FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
imc.c
Go to the documentation of this file.
1 /*
2  * IMC compatible decoder
3  * Copyright (c) 2002-2004 Maxim Poliakovski
4  * Copyright (c) 2006 Benjamin Larsson
5  * Copyright (c) 2006 Konstantin Shishkov
6  *
7  * This file is part of FFmpeg.
8  *
9  * FFmpeg is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public
11  * License as published by the Free Software Foundation; either
12  * version 2.1 of the License, or (at your option) any later version.
13  *
14  * FFmpeg is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with FFmpeg; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22  */
23 
24 /**
25  * @file
26  * IMC - Intel Music Coder
27  * A mdct based codec using a 256 points large transform
28  * divided into 32 bands with some mix of scale factors.
29  * Only mono is supported.
30  *
31  */
32 
33 
34 #include <math.h>
35 #include <stddef.h>
36 #include <stdio.h>
37 
39 #include "libavutil/float_dsp.h"
40 #include "libavutil/internal.h"
41 #include "libavutil/libm.h"
42 #include "avcodec.h"
43 #include "get_bits.h"
44 #include "dsputil.h"
45 #include "fft.h"
46 #include "internal.h"
47 #include "sinewin.h"
48 
49 #include "imcdata.h"
50 
51 #define IMC_BLOCK_SIZE 64
52 #define IMC_FRAME_ID 0x21
53 #define BANDS 32
54 #define COEFFS 256
55 
56 typedef struct IMCChannel {
57  float old_floor[BANDS];
58  float flcoeffs1[BANDS];
59  float flcoeffs2[BANDS];
60  float flcoeffs3[BANDS];
61  float flcoeffs4[BANDS];
62  float flcoeffs5[BANDS];
63  float flcoeffs6[BANDS];
64  float CWdecoded[COEFFS];
65 
66  int bandWidthT[BANDS]; ///< codewords per band
67  int bitsBandT[BANDS]; ///< how many bits per codeword in band
68  int CWlengthT[COEFFS]; ///< how many bits in each codeword
70  int bandFlagsBuf[BANDS]; ///< flags for each band
71  int sumLenArr[BANDS]; ///< bits for all coeffs in band
72  int skipFlagRaw[BANDS]; ///< skip flags are stored in raw form or not
73  int skipFlagBits[BANDS]; ///< bits used to code skip flags
74  int skipFlagCount[BANDS]; ///< skipped coeffients per band
75  int skipFlags[COEFFS]; ///< skip coefficient decoding or not
76  int codewords[COEFFS]; ///< raw codewords read from bitstream
77 
79 
81 } IMCChannel;
82 
83 typedef struct {
84  IMCChannel chctx[2];
85 
86  /** MDCT tables */
87  //@{
88  float mdct_sine_window[COEFFS];
89  float post_cos[COEFFS];
90  float post_sin[COEFFS];
91  float pre_coef1[COEFFS];
92  float pre_coef2[COEFFS];
93  //@}
94 
95  float sqrt_tab[30];
97 
101  DECLARE_ALIGNED(32, FFTComplex, samples)[COEFFS / 2];
102  float *out_samples;
103 
104  int8_t cyclTab[32], cyclTab2[32];
105  float weights1[31], weights2[31];
106 } IMCContext;
107 
108 static VLC huffman_vlc[4][4];
109 
110 #define VLC_TABLES_SIZE 9512
111 
112 static const int vlc_offsets[17] = {
113  0, 640, 1156, 1732, 2308, 2852, 3396, 3924,
114  4452, 5220, 5860, 6628, 7268, 7908, 8424, 8936, VLC_TABLES_SIZE
115 };
116 
118 
119 static inline double freq2bark(double freq)
120 {
121  return 3.5 * atan((freq / 7500.0) * (freq / 7500.0)) + 13.0 * atan(freq * 0.00076);
122 }
123 
124 static av_cold void iac_generate_tabs(IMCContext *q, int sampling_rate)
125 {
126  double freqmin[32], freqmid[32], freqmax[32];
127  double scale = sampling_rate / (256.0 * 2.0 * 2.0);
128  double nyquist_freq = sampling_rate * 0.5;
129  double freq, bark, prev_bark = 0, tf, tb;
130  int i, j;
131 
132  for (i = 0; i < 32; i++) {
133  freq = (band_tab[i] + band_tab[i + 1] - 1) * scale;
