ch_layout;
746  avctx->channels = s->ti.channels;
747 
749  : s->ti.frame_samples;
750 
751  frame->nb_samples = s->nb_samples;
752  if ((ret = ff_get_buffer(avctx, frame)) < 0)
753  return ret;
754 
755  if (avctx->bits_per_raw_sample <= 16) {
756  int buf_size = av_samples_get_buffer_size(NULL, avctx->channels,
757  s->nb_samples,
758  AV_SAMPLE_FMT_S32P, 0);
759  av_fast_malloc(&s->decode_buffer, &s->decode_buffer_size, buf_size);
760  if (!s->decode_buffer)
761  return AVERROR(ENOMEM);
763  s->decode_buffer, avctx->channels,
765  if (ret < 0)
766  return ret;
767  } else {
768  for (chan = 0; chan < avctx->channels; chan++)
769  s->decoded[chan] = (int32_t *)frame->extended_data[chan];
770  }
771 
772  if (s->nb_samples < 16) {
773  for (chan = 0; chan < avctx->channels; chan++) {
774  int32_t *decoded = s->decoded[chan];
775  for (i = 0; i < s->nb_samples; i++)
776  decoded[i] = get_sbits(gb, avctx->bits_per_raw_sample);
777  }
778  } else {
779  if (s->ti.codec == TAK_CODEC_MONO_STEREO) {
780  for (chan = 0; chan < avctx->channels; chan++)
781  if (ret = decode_channel(s, chan))
782  return ret;
783 
784  if (avctx->channels == 2) {
785  s->nb_subframes = get_bits(gb, 1) + 1;
786  if (s->nb_subframes > 1) {
787  s->subframe_len[1] = get_bits(gb, 6);
788  }
789 
790  s->dmode = get_bits(gb, 3);
791  if (ret = decorrelate(s, 0, 1, s->nb_samples - 1))
792  return ret;
793  }
794  } else if (s->ti.codec == TAK_CODEC_MULTICHANNEL) {
795  if (get_bits1(gb)) {
796  int ch_mask = 0;
797 
798  chan = get_bits(gb, 4) + 1;
799  if (chan > avctx->channels)
800  return AVERROR_INVALIDDATA;
801 
802  for (i = 0; i < chan; i++) {
803  int nbit = get_bits(gb, 4);
804 
805  if (nbit >= avctx->channels)
806  return AVERROR_INVALIDDATA;
807 
808  if (ch_mask & 1 << nbit)
809  return AVERROR_INVALIDDATA;
810 
811  s->mcdparams[i].present = get_bits1(gb);
812  if (s->mcdparams[i].present) {
813  s->mcdparams[i].index = get_bits(gb, 2);
814  s->mcdparams[i].chan2 = get_bits(gb, 4);
815  if (s->mcdparams[i].index == 1) {
816  if ((nbit == s->mcdparams[i].chan2) ||
817  (ch_mask & 1 << s->mcdparams[i].chan2))
818  return AVERROR_INVALIDDATA;
819 
820  ch_mask |= 1 << s->mcdparams[i].chan2;
821  } else if (!(ch_mask & 1 << s->mcdparams[i].chan2)) {
822  return AVERROR_INVALIDDATA;
823  }
824  }
825  s->mcdparams[i].chan1 = nbit;
826 
827  ch_mask |= 1 << nbit;
828  }
829  } else {
830  chan = avctx->channels;
831  for (i = 0; i < chan; i++) {
832  s->mcdparams[i].present = 0;
833  s->mcdparams[i].chan1 = i;
834  }
835  }
836 
837  for (i = 0; i < chan; i++) {
838  if (s->mcdparams[i].present && s->mcdparams[i].index == 1)
839  if (ret = decode_channel(s, s->mcdparams[i].chan2))
840  return ret;
841 
842  if (ret = decode_channel(s, s->mcdparams[i].chan1))
843  return ret;
844 
845  if (s->mcdparams[i].present) {
846  s->dmode = mc_dmodes[s->mcdparams[i].index];
847  if (ret = decorrelate(s,
848  s->mcdparams[i].chan2,
849  s->mcdparams[i].chan1,
850  s->nb_samples - 1))
851  return ret;
852  }
853  }
854  }
855 
856  for (chan = 0; chan < avctx->channels; chan++) {
857  int32_t *decoded = s->decoded[chan];
858 
859  if (s->lpc_mode[chan])
860  decode_lpc(decoded, s->lpc_mode[chan], s->nb_samples);
861 
862  if (s->sample_shift[chan] > 0)
863  for (i = 0; i < s->nb_samples; i++)
864  decoded[i] <<= s->sample_shift[chan];
865  }
866  }
867 
868  align_get_bits(gb);
869  skip_bits(gb, 24);
870  if (get_bits_left(gb) < 0)
871  av_log(avctx, AV_LOG_DEBUG, "overread\n");
872  else if (get_bits_left(gb) > 0)
873  av_log(avctx, AV_LOG_DEBUG, "underread\n");
874 
875  if (avctx->err_recognition & AV_EF_CRCCHECK) {
876  if (ff_tak_check_crc(pkt->data + hsize,
877  get_bits_count(gb) / 8 - hsize)) {
878  av_log(avctx, AV_LOG_ERROR, "CRC error\n");
879  return AVERROR_INVALIDDATA;
880  }
881  }
882 
883  /* convert to output buffer */
884  switch (avctx->sample_fmt) {
885  case AV_SAMPLE_FMT_U8P:
886  for (chan = 0; chan < avctx->channels; chan++) {
887  uint8_t *samples = (uint8_t *)frame->extended_data[chan];
888  int32_t *decoded = s->decoded[chan];
889  for (i = 0; i < s->nb_samples; i++)
890  samples[i] = decoded[i] + 0x80;
891  }
892  break;
893  case AV_SAMPLE_FMT_S16P:
894  for (chan = 0; chan < avctx->channels; chan++) {
895  int16_t *samples = (int16_t *)frame->extended_data[chan];
896  int32_t *decoded = s->decoded[chan];
897  for (i = 0; i < s->nb_samples; i++)
898  samples[i] = decoded[i];
899  }
900  break;
901  case AV_SAMPLE_FMT_S32P:
902  for (chan = 0; chan < avctx->channels; chan++) {
903  int32_t *samples = (int32_t *)frame->extended_data[chan];
904  for (i = 0; i < s->nb_samples; i++)
905  samples[i] <<= 8;
906  }
907  break;
908  }
909 
910  *got_frame_ptr = 1;
911 
912  return pkt->size;
913 }
914 
916 {
917  TAKDecContext *s = avctx->priv_data;
918 
919  av_freep(&s->decode_buffer);
920 
921  return 0;
922 }
923 
925  .name = "tak",
926  .type = AVMEDIA_TYPE_AUDIO,
927  .id = AV_CODEC_ID_TAK,
928  .priv_data_size = sizeof(TAKDecContext),
932  .capabilities = CODEC_CAP_DR1,
933  .long_name = NULL_IF_CONFIG_SMALL("TAK (Tom's lossless Audio Kompressor)"),
934  .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_U8P,
938 };