FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
indeo3.c
Go to the documentation of this file.
1 /*
2  * Indeo Video v3 compatible decoder
3  * Copyright (c) 2009 - 2011 Maxim Poliakovski
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * This is a decoder for Intel Indeo Video v3.
25  * It is based on vector quantization, run-length coding and motion compensation.
26  * Known container formats: .avi and .mov
27  * Known FOURCCs: 'IV31', 'IV32'
28  *
29  * @see http://wiki.multimedia.cx/index.php?title=Indeo_3
30  */
31 
32 #include "libavutil/imgutils.h"
33 #include "libavutil/intreadwrite.h"
34 #include "avcodec.h"
35 #include "copy_block.h"
36 #include "bytestream.h"
37 #include "get_bits.h"
38 #include "hpeldsp.h"
39 #include "internal.h"
40 
41 #include "indeo3data.h"
42 
43 /* RLE opcodes. */
44 enum {
45  RLE_ESC_F9 = 249, ///< same as RLE_ESC_FA + do the same with next block
46  RLE_ESC_FA = 250, ///< INTRA: skip block, INTER: copy data from reference
47  RLE_ESC_FB = 251, ///< apply null delta to N blocks / skip N blocks
48  RLE_ESC_FC = 252, ///< same as RLE_ESC_FD + do the same with next block
49  RLE_ESC_FD = 253, ///< apply null delta to all remaining lines of this block
50  RLE_ESC_FE = 254, ///< apply null delta to all lines up to the 3rd line
51  RLE_ESC_FF = 255 ///< apply null delta to all lines up to the 2nd line
52 };
53 
54 
55 /* Some constants for parsing frame bitstream flags. */
56 #define BS_8BIT_PEL (1 << 1) ///< 8bit pixel bitdepth indicator
57 #define BS_KEYFRAME (1 << 2) ///< intra frame indicator
58 #define BS_MV_Y_HALF (1 << 4) ///< vertical mv halfpel resolution indicator
59 #define BS_MV_X_HALF (1 << 5) ///< horizontal mv halfpel resolution indicator
60 #define BS_NONREF (1 << 8) ///< nonref (discardable) frame indicator
61 #define BS_BUFFER 9 ///< indicates which of two frame buffers should be used
62 
63 
64 typedef struct Plane {
66  uint8_t *pixels[2]; ///< pointer to the actual pixel data of the buffers above
67  uint32_t width;
68  uint32_t height;
69  uint32_t pitch;
70 } Plane;
71 
72 #define CELL_STACK_MAX 20
73 
74 typedef struct Cell {
75  int16_t xpos; ///< cell coordinates in 4x4 blocks
76  int16_t ypos;
77  int16_t width; ///< cell width in 4x4 blocks
78  int16_t height; ///< cell height in 4x4 blocks
79  uint8_t tree; ///< tree id: 0- MC tree, 1 - VQ tree
80  const int8_t *mv_ptr; ///< ptr to the motion vector if any
81 } Cell;
82 
83 typedef struct Indeo3DecodeContext {
86 
89  int skip_bits;
92  const int8_t *mc_vectors;
93  unsigned num_vectors; ///< number of motion vectors in mc_vectors
94 
95  int16_t width, height;
96  uint32_t frame_num; ///< current frame number (zero-based)
97  uint32_t data_size; ///< size of the frame data in bytes
98  uint16_t frame_flags; ///< frame properties
99  uint8_t cb_offset; ///< needed for selecting VQ tables
100  uint8_t buf_sel; ///< active frame buffer: 0 - primary, 1 -secondary
107  const uint8_t *alt_quant; ///< secondary VQ table set for the modes 1 and 4
110 
111 
112 static uint8_t requant_tab[8][128];
113 
114 /*
115  * Build the static requantization table.
116  * This table is used to remap pixel values according to a specific
117  * quant index and thus avoid overflows while adding deltas.