134  bark = freq2bark(freq);
135 
136  if (i > 0) {
137  tb = bark - prev_bark;
138  q->weights1[i - 1] = pow(10.0, -1.0 * tb);
139  q->weights2[i - 1] = pow(10.0, -2.7 * tb);
140  }
141  prev_bark = bark;
142 
143  freqmid[i] = freq;
144 
145  tf = freq;
146  while (tf < nyquist_freq) {
147  tf += 0.5;
148  tb = freq2bark(tf);
149  if (tb > bark + 0.5)
150  break;
151  }
152  freqmax[i] = tf;
153 
154  tf = freq;
155  while (tf > 0.0) {
156  tf -= 0.5;
157  tb = freq2bark(tf);
158  if (tb <= bark - 0.5)
159  break;
160  }
161  freqmin[i] = tf;
162  }
163 
164  for (i = 0; i < 32; i++) {
165  freq = freqmax[i];
166  for (j = 31; j > 0 && freq <= freqmid[j]; j--);
167  q->cyclTab[i] = j + 1;
168 
169  freq = freqmin[i];
170  for (j = 0; j < 32 && freq >= freqmid[j]; j++);
171  q->cyclTab2[i] = j - 1;
172  }
173 }
174 
176 {
177  int i, j, ret;
178  IMCContext *q = avctx->priv_data;
179  double r1, r2;
180 
181  if (avctx->codec_id == AV_CODEC_ID_IMC)
182  avctx->channels = 1;
183 
184  if (avctx->channels > 2) {
185  avpriv_request_sample(avctx, "Number of channels > 2");
186  return AVERROR_PATCHWELCOME;
187  }
188 
189  for (j = 0; j < avctx->channels; j++) {
190  q->chctx[j].decoder_reset = 1;
191 
192  for (i = 0; i < BANDS; i++)
193  q->chctx[j].old_floor[i] = 1.0;
194 
195  for (i = 0; i < COEFFS / 2; i++)
196  q->chctx[j].last_fft_im[i] = 0;
197  }
198 
199  /* Build mdct window, a simple sine window normalized with sqrt(2) */
201  for (i = 0; i < COEFFS; i++)
202  q->mdct_sine_window[i] *= sqrt(2.0);
203  for (i = 0; i < COEFFS / 2; i++) {
204  q->post_cos[i] = (1.0f / 32768) * cos(i / 256.0 * M_PI);
205  q->post_sin[i] = (1.0f / 32768) * sin(i / 256.0 * M_PI);
206 
207  r1 = sin((i * 4.0 + 1.0) / 1024.0 * M_PI);
208  r2 = cos((i * 4.0 + 1.0) / 1024.0 * M_PI);
209 
210  if (i & 0x1) {
211  q->pre_coef1[i] = (r1 + r2) * sqrt(2.0);
212  q->pre_coef2[i] = -(r1 - r2) * sqrt(2.0);
213  } else {
214  q->pre_coef1[i] = -(r1 + r2) * sqrt(2.0);
215  q->pre_coef2[i] = (r1 - r2) * sqrt(2.0);
216  }
217  }
218 
219  /* Generate a square root table */
220 
221  for (i = 0; i < 30; i++)
222  q->sqrt_tab[i] = sqrt(i);
223 
224  /* initialize the VLC tables */
225  for (i = 0; i < 4 ; i++) {
226  for (j = 0; j < 4; j++) {
227  huffman_vlc[i][j].table = &vlc_tables[vlc_offsets[i * 4 + j]];
228  huffman_vlc[i][j].table_allocated = vlc_offsets[i * 4 + j + 1] - vlc_offsets[i * 4 + j];
229  init_vlc(&huffman_vlc[i][j], 9, imc_huffman_sizes[i],
230  imc_huffman_lens[i][j], 1, 1,
232  }
233  }
234 
235  if (avctx->codec_id == AV_CODEC_ID_IAC) {
236  iac_generate_tabs(q, avctx->sample_rate);
237  } else {
238  memcpy(q->cyclTab, cyclTab, sizeof(cyclTab));
239  memcpy(q->cyclTab2, cyclTab2, sizeof(cyclTab2));
240  memcpy(q->weights1, imc_weights1, sizeof(imc_weights1));
241  memcpy(q->weights2, imc_weights2, sizeof(imc_weights2));
242  }
243 
244  if ((ret = ff_fft_init(&q->fft, 7, 1))) {
245  av_log(avctx, AV_LOG_INFO, "FFT init failed\n");
246  return ret;
247  }
248  ff_dsputil_init(&q->dsp, avctx);
251  avctx->channel_layout = avctx->channels == 1 ? AV_CH_LAYOUT_MONO
253 
254  return 0;
255 }
256 
257 static void imc_calculate_coeffs(IMCContext *q, float *flcoeffs1,
258  float *flcoeffs2, int *bandWidthT,
259  float *flcoeffs3, float *flcoeffs5)
260 {
261  float workT1[BANDS];
262  float workT2[BANDS];
263  float workT3[BANDS];
264  float snr_limit = 1.e-30;
265  float accum = 0.0;
266  int i, cnt2;
267 
268  for (i = 0; i < BANDS; i++) {