118  */
119 static av_cold void build_requant_tab(void)
120 {
121  static int8_t offsets[8] = { 1, 1, 2, -3, -3, 3, 4, 4 };
122  static int8_t deltas [8] = { 0, 1, 0, 4, 4, 1, 0, 1 };
123 
124  int i, j, step;
125 
126  for (i = 0; i < 8; i++) {
127  step = i + 2;
128  for (j = 0; j < 128; j++)
129  requant_tab[i][j] = (j + offsets[i]) / step * step + deltas[i];
130  }
131 
132  /* some last elements calculated above will have values >= 128 */
133  /* pixel values shall never exceed 127 so set them to non-overflowing values */
134  /* according with the quantization step of the respective section */
135  requant_tab[0][127] = 126;
136  requant_tab[1][119] = 118;
137  requant_tab[1][120] = 118;
138  requant_tab[2][126] = 124;
139  requant_tab[2][127] = 124;
140  requant_tab[6][124] = 120;
141  requant_tab[6][125] = 120;
142  requant_tab[6][126] = 120;
143  requant_tab[6][127] = 120;
144 
145  /* Patch for compatibility with the Intel's binary decoders */
146  requant_tab[1][7] = 10;
147  requant_tab[4][8] = 10;
148 }
149 
150 
152 {
153  int p;
154 
155  ctx->width = ctx->height = 0;
156 
157  for (p = 0; p < 3; p++) {
158  av_freep(&ctx->planes[p].buffers[0]);
159  av_freep(&ctx->planes[p].buffers[1]);
160  ctx->planes[p].pixels[0] = ctx->planes[p].pixels[1] = 0;
161  }
162 }
163 
164 
166  AVCodecContext *avctx, int luma_width, int luma_height)
167 {
168  int p, chroma_width, chroma_height;
169  int luma_pitch, chroma_pitch, luma_size, chroma_size;
170 
171  if (luma_width < 16 || luma_width > 640 ||
172  luma_height < 16 || luma_height > 480 ||
173  luma_width & 3 || luma_height & 3) {
174  av_log(avctx, AV_LOG_ERROR, "Invalid picture dimensions: %d x %d!\n",
175  luma_width, luma_height);
176  return AVERROR_INVALIDDATA;
177  }
178 
179  ctx->width = luma_width ;
180  ctx->height = luma_height;
181 
182  chroma_width = FFALIGN(luma_width >> 2, 4);
183  chroma_height = FFALIGN(luma_height >> 2, 4);
184 
185  luma_pitch = FFALIGN(luma_width, 16);
186  chroma_pitch = FFALIGN(chroma_width, 16);
187 
188  /* Calculate size of the luminance plane. */
189  /* Add one line more for INTRA prediction. */
190  luma_size = luma_pitch * (luma_height + 1);
191 
192  /* Calculate size of a chrominance planes. */
193  /* Add one line more for INTRA prediction. */
194  chroma_size = chroma_pitch * (chroma_height + 1);
195 
196  /* allocate frame buffers */
197  for (p = 0; p < 3; p++) {
198  ctx->planes[p].pitch = !p ? luma_pitch : chroma_pitch;
199  ctx->planes[p].width = !p ? luma_width : chroma_width;
200  ctx->planes[p].height = !p ? luma_height : chroma_height;
201 
202  ctx->planes[p].buffers[0] = av_malloc(!p ? luma_size : chroma_size);
203  ctx->planes[p].buffers[1] = av_malloc(!p ? luma_size : chroma_size);
204 
205  if (!ctx->planes[p].buffers[0] || !ctx->planes[p].buffers[1]) {
206  free_frame_buffers(ctx);
207  return AVERROR(ENOMEM);
208  }
209 
210  /* fill the INTRA prediction lines with the middle pixel value = 64 */
211  memset(ctx->planes[p].buffers[0], 0x40, ctx->planes[p].pitch);
212  memset(ctx->planes[p].buffers[1], 0x40, ctx->planes[p].pitch);
213 
214  /* set buffer pointers = buf_ptr + pitch and thus skip the INTRA prediction line */
215  ctx->planes[p].pixels[0] = ctx->planes[p].buffers[0] + ctx->planes[p].pitch;
216  ctx->planes[p].pixels[1] = ctx->planes[p].buffers[1] + ctx->planes[p].pitch;
217  memset(ctx->planes[p].pixels[0], 0, ctx->planes[p].pitch * ctx->planes[p].height);
218  memset(ctx->planes[p].pixels[1], 0, ctx->planes[p].pitch * ctx->planes[p].height);
219  }
220 
221  return 0;
222 }
223 
224 /**
225  * Copy pixels of the cell(x + mv_x, y + mv_y) from the previous frame into
226  * the cell(x, y) in the current frame.