269  flcoeffs5[i] = workT2[i] = 0.0;
270  if (bandWidthT[i]) {
271  workT1[i] = flcoeffs1[i] * flcoeffs1[i];
272  flcoeffs3[i] = 2.0 * flcoeffs2[i];
273  } else {
274  workT1[i] = 0.0;
275  flcoeffs3[i] = -30000.0;
276  }
277  workT3[i] = bandWidthT[i] * workT1[i] * 0.01;
278  if (workT3[i] <= snr_limit)
279  workT3[i] = 0.0;
280  }
281 
282  for (i = 0; i < BANDS; i++) {
283  for (cnt2 = i; cnt2 < q->cyclTab[i]; cnt2++)
284  flcoeffs5[cnt2] = flcoeffs5[cnt2] + workT3[i];
285  workT2[cnt2 - 1] = workT2[cnt2 - 1] + workT3[i];
286  }
287 
288  for (i = 1; i < BANDS; i++) {
289  accum = (workT2[i - 1] + accum) * q->weights1[i - 1];
290  flcoeffs5[i] += accum;
291  }
292 
293  for (i = 0; i < BANDS; i++)
294  workT2[i] = 0.0;
295 
296  for (i = 0; i < BANDS; i++) {
297  for (cnt2 = i - 1; cnt2 > q->cyclTab2[i]; cnt2--)
298  flcoeffs5[cnt2] += workT3[i];
299  workT2[cnt2+1] += workT3[i];
300  }
301 
302  accum = 0.0;
303 
304  for (i = BANDS-2; i >= 0; i--) {
305  accum = (workT2[i+1] + accum) * q->weights2[i];
306  flcoeffs5[i] += accum;
307  // there is missing code here, but it seems to never be triggered
308  }
309 }
310 
311 
312 static void imc_read_level_coeffs(IMCContext *q, int stream_format_code,
313  int *levlCoeffs)
314 {
315  int i;
316  VLC *hufftab[4];
317  int start = 0;
318  const uint8_t *cb_sel;
319  int s;
320 
321  s = stream_format_code >> 1;
322  hufftab[0] = &huffman_vlc[s][0];
323  hufftab[1] = &huffman_vlc[s][1];
324  hufftab[2] = &huffman_vlc[s][2];
325  hufftab[3] = &huffman_vlc[s][3];
326  cb_sel = imc_cb_select[s];
327 
328  if (stream_format_code & 4)
329  start = 1;
330  if (start)
331  levlCoeffs[0] = get_bits(&q->gb, 7);
332  for (i = start; i < BANDS; i++) {
333  levlCoeffs[i] = get_vlc2(&q->gb, hufftab[cb_sel[i]]->table,
334  hufftab[cb_sel[i]]->bits, 2);
335  if (levlCoeffs[i] == 17)
336  levlCoeffs[i] += get_bits(&q->gb, 4);
337  }
338 }
339 
340 static void imc_decode_level_coefficients(IMCContext *q, int *levlCoeffBuf,
341  float *flcoeffs1, float *flcoeffs2)
342 {
343  int i, level;
344  float tmp, tmp2;
345  // maybe some frequency division thingy
346 
347  flcoeffs1[0] = 20000.0 / exp2 (levlCoeffBuf[0] * 0.18945); // 0.18945 = log2(10) * 0.05703125
348  flcoeffs2[0] = log2f(flcoeffs1[0]);
349  tmp = flcoeffs1[0];
350  tmp2 = flcoeffs2[0];
351 
352  for (i = 1; i < BANDS; i++) {
353  level = levlCoeffBuf[i];
354  if (level == 16) {
355  flcoeffs1[i] = 1.0;
356  flcoeffs2[i] = 0.0;
357  } else {
358  if (level < 17)
359  level -= 7;
360  else if (level <= 24)
361  level -= 32;
362  else
363  level -= 16;
364 
365  tmp *= imc_exp_tab[15 + level];
366  tmp2 += 0.83048 * level; // 0.83048 = log2(10) * 0.25
367  flcoeffs1[i] = tmp;
368  flcoeffs2[i] = tmp2;
369  }
370  }
371 }
372 
373 
374 static void imc_decode_level_coefficients2(IMCContext *q, int *levlCoeffBuf,
375  float *old_floor, float *flcoeffs1,
376  float *flcoeffs2)
377 {
378  int i;
379  /* FIXME maybe flag_buf = noise coding and flcoeffs1 = new scale factors
380  * and flcoeffs2 old scale factors
381  * might be incomplete due to a missing table that is in the binary code
382  */
383  for (i = 0; i < BANDS; i++) {
384  flcoeffs1[i] = 0;
385  if (levlCoeffBuf[i] < 16) {
386  flcoeffs1[i] = imc_exp_tab2[levlCoeffBuf[i]] * old_floor[i];
387  flcoeffs2[i] = (levlCoeffBuf[i] - 7) * 0.83048 + flcoeffs2[i]; // 0.83048 = log2(10) * 0.25
388  } else {
389  flcoeffs1[i] = old_floor[i];
390  }
391  }
392 }
393 
394 /**
395  * Perform bit allocation depending on bits available