227  *
228  * @param ctx pointer to the decoder context
229  * @param plane pointer to the plane descriptor
230  * @param cell pointer to the cell descriptor
231  */
232 static int copy_cell(Indeo3DecodeContext *ctx, Plane *plane, Cell *cell)
233 {
234  int h, w, mv_x, mv_y, offset, offset_dst;
235  uint8_t *src, *dst;
236 
237  /* setup output and reference pointers */
238  offset_dst = (cell->ypos << 2) * plane->pitch + (cell->xpos << 2);
239  dst = plane->pixels[ctx->buf_sel] + offset_dst;
240  if(cell->mv_ptr){
241  mv_y = cell->mv_ptr[0];
242  mv_x = cell->mv_ptr[1];
243  }else
244  mv_x= mv_y= 0;
245 
246  /* -1 because there is an extra line on top for prediction */
247  if ((cell->ypos << 2) + mv_y < -1 || (cell->xpos << 2) + mv_x < 0 ||
248  ((cell->ypos + cell->height) << 2) + mv_y > plane->height ||
249  ((cell->xpos + cell->width) << 2) + mv_x > plane->width) {
250  av_log(ctx->avctx, AV_LOG_ERROR,
251  "Motion vectors point out of the frame.\n");
252  return AVERROR_INVALIDDATA;
253  }
254 
255  offset = offset_dst + mv_y * plane->pitch + mv_x;
256  src = plane->pixels[ctx->buf_sel ^ 1] + offset;
257 
258  h = cell->height << 2;
259 
260  for (w = cell->width; w > 0;) {
261  /* copy using 16xH blocks */
262  if (!((cell->xpos << 2) & 15) && w >= 4) {
263  for (; w >= 4; src += 16, dst += 16, w -= 4)
264  ctx->hdsp.put_pixels_tab[0][0](dst, src, plane->pitch, h);
265  }
266 
267  /* copy using 8xH blocks */
268  if (!((cell->xpos << 2) & 7) && w >= 2) {
269  ctx->hdsp.put_pixels_tab[1][0](dst, src, plane->pitch, h);
270  w -= 2;
271  src += 8;
272  dst += 8;
273  } else if (w >= 1) {
274  ctx->hdsp.put_pixels_tab[2][0](dst, src, plane->pitch, h);
275  w--;
276  src += 4;
277  dst += 4;
278  }
279  }
280 
281  return 0;
282 }
283 
284 
285 /* Average 4/8 pixels at once without rounding using SWAR */
286 #define AVG_32(dst, src, ref) \
287  AV_WN32A(dst, ((AV_RN32(src) + AV_RN32(ref)) >> 1) & 0x7F7F7F7FUL)
288 
289 #define AVG_64(dst, src, ref) \
290  AV_WN64A(dst, ((AV_RN64(src) + AV_RN64(ref)) >> 1) & 0x7F7F7F7F7F7F7F7FULL)
291 
292 
293 /*
294  * Replicate each even pixel as follows:
295  * ABCDEFGH -> AACCEEGG
296  */
297 static inline uint64_t replicate64(uint64_t a) {
298 #if HAVE_BIGENDIAN
299  a &= 0xFF00FF00FF00FF00ULL;
300  a |= a >> 8;
301 #else
302  a &= 0x00FF00FF00FF00FFULL;
303  a |= a << 8;
304 #endif
305  return a;
306 }
307 
308 static inline uint32_t replicate32(uint32_t a) {
309 #if HAVE_BIGENDIAN
310  a &= 0xFF00FF00UL;
311  a |= a >> 8;
312 #else
313  a &= 0x00FF00FFUL;
314  a |= a << 8;
315 #endif
316  return a;
317 }
318 
319 
320 /* Fill n lines with 64bit pixel value pix */
321 static inline void fill_64(uint8_t *dst, const uint64_t pix, int32_t n,
322  int32_t row_offset)
323 {
324  for (; n > 0; dst += row_offset, n--)
325  AV_WN64A(dst, pix);
326 }
327 
328 
329 /* Error codes for cell decoding. */
330 enum {
337 };
338 
339 
340 #define BUFFER_PRECHECK \
341 if (*data_ptr >= last_ptr) \
342  return IV3_OUT_OF_DATA; \
343 
344 #define RLE_BLOCK_COPY \
345  if (cell->mv_ptr || !skip_flag) \
346  copy_block4(dst, ref, row_offset, row_offset, 4 << v_zoom)
347 
348 #define RLE_BLOCK_COPY_8 \
349  pix64 = AV_RN64(ref);\
350  if (is_first_row) {/* special prediction case: top line of a cell */\