396  */
397 static int bit_allocation(IMCContext *q, IMCChannel *chctx,
398  int stream_format_code, int freebits, int flag)
399 {
400  int i, j;
401  const float limit = -1.e20;
402  float highest = 0.0;
403  int indx;
404  int t1 = 0;
405  int t2 = 1;
406  float summa = 0.0;
407  int iacc = 0;
408  int summer = 0;
409  int rres, cwlen;
410  float lowest = 1.e10;
411  int low_indx = 0;
412  float workT[32];
413  int flg;
414  int found_indx = 0;
415 
416  for (i = 0; i < BANDS; i++)
417  highest = FFMAX(highest, chctx->flcoeffs1[i]);
418 
419  for (i = 0; i < BANDS - 1; i++)
420  chctx->flcoeffs4[i] = chctx->flcoeffs3[i] - log2f(chctx->flcoeffs5[i]);
421  chctx->flcoeffs4[BANDS - 1] = limit;
422 
423  highest = highest * 0.25;
424 
425  for (i = 0; i < BANDS; i++) {
426  indx = -1;
427  if ((band_tab[i + 1] - band_tab[i]) == chctx->bandWidthT[i])
428  indx = 0;
429 
430  if ((band_tab[i + 1] - band_tab[i]) > chctx->bandWidthT[i])
431  indx = 1;
432 
433  if (((band_tab[i + 1] - band_tab[i]) / 2) >= chctx->bandWidthT[i])
434  indx = 2;
435 
436  if (indx == -1)
437  return AVERROR_INVALIDDATA;
438 
439  chctx->flcoeffs4[i] += xTab[(indx * 2 + (chctx->flcoeffs1[i] < highest)) * 2 + flag];
440  }
441 
442  if (stream_format_code & 0x2) {
443  chctx->flcoeffs4[0] = limit;
444  chctx->flcoeffs4[1] = limit;
445  chctx->flcoeffs4[2] = limit;
446  chctx->flcoeffs4[3] = limit;
447  }
448 
449  for (i = (stream_format_code & 0x2) ? 4 : 0; i < BANDS - 1; i++) {
450  iacc += chctx->bandWidthT[i];
451  summa += chctx->bandWidthT[i] * chctx->flcoeffs4[i];
452  }
453 
454  if (!iacc)
455  return AVERROR_INVALIDDATA;
456 
457  chctx->bandWidthT[BANDS - 1] = 0;
458  summa = (summa * 0.5 - freebits) / iacc;
459 
460 
461  for (i = 0; i < BANDS / 2; i++) {
462  rres = summer - freebits;
463  if ((rres >= -8) && (rres <= 8))
464  break;
465 
466  summer = 0;
467  iacc = 0;
468 
469  for (j = (stream_format_code & 0x2) ? 4 : 0; j < BANDS; j++) {
470  cwlen = av_clipf(((chctx->flcoeffs4[j] * 0.5) - summa + 0.5), 0, 6);
471 
472  chctx->bitsBandT[j] = cwlen;
473  summer += chctx->bandWidthT[j] * cwlen;
474 
475  if (cwlen > 0)
476  iacc += chctx->bandWidthT[j];
477  }
478 
479  flg = t2;
480  t2 = 1;
481  if (freebits < summer)
482  t2 = -1;
483  if (i == 0)
484  flg = t2;
485  if (flg != t2)
486  t1++;
487 
488  summa = (float)(summer - freebits) / ((t1 + 1) * iacc) + summa;
489  }
490 
491  for (i = (stream_format_code & 0x2) ? 4 : 0; i < BANDS; i++) {
492  for (j = band_tab[i]; j < band_tab[i + 1]; j++)
493  chctx->CWlengthT[j] = chctx->bitsBandT[i];
494  }
495 
496  if (freebits > summer) {
497  for (i = 0; i < BANDS; i++) {
498  workT[i] = (chctx->bitsBandT[i] == 6) ? -1.e20
499  : (chctx->bitsBandT[i] * -2 + chctx->flcoeffs4[i] - 0.415);
500  }
501 
502  highest = 0.0;
503 
504  do {
505  if (highest <= -1.e20)
506  break;
507 
508  found_indx = 0;
509  highest = -1.e20;
510 
511  for (i = 0; i < BANDS; i++) {
512  if (workT[i] > highest) {
513  highest = workT[i];
514  found_indx = i;
515  }
516  }
517 
518  if (highest > -1.e20) {
519  workT[found_indx] -= 2.0;
520  if (++chctx->bitsBandT[found_indx] == 6)
521  workT[found_indx] = -1.e20;
522 
523  for (j = band_tab[found_indx]; j < band_tab[found_indx + 1] && (freebits > summer); j++) {
524  chctx->CWlengthT[j]++;
525  summer++;
526  }
527  }
528  } while (freebits > summer);
529  }
530  if (freebits < summer) {
531  for (i = 0; i < BANDS; i++) {
532  workT[i] = chctx->bitsBandT[i] ? (chctx->bitsBandT[i] * -2 + chctx->flcoeffs4[i] + 1.585)