351  pix64 = replicate64(pix64);\
352  fill_64(dst + row_offset, pix64, 7, row_offset);\
353  AVG_64(dst, ref, dst + row_offset);\
354  } else \
355  fill_64(dst, pix64, 8, row_offset)
356 
357 #define RLE_LINES_COPY \
358  copy_block4(dst, ref, row_offset, row_offset, num_lines << v_zoom)
359 
360 #define RLE_LINES_COPY_M10 \
361  pix64 = AV_RN64(ref);\
362  if (is_top_of_cell) {\
363  pix64 = replicate64(pix64);\
364  fill_64(dst + row_offset, pix64, (num_lines << 1) - 1, row_offset);\
365  AVG_64(dst, ref, dst + row_offset);\
366  } else \
367  fill_64(dst, pix64, num_lines << 1, row_offset)
368 
369 #define APPLY_DELTA_4 \
370  AV_WN16A(dst + line_offset ,\
371  (AV_RN16(ref ) + delta_tab->deltas[dyad1]) & 0x7F7F);\
372  AV_WN16A(dst + line_offset + 2,\
373  (AV_RN16(ref + 2) + delta_tab->deltas[dyad2]) & 0x7F7F);\
374  if (mode >= 3) {\
375  if (is_top_of_cell && !cell->ypos) {\
376  AV_COPY32U(dst, dst + row_offset);\
377  } else {\
378  AVG_32(dst, ref, dst + row_offset);\
379  }\
380  }
381 
382 #define APPLY_DELTA_8 \
383  /* apply two 32-bit VQ deltas to next even line */\
384  if (is_top_of_cell) { \
385  AV_WN32A(dst + row_offset , \
386  (replicate32(AV_RN32(ref )) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
387  AV_WN32A(dst + row_offset + 4, \
388  (replicate32(AV_RN32(ref + 4)) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
389  } else { \
390  AV_WN32A(dst + row_offset , \
391  (AV_RN32(ref ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
392  AV_WN32A(dst + row_offset + 4, \
393  (AV_RN32(ref + 4) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
394  } \
395  /* odd lines are not coded but rather interpolated/replicated */\
396  /* first line of the cell on the top of image? - replicate */\
397  /* otherwise - interpolate */\
398  if (is_top_of_cell && !cell->ypos) {\
399  AV_COPY64U(dst, dst + row_offset);\
400  } else \
401  AVG_64(dst, ref, dst + row_offset);
402 
403 
404 #define APPLY_DELTA_1011_INTER \
405  if (mode == 10) { \
406  AV_WN32A(dst , \
407  (AV_RN32(dst ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
408  AV_WN32A(dst + 4 , \
409  (AV_RN32(dst + 4 ) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
410  AV_WN32A(dst + row_offset , \
411  (AV_RN32(dst + row_offset ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
412  AV_WN32A(dst + row_offset + 4, \
413  (AV_RN32(dst + row_offset + 4) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
414  } else { \
415  AV_WN16A(dst , \
416  (AV_RN16(dst ) + delta_tab->deltas[dyad1]) & 0x7F7F);\
417  AV_WN16A(dst + 2 , \
418  (AV_RN16(dst + 2 ) + delta_tab->deltas[dyad2]) & 0x7F7F);\
419  AV_WN16A(dst + row_offset , \
420  (AV_RN16(dst + row_offset ) + delta_tab->deltas[dyad1]) & 0x7F7F);\
421  AV_WN16A(dst + row_offset + 2, \
422  (AV_RN16(dst + row_offset + 2) + delta_tab->deltas[dyad2]) & 0x7F7F);\
423  }
424 
425 
427  uint8_t *block, uint8_t *ref_block,
428  int pitch, int h_zoom, int v_zoom, int mode,
429  const vqEntry *delta[2], int swap_quads[2],
430  const uint8_t **data_ptr, const uint8_t *last_ptr)
431 {
432  int x, y, line, num_lines;
433  int rle_blocks = 0;
434  uint8_t code, *dst, *ref;
435  const vqEntry *delta_tab;
436  unsigned int dyad1, dyad2;
437  uint64_t pix64;
438  int skip_flag = 0, is_top_of_cell, is_first_row = 1;
439  int row_offset, blk_row_offset, line_offset;
440 
441  row_offset = pitch;
442  blk_row_offset = (row_offset << (2 + v_zoom)) - (cell->width << 2);
443  line_offset = v_zoom ? row_offset : 0;
444 
445  if (cell->height & v_zoom || cell->width & h_zoom)
446  return IV3_BAD_DATA;
447 
448  for (y = 0; y < cell->height; is_first_row = 0, y += 1 + v_zoom) {
449  for (x = 0; x < cell->width; x += 1 + h_zoom) {
450  ref = ref_block;
451  dst = block;
452 
453  if (rle_blocks > 0) {
454  if (mode <= 4) {
456  } else if (mode == 10 && !cell->mv_ptr) {
458  }
459  rle_blocks--;
460  } else {
461  for (line = 0; line < 4;) {
462  num_lines = 1;
463  is_top_of_cell = is_first_row && !line;
464 
465  /* select primary VQ table for odd, secondary for even lines */
466  if (mode <= 4)
467  delta_tab = delta[line & 1];
468  else
469  delta_tab = delta[1];
471  code = bytestream_get_byte(data_ptr);
472  if (code < 248) {
473  if (code < delta_tab->num_dyads) {
475  dyad1 = bytestream_get_byte(data_ptr);
476  dyad2 = code;
477  if (dyad1 >= delta_tab->num_dyads || dyad1 >= 248)
478  return IV3_BAD_DATA;
479  } else {
480  /* process QUADS */
481  code -= delta_tab->num_dyads;
482  dyad1 = code / delta_tab->quad_exp;
483  dyad2 = code % delta_tab->quad_exp;
484  if (swap_quads[line & 1])
485  FFSWAP(unsigned int, dyad1, dyad2);
486  }
487  if (mode <= 4) {
489  } else if (mode == 10 && !cell->mv_ptr) {
491  } else {
493  }
494  } else {
495  /* process RLE codes */
496  switch (code) {
497  case RLE_ESC_FC:
498  skip_flag = 0;
499  rle_blocks = 1;
500  code = 253;
501  /* FALLTHROUGH */
502  case RLE_ESC_FF:
503  case RLE_ESC_FE:
504  case RLE_ESC_FD:
505  num_lines = 257 - code - line;
506  if (num_lines <= 0)
507  return IV3_BAD_RLE;
508  if (mode <= 4) {
510  } else if (mode == 10 && !cell->mv_ptr) {
512  }
513  break;
514  case RLE_ESC_FB:
516  code = bytestream_get_byte(data_ptr);
517  rle_blocks = (code & 0x1F) - 1; /* set block counter */
518  if (code >= 64 || rle_blocks < 0)
519  return IV3_BAD_COUNTER;
520  skip_flag = code & 0x20;
521  num_lines = 4 - line; /* enforce next block processing */
522  if (mode >= 10 || (cell->mv_ptr || !skip_flag)) {
523  if (mode <= 4) {
525  } else if (mode == 10 && !cell->mv_ptr) {
527  }
528  }
529  break;
530  case RLE_ESC_F9:
531  skip_flag = 1;
532  rle_blocks = 1;
533  /* FALLTHROUGH */
534  case RLE_ESC_FA:
535  if (line)
536  return IV3_BAD_RLE;
537  num_lines = 4; /* enforce next block processing */
538  if (cell->mv_ptr) {
539  if (mode <= 4) {
541  } else if (mode == 10 && !cell->mv_ptr) {
543  }
544  }
545  break;
546  default:
547  return IV3_UNSUPPORTED;
548  }
549  }
550 
551  line += num_lines;
552  ref += row_offset * (num_lines << v_zoom);
553  dst += row_offset * (num_lines << v_zoom);
554  }
555  }
556 
557  /* move to next horizontal block */
558  block += 4 << h_zoom;
559  ref_block += 4 << h_zoom;
560  }
561 
562  /* move to next line of blocks */
563  ref_block += blk_row_offset;
564  block += blk_row_offset;
565  }
566  return IV3_NOERR;
567 }
568 
569 
570 /**
571  * Decode a vector-quantized cell.
572  * It consists of several routines, each of which handles one or more "modes"
573  * with which a cell can be encoded.