533  : 1.e20;
534  }
535  if (stream_format_code & 0x2) {
536  workT[0] = 1.e20;
537  workT[1] = 1.e20;
538  workT[2] = 1.e20;
539  workT[3] = 1.e20;
540  }
541  while (freebits < summer) {
542  lowest = 1.e10;
543  low_indx = 0;
544  for (i = 0; i < BANDS; i++) {
545  if (workT[i] < lowest) {
546  lowest = workT[i];
547  low_indx = i;
548  }
549  }
550  // if (lowest >= 1.e10)
551  // break;
552  workT[low_indx] = lowest + 2.0;
553 
554  if (!--chctx->bitsBandT[low_indx])
555  workT[low_indx] = 1.e20;
556 
557  for (j = band_tab[low_indx]; j < band_tab[low_indx+1] && (freebits < summer); j++) {
558  if (chctx->CWlengthT[j] > 0) {
559  chctx->CWlengthT[j]--;
560  summer--;
561  }
562  }
563  }
564  }
565  return 0;
566 }
567 
568 static void imc_get_skip_coeff(IMCContext *q, IMCChannel *chctx)
569 {
570  int i, j;
571 
572  memset(chctx->skipFlagBits, 0, sizeof(chctx->skipFlagBits));
573  memset(chctx->skipFlagCount, 0, sizeof(chctx->skipFlagCount));
574  for (i = 0; i < BANDS; i++) {
575  if (!chctx->bandFlagsBuf[i] || !chctx->bandWidthT[i])
576  continue;
577 
578  if (!chctx->skipFlagRaw[i]) {
579  chctx->skipFlagBits[i] = band_tab[i + 1] - band_tab[i];
580 
581  for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
582  chctx->skipFlags[j] = get_bits1(&q->gb);
583  if (chctx->skipFlags[j])
584  chctx->skipFlagCount[i]++;
585  }
586  } else {
587  for (j = band_tab[i]; j < band_tab[i + 1] - 1; j += 2) {
588  if (!get_bits1(&q->gb)) { // 0
589  chctx->skipFlagBits[i]++;
590  chctx->skipFlags[j] = 1;
591  chctx->skipFlags[j + 1] = 1;
592  chctx->skipFlagCount[i] += 2;
593  } else {
594  if (get_bits1(&q->gb)) { // 11
595  chctx->skipFlagBits[i] += 2;
596  chctx->skipFlags[j] = 0;
597  chctx->skipFlags[j + 1] = 1;
598  chctx->skipFlagCount[i]++;
599  } else {
600  chctx->skipFlagBits[i] += 3;
601  chctx->skipFlags[j + 1] = 0;
602  if (!get_bits1(&q->gb)) { // 100
603  chctx->skipFlags[j] = 1;
604  chctx->skipFlagCount[i]++;
605  } else { // 101
606  chctx->skipFlags[j] = 0;
607  }
608  }
609  }
610  }
611 
612  if (j < band_tab[i + 1]) {
613  chctx->skipFlagBits[i]++;
614  if ((chctx->skipFlags[j] = get_bits1(&q->gb)))
615  chctx->skipFlagCount[i]++;
616  }
617  }
618  }
619 }
620 
621 /**
622  * Increase highest' band coefficient sizes as some bits won't be used
623  */
625  int summer)
626 {
627  float workT[32];
628  int corrected = 0;
629  int i, j;
630  float highest = 0;
631  int found_indx = 0;
632 
633  for (i = 0; i < BANDS; i++) {
634  workT[i] = (chctx->bitsBandT[i] == 6) ? -1.e20
635  : (chctx->bitsBandT[i] * -2 + chctx->flcoeffs4[i] - 0.415);
636  }
637 
638  while (corrected < summer) {
639  if (highest <= -1.e20)
640  break;
641 
642  highest = -1.e20;
643 
644  for (i = 0; i < BANDS; i++) {
645  if (workT[i] > highest) {
646  highest = workT[i];
647  found_indx = i;
648  }
649  }
650 
651  if (highest > -1.e20) {
652  workT[found_indx] -= 2.0;
653  if (++(chctx->bitsBandT[found_indx]) == 6)
654  workT[found_indx] = -1.e20;
655 
656  for (j = band_tab[found_indx]; j < band_tab[found_indx+1] && (corrected < summer); j++) {
657  if (!chctx->skipFlags[j] && (chctx->CWlengthT[j] < 6)) {
658  chctx->CWlengthT[j]++;
659  corrected++;
660  }
661  }
662  }
663  }
664 }
665 
666 static void imc_imdct256(IMCContext *q, IMCChannel *chctx, int channels)
667 {
668  int i;
669  float re, im;
670  float *dst1 = q->out_samples;
671  float *dst2 = q->out_samples + (COEFFS - 1);
672 
673  /* prerotation */