574  *
575  * @param ctx pointer to the decoder context
576  * @param avctx ptr to the AVCodecContext
577  * @param plane pointer to the plane descriptor
578  * @param cell pointer to the cell descriptor
579  * @param data_ptr pointer to the compressed data
580  * @param last_ptr pointer to the last byte to catch reads past end of buffer
581  * @return number of consumed bytes or negative number in case of error
582  */
584  Plane *plane, Cell *cell, const uint8_t *data_ptr,
585  const uint8_t *last_ptr)
586 {
587  int x, mv_x, mv_y, mode, vq_index, prim_indx, second_indx;
588  int zoom_fac;
589  int offset, error = 0, swap_quads[2];
590  uint8_t code, *block, *ref_block = 0;
591  const vqEntry *delta[2];
592  const uint8_t *data_start = data_ptr;
593 
594  /* get coding mode and VQ table index from the VQ descriptor byte */
595  code = *data_ptr++;
596  mode = code >> 4;
597  vq_index = code & 0xF;
598 
599  /* setup output and reference pointers */
600  offset = (cell->ypos << 2) * plane->pitch + (cell->xpos << 2);
601  block = plane->pixels[ctx->buf_sel] + offset;
602 
603  if (!cell->mv_ptr) {
604  /* use previous line as reference for INTRA cells */
605  ref_block = block - plane->pitch;
606  } else if (mode >= 10) {
607  /* for mode 10 and 11 INTER first copy the predicted cell into the current one */
608  /* so we don't need to do data copying for each RLE code later */
609  int ret = copy_cell(ctx, plane, cell);
610  if (ret < 0)
611  return ret;
612  } else {
613  /* set the pointer to the reference pixels for modes 0-4 INTER */
614  mv_y = cell->mv_ptr[0];
615  mv_x = cell->mv_ptr[1];
616 
617  /* -1 because there is an extra line on top for prediction */
618  if ((cell->ypos << 2) + mv_y < -1 || (cell->xpos << 2) + mv_x < 0 ||
619  ((cell->ypos + cell->height) << 2) + mv_y > plane->height ||
620  ((cell->xpos + cell->width) << 2) + mv_x > plane->width) {
621  av_log(ctx->avctx, AV_LOG_ERROR,
622  "Motion vectors point out of the frame.\n");
623  return AVERROR_INVALIDDATA;
624  }
625 
626  offset += mv_y * plane->pitch + mv_x;
627  ref_block = plane->pixels[ctx->buf_sel ^ 1] + offset;
628  }
629 
630  /* select VQ tables as follows: */
631  /* modes 0 and 3 use only the primary table for all lines in a block */
632  /* while modes 1 and 4 switch between primary and secondary tables on alternate lines */
633  if (mode == 1 || mode == 4) {
634  code = ctx->alt_quant[vq_index];
635  prim_indx = (code >> 4) + ctx->cb_offset;
636  second_indx = (code & 0xF) + ctx->cb_offset;
637  } else {
638  vq_index += ctx->cb_offset;
639  prim_indx = second_indx = vq_index;
640  }
641 
642  if (prim_indx >= 24 || second_indx >= 24) {
643  av_log(avctx, AV_LOG_ERROR, "Invalid VQ table indexes! Primary: %d, secondary: %d!\n",
644  prim_indx, second_indx);
645  return AVERROR_INVALIDDATA;
646  }
647 
648  delta[0] = &vq_tab[second_indx];
649  delta[1] = &vq_tab[prim_indx];
650  swap_quads[0] = second_indx >= 16;
651  swap_quads[1] = prim_indx >= 16;
652 
653  /* requantize the prediction if VQ index of this cell differs from VQ index */
654  /* of the predicted cell in order to avoid overflows. */
655  if (vq_index >= 8 && ref_block) {
656  for (x = 0; x < cell->width << 2; x++)
657  ref_block[x] = requant_tab[vq_index & 7][ref_block[x] & 127];
658  }
659 
660  error = IV3_NOERR;
661 
662  switch (mode) {
663  case 0: /*------------------ MODES 0 & 1 (4x4 block processing) --------------------*/
664  case 1:
665  case 3: /*------------------ MODES 3 & 4 (4x8 block processing) --------------------*/
666  case 4:
667  if (mode >= 3 && cell->mv_ptr) {
668  av_log(avctx, AV_LOG_ERROR, "Attempt to apply Mode 3/4 to an INTER cell!\n");
669  return AVERROR_INVALIDDATA;
670  }
671 
672  zoom_fac = mode >= 3;
673  error = decode_cell_data(ctx, cell, block, ref_block, plane->pitch,
674  0, zoom_fac, mode, delta, swap_quads,
675  &data_ptr, last_ptr);
676  break;
677  case 10: /*-------------------- MODE 10 (8x8 block processing) ---------------------*/
678  case 11: /*----------------- MODE 11 (4x8 INTER block processing) ------------------*/
679  if (mode == 10 && !cell->mv_ptr) { /* MODE 10 INTRA processing */
680  error = decode_cell_data(ctx, cell, block, ref_block, plane->pitch,
681  1, 1, mode, delta, swap_quads,
682  &data_ptr, last_ptr);
683  } else { /* mode 10 and 11 INTER processing */
684  if (mode == 11 && !cell->mv_ptr) {
685  av_log(avctx, AV_LOG_ERROR, "Attempt to use Mode 11 for an INTRA cell!\n");
686  return AVERROR_INVALIDDATA;
687  }
688 
689  zoom_fac = mode == 10;
690  error = decode_cell_data(ctx, cell, block, ref_block, plane->pitch,
691  zoom_fac, 1, mode, delta, swap_quads,
692  &data_ptr, last_ptr);
693  }
694  break;
695  default:
696  av_log(avctx, AV_LOG_ERROR, "Unsupported coding mode: %d\n", mode);
697  return AVERROR_INVALIDDATA;
698  }//switch mode
699 
700  switch (error) {
701  case IV3_BAD_RLE:
702  av_log(avctx, AV_LOG_ERROR, "Mode %d: RLE code %X is not allowed at the current line\n",
703  mode, data_ptr[-1]);
704  return AVERROR_INVALIDDATA;
705  case IV3_BAD_DATA:
706  av_log(avctx, AV_LOG_ERROR, "Mode %d: invalid VQ data\n", mode);
707  return AVERROR_INVALIDDATA;
708  case IV3_BAD_COUNTER:
709  av_log(avctx, AV_LOG_ERROR, "Mode %d: RLE-FB invalid counter: %d\n", mode, code);
710  return AVERROR_INVALIDDATA;
711  case IV3_UNSUPPORTED:
712  av_log(avctx, AV_LOG_ERROR, "Mode %d: unsupported RLE code: %X\n", mode, data_ptr[-1]);
713  return AVERROR_INVALIDDATA;
714  case IV3_OUT_OF_DATA:
715  av_log(avctx, AV_LOG_ERROR, "Mode %d: attempt to read past end of buffer\n", mode);
716  return AVERROR_INVALIDDATA;
717  }
718 
719  return data_ptr - data_start; /* report number of bytes consumed from the input buffer */
720 }
721 
722 
723 /* Binary tree codes. */
724 enum {
725  H_SPLIT = 0,
726  V_SPLIT = 1,
729 };
730 
731 
732 #define SPLIT_CELL(size, new_size) (new_size) = ((size) > 2) ? ((((size) + 2) >> 2) << 1) : 1
733 
734 #define UPDATE_BITPOS(n) \
735  ctx->skip_bits += (n); \
736  ctx->need_resync = 1
737 
738 #define RESYNC_BITSTREAM \
739  if (ctx->need_resync && !(get_bits_count(&ctx->gb) & 7)) { \
740  skip_bits_long(&ctx->gb, ctx->skip_bits); \
741  ctx->skip_bits = 0; \
742  ctx->need_resync = 0; \
743  }
744 
745 #define CHECK_CELL \
746  if (curr_cell.xpos + curr_cell.width > (plane->width >> 2) || \
747  curr_cell.ypos + curr_cell.height > (plane->height >> 2)) { \
748  av_log(avctx, AV_LOG_ERROR, "Invalid cell: x=%d, y=%d, w=%d, h=%d\n", \
749  curr_cell.xpos, curr_cell.ypos, curr_cell.width, curr_cell.height); \
750  return AVERROR_INVALIDDATA; \
751  }
752 
753 
755  Plane *plane, int code, Cell *ref_cell,
756  const int depth, const int strip_width)
757 {
758  Cell curr_cell;
759  int bytes_used, ret;
760 
761  if (depth <= 0) {
762  av_log(avctx, AV_LOG_ERROR, "Stack overflow (corrupted binary tree)!\n");
763  return AVERROR_INVALIDDATA; // unwind recursion
764  }
765 
766  curr_cell = *ref_cell; // clone parent cell
767  if (code == H_SPLIT) {
768  SPLIT_CELL(ref_cell->height, curr_cell.height);
769  ref_cell->ypos += curr_cell.height;
770  ref_cell->height -= curr_cell.height;
771  if (ref_cell->height <= 0 || curr_cell.height <= 0)
772  return AVERROR_INVALIDDATA;
773  } else if (code == V_SPLIT) {
774  if (curr_cell.width > strip_width) {
775  /* split strip */
776  curr_cell.width = (curr_cell.width <= (strip_width << 1) ? 1 : 2) * strip_width;