674  for (i = 0; i < COEFFS / 2; i++) {
675  q->samples[i].re = -(q->pre_coef1[i] * chctx->CWdecoded[COEFFS - 1 - i * 2]) -
676  (q->pre_coef2[i] * chctx->CWdecoded[i * 2]);
677  q->samples[i].im = (q->pre_coef2[i] * chctx->CWdecoded[COEFFS - 1 - i * 2]) -
678  (q->pre_coef1[i] * chctx->CWdecoded[i * 2]);
679  }
680 
681  /* FFT */
682  q->fft.fft_permute(&q->fft, q->samples);
683  q->fft.fft_calc(&q->fft, q->samples);
684 
685  /* postrotation, window and reorder */
686  for (i = 0; i < COEFFS / 2; i++) {
687  re = ( q->samples[i].re * q->post_cos[i]) + (-q->samples[i].im * q->post_sin[i]);
688  im = (-q->samples[i].im * q->post_cos[i]) - ( q->samples[i].re * q->post_sin[i]);
689  *dst1 = (q->mdct_sine_window[COEFFS - 1 - i * 2] * chctx->last_fft_im[i])
690  + (q->mdct_sine_window[i * 2] * re);
691  *dst2 = (q->mdct_sine_window[i * 2] * chctx->last_fft_im[i])
692  - (q->mdct_sine_window[COEFFS - 1 - i * 2] * re);
693  dst1 += 2;
694  dst2 -= 2;
695  chctx->last_fft_im[i] = im;
696  }
697 }
698 
700  int stream_format_code)
701 {
702  int i, j;
703  int middle_value, cw_len, max_size;
704  const float *quantizer;
705 
706  for (i = 0; i < BANDS; i++) {
707  for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
708  chctx->CWdecoded[j] = 0;
709  cw_len = chctx->CWlengthT[j];
710 
711  if (cw_len <= 0 || chctx->skipFlags[j])
712  continue;
713 
714  max_size = 1 << cw_len;
715  middle_value = max_size >> 1;
716 
717  if (chctx->codewords[j] >= max_size || chctx->codewords[j] < 0)
718  return AVERROR_INVALIDDATA;
719 
720  if (cw_len >= 4) {
721  quantizer = imc_quantizer2[(stream_format_code & 2) >> 1];
722  if (chctx->codewords[j] >= middle_value)
723  chctx->CWdecoded[j] = quantizer[chctx->codewords[j] - 8] * chctx->flcoeffs6[i];
724  else
725  chctx->CWdecoded[j] = -quantizer[max_size - chctx->codewords[j] - 8 - 1] * chctx->flcoeffs6[i];
726  }else{
727  quantizer = imc_quantizer1[((stream_format_code & 2) >> 1) | (chctx->bandFlagsBuf[i] << 1)];
728  if (chctx->codewords[j] >= middle_value)
729  chctx->CWdecoded[j] = quantizer[chctx->codewords[j] - 1] * chctx->flcoeffs6[i];
730  else
731  chctx->CWdecoded[j] = -quantizer[max_size - 2 - chctx->codewords[j]] * chctx->flcoeffs6[i];
732  }
733  }
734  }
735  return 0;
736 }
737 
738 
739 static int imc_get_coeffs(IMCContext *q, IMCChannel *chctx)
740 {
741  int i, j, cw_len, cw;
742 
743  for (i = 0; i < BANDS; i++) {
744  if (!chctx->sumLenArr[i])
745  continue;
746  if (chctx->bandFlagsBuf[i] || chctx->bandWidthT[i]) {
747  for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
748  cw_len = chctx->CWlengthT[j];
749  cw = 0;
750 
751  if (get_bits_count(&q->gb) + cw_len > 512) {
752  av_dlog(NULL, "Band %i coeff %i cw_len %i\n", i, j, cw_len);
753  return AVERROR_INVALIDDATA;
754  }
755 
756  if (cw_len && (!chctx->bandFlagsBuf[i] || !chctx->skipFlags[j]))
757  cw = get_bits(&q->gb, cw_len);
758 
759  chctx->codewords[j] = cw;
760  }
761  }
762  }
763  return 0;
764 }
765 
766 static int imc_decode_block(AVCodecContext *avctx, IMCContext *q, int ch)
767 {
768  int stream_format_code;
769  int imc_hdr, i, j, ret;
770  int flag;
771  int bits, summer;
772  int counter, bitscount;
773  IMCChannel *chctx = q->chctx + ch;
774 
775 
776  /* Check the frame header */
777  imc_hdr = get_bits(&q->gb, 9);
778  if (imc_hdr & 0x18) {
779  av_log(avctx, AV_LOG_ERROR, "frame header check failed!\n");
780  av_log(avctx, AV_LOG_ERROR, "got %X.\n", imc_hdr);
781  return AVERROR_INVALIDDATA;
782  }
783  stream_format_code = get_bits(&q->gb, 3);
784 
785  if (stream_format_code & 1) {
786  avpriv_request_sample(avctx, "Stream format %X", stream_format_code);
787  return AVERROR_PATCHWELCOME;
788  }
789 
790  if (stream_format_code & 0x04)
791  chctx->decoder_reset = 1;
792 
793  if (chctx->decoder_reset) {
794  for (i = 0; i < BANDS; i++)
795  chctx->old_floor[i] = 1.0;
796  for (i = 0; i < COEFFS; i++)
797  chctx->CWdecoded[i] = 0;
798  chctx->decoder_reset = 0;
799  }
800 
801  flag = get_bits1(&q->gb);
802  imc_read_level_coeffs(q, stream_format_code, chctx->levlCoeffBuf);
803 
804  if (stream_format_code & 0x4)
806  chctx->flcoeffs1, chctx->flcoeffs2);
807  else
809  chctx->flcoeffs1, chctx->flcoeffs2);
810 
811  for(i=0; i<BANDS; i++) {
812  if(chctx->flcoeffs1[i] > INT_MAX) {
813  av_log(avctx, AV_LOG_ERROR, "scalefactor out of range\n");
814  return AVERROR_INVALIDDATA;
815  }
816  }
817 
818  memcpy(chctx->old_floor, chctx->flcoeffs1, 32 * sizeof(float));
819 
820  counter = 0;
821  for (i = 0; i < BANDS; i++) {
822  if (chctx->levlCoeffBuf[i] == 16) {
823  chctx->bandWidthT[i] = 0;
824  counter++;
825  } else
826  chctx->bandWidthT[i] = band_tab[i + 1] - band_tab[i];
827  }
828  memset(chctx->bandFlagsBuf, 0, BANDS * sizeof(int));
829  for (i = 0; i < BANDS - 1; i++) {
830  if (chctx->bandWidthT[i])
831  chctx->bandFlagsBuf[i] = get_bits1(&q->gb);
832  }
833 
834  imc_calculate_coeffs(q, chctx->flcoeffs1, chctx->flcoeffs2, chctx->bandWidthT, chctx->flcoeffs3, chctx->flcoeffs5);
835 
836  bitscount = 0;
837  /* first 4 bands will be assigned 5 bits per coefficient */
838  if (stream_format_code & 0x2) {
839  bitscount += 15;
840 
841  chctx->bitsBandT[0] = 5;
842  chctx->CWlengthT[0] = 5;
843  chctx->CWlengthT[1] = 5;
844  chctx->CWlengthT[2] = 5;
845  for (i = 1; i < 4; i++) {
846  bits = (chctx->levlCoeffBuf[i] == 16) ? 0 : 5;
847  chctx->bitsBandT[i] = bits;
848  for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
849  chctx->CWlengthT[j] = bits;
850  bitscount += bits;
851  }
852  }
853  }
854  if (avctx->codec_id == AV_CODEC_ID_IAC) {
855  bitscount += !!chctx->bandWidthT[BANDS - 1];
856  if (!(stream_format_code & 0x2))
857  bitscount += 16;
858  }
859 
860  if ((ret = bit_allocation(q, chctx, stream_format_code,
861  512 - bitscount - get_bits_count(&q->gb),
862  flag)) < 0) {
863  av_log(avctx, AV_LOG_ERROR, "Bit allocations failed\n");
864  chctx->decoder_reset = 1;
865  return ret;
866  }
867 
868  for (i = 0; i < BANDS; i++) {
869  chctx->sumLenArr[i] = 0;
870  chctx->skipFlagRaw[i] = 0;
871  for (j = band_tab[i]; j < band_tab[i + 1]; j++)
872  chctx->sumLenArr[i] += chctx->CWlengthT[j];
873  if (chctx->bandFlagsBuf[i])
874  if ((((band_tab[i + 1] - band_tab[i]) * 1.5) > chctx->sumLenArr[i]) && (chctx->sumLenArr[i] > 0))
875  chctx->skipFlagRaw[i] = 1;
876  }
877 
878  imc_get_skip_coeff(q, chctx);
879 
880  for (i = 0; i < BANDS; i++) {
881  chctx->flcoeffs6[i] = chctx->flcoeffs1[i];
882  /* band has flag set and at least one coded coefficient */
883  if (chctx->bandFlagsBuf[i] && (band_tab[i + 1] - band_tab[i]) != chctx->skipFlagCount[i]) {
884  chctx->flcoeffs6[i] *= q->sqrt_tab[ band_tab[i + 1] - band_tab[i]] /
885  q->sqrt_tab[(band_tab[i + 1] - band_tab[i] - chctx->skipFlagCount[i])];
886  }
887  }
888 
889  /* calculate bits left, bits needed and adjust bit allocation */
890  bits = summer = 0;
891 
892  for (i = 0; i < BANDS; i++) {
893  if (chctx->bandFlagsBuf[i]) {
894  for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
895  if (chctx->skipFlags[j]) {
896  summer += chctx->CWlengthT[j];
897  chctx->CWlengthT[j] = 0;
898  }
899  }
900  bits += chctx->skipFlagBits[i];
901  summer -= chctx->skipFlagBits[i];
902  }
903  }
904  imc_adjust_bit_allocation(q, chctx, summer);
905 
906  for (i = 0; i < BANDS; i++) {
907  chctx->sumLenArr[i] = 0;
908 
909  for (j = band_tab[i]; j < band_tab[i + 1]; j++)
910  if (!chctx->skipFlags[j])
911  chctx->sumLenArr[i] += chctx->CWlengthT[j];
912  }
913 
914  memset(chctx->codewords, 0, sizeof(chctx->codewords));
915 
916  if (imc_get_coeffs(q, chctx) < 0) {
917  av_log(avctx, AV_LOG_ERROR, "Read coefficients failed\n");
918  chctx->decoder_reset = 1;
919  return AVERROR_INVALIDDATA;
920  }
921 
922  if (inverse_quant_coeff(q, chctx, stream_format_code) < 0) {
923  av_log(avctx, AV_LOG_ERROR, "Inverse quantization of coefficients failed\n");
924  chctx->decoder_reset = 1;
925  return AVERROR_INVALIDDATA;
926  }
927 
928  memset(chctx->skipFlags, 0, sizeof(chctx->skipFlags));
929 
930  imc_imdct256(q, chctx, avctx->channels);
931 
932  return 0;
933 }
934 
935 static int imc_decode_frame(AVCodecContext *avctx, void *data,
936  int *got_frame_ptr, AVPacket *avpkt)
937 {
938  AVFrame *frame = data;
939  const uint8_t *buf = avpkt->data;
940  int buf_size = avpkt->size;
941  int ret, i;
942 
943  IMCContext *q = avctx->priv_data;
944 
945  LOCAL_ALIGNED_16(uint16_t, buf16, [IMC_BLOCK_SIZE / 2]);
946 
947  if (buf_size < IMC_BLOCK_SIZE * avctx->channels) {
948  av_log(avctx, AV_LOG_ERROR, "frame too small!\n");
949  return AVERROR_INVALIDDATA;
950  }
951 
952  /* get output buffer */
953  frame->nb_samples = COEFFS;
954  if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
955  return ret;
956 
957  for (i = 0; i < avctx->channels; i++) {
958  q->out_samples = (float *)frame->extended_data[i];
959 
960  q->dsp.bswap16_buf(buf16, (const uint16_t*)buf, IMC_BLOCK_SIZE / 2);
961 
962  init_get_bits(&q->gb, (const uint8_t*)buf16, IMC_BLOCK_SIZE * 8);
963 
964  buf += IMC_BLOCK_SIZE;
965 
966  if ((ret = imc_decode_block(avctx, q, i)) < 0)
967  return ret;
968  }
969 
970  if (avctx->channels == 2) {
971  q->fdsp.butterflies_float((float *)frame->extended_data[0],
972  (float *)frame->extended_data[1], COEFFS);
973  }
974 
975  *got_frame_ptr = 1;
976 
977  return IMC_BLOCK_SIZE * avctx->channels;
978 }
979 
980 
982 {
983  IMCContext *q = avctx->priv_data;
984 
985  ff_fft_end(&q->fft);
986 
987  return 0;
988 }
989 
990 static av_cold void flush(AVCodecContext *avctx)
991 {
992  IMCContext *q = avctx->priv_data;
993 
994  q->chctx[0].decoder_reset =
995  q->chctx[1].decoder_reset = 1;
996 }
997 
998 #if CONFIG_IMC_DECODER
999 AVCodec ff_imc_decoder = {
1000  .name = "imc",
1001  .type = AVMEDIA_TYPE_AUDIO,
1002  .id = AV_CODEC_ID_IMC,
1003  .priv_data_size = sizeof(IMCContext),
1004  .init = imc_decode_init,
1007  .flush = flush,
1008  .capabilities = CODEC_CAP_DR1,
1009  .long_name = NULL_IF_CONFIG_SMALL("IMC (Intel Music Coder)"),
1010  .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
1012 };
1013 #endif
1014 #if CONFIG_IAC_DECODER
1015 AVCodec ff_iac_decoder = {
1016  .name = "iac",
1017  .type = AVMEDIA_TYPE_AUDIO,
1018  .id = AV_CODEC_ID_IAC,
1019  .priv_data_size = sizeof(IMCContext),
1020  .init = imc_decode_init,
1023  .flush = flush,
1024  .capabilities = CODEC_CAP_DR1,
1025  .long_name = NULL_IF_CONFIG_SMALL("IAC (Indeo Audio Coder)"),
1026  .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
1028 };
1029 #endif