777  } else
778  SPLIT_CELL(ref_cell->width, curr_cell.width);
779  ref_cell->xpos += curr_cell.width;
780  ref_cell->width -= curr_cell.width;
781  if (ref_cell->width <= 0 || curr_cell.width <= 0)
782  return AVERROR_INVALIDDATA;
783  }
784 
785  while (get_bits_left(&ctx->gb) >= 2) { /* loop until return */
787  switch (code = get_bits(&ctx->gb, 2)) {
788  case H_SPLIT:
789  case V_SPLIT:
790  if (parse_bintree(ctx, avctx, plane, code, &curr_cell, depth - 1, strip_width))
791  return AVERROR_INVALIDDATA;
792  break;
793  case INTRA_NULL:
794  if (!curr_cell.tree) { /* MC tree INTRA code */
795  curr_cell.mv_ptr = 0; /* mark the current strip as INTRA */
796  curr_cell.tree = 1; /* enter the VQ tree */
797  } else { /* VQ tree NULL code */
799  code = get_bits(&ctx->gb, 2);
800  if (code >= 2) {
801  av_log(avctx, AV_LOG_ERROR, "Invalid VQ_NULL code: %d\n", code);
802  return AVERROR_INVALIDDATA;
803  }
804  if (code == 1)
805  av_log(avctx, AV_LOG_ERROR, "SkipCell procedure not implemented yet!\n");
806 
807  CHECK_CELL
808  if (!curr_cell.mv_ptr)
809  return AVERROR_INVALIDDATA;
810 
811  ret = copy_cell(ctx, plane, &curr_cell);
812  return ret;
813  }
814  break;
815  case INTER_DATA:
816  if (!curr_cell.tree) { /* MC tree INTER code */
817  unsigned mv_idx;
818  /* get motion vector index and setup the pointer to the mv set */
819  if (!ctx->need_resync)
820  ctx->next_cell_data = &ctx->gb.buffer[(get_bits_count(&ctx->gb) + 7) >> 3];
821  if (ctx->next_cell_data >= ctx->last_byte) {
822  av_log(avctx, AV_LOG_ERROR, "motion vector out of array\n");
823  return AVERROR_INVALIDDATA;
824  }
825  mv_idx = *(ctx->next_cell_data++);
826  if (mv_idx >= ctx->num_vectors) {
827  av_log(avctx, AV_LOG_ERROR, "motion vector index out of range\n");
828  return AVERROR_INVALIDDATA;
829  }
830  curr_cell.mv_ptr = &ctx->mc_vectors[mv_idx << 1];
831  curr_cell.tree = 1; /* enter the VQ tree */
832  UPDATE_BITPOS(8);
833  } else { /* VQ tree DATA code */
834  if (!ctx->need_resync)
835  ctx->next_cell_data = &ctx->gb.buffer[(get_bits_count(&ctx->gb) + 7) >> 3];
836 
837  CHECK_CELL
838  bytes_used = decode_cell(ctx, avctx, plane, &curr_cell,
839  ctx->next_cell_data, ctx->last_byte);
840  if (bytes_used < 0)
841  return AVERROR_INVALIDDATA;
842 
843  UPDATE_BITPOS(bytes_used << 3);
844  ctx->next_cell_data += bytes_used;
845  return 0;
846  }
847  break;
848  }
849  }//while
850 
851  return AVERROR_INVALIDDATA;
852 }
853 
854 
856  Plane *plane, const uint8_t *data, int32_t data_size,
857  int32_t strip_width)
858 {
859  Cell curr_cell;
860  unsigned num_vectors;
861 
862  /* each plane data starts with mc_vector_count field, */
863  /* an optional array of motion vectors followed by the vq data */
864  num_vectors = bytestream_get_le32(&data); data_size -= 4;
865  if (num_vectors > 256) {
866  av_log(ctx->avctx, AV_LOG_ERROR,
867  "Read invalid number of motion vectors %d\n", num_vectors);
868  return AVERROR_INVALIDDATA;
869  }
870  if (num_vectors * 2 > data_size)
871  return AVERROR_INVALIDDATA;
872 
873  ctx->num_vectors = num_vectors;
874  ctx->mc_vectors = num_vectors ? data : 0;
875 
876  /* init the bitreader */
877  init_get_bits(&ctx->gb, &data[num_vectors * 2], (data_size - num_vectors * 2) << 3);
878  ctx->skip_bits = 0;
879  ctx->need_resync = 0;
880 
881  ctx->last_byte = data + data_size;
882 
883  /* initialize the 1st cell and set its dimensions to whole plane */
884  curr_cell.xpos = curr_cell.ypos = 0;
885  curr_cell.width = plane->width >> 2;
886  curr_cell.height = plane->height >> 2;
887  curr_cell.tree = 0; // we are in the MC tree now
888  curr_cell.mv_ptr = 0; // no motion vector = INTRA cell
889 
890  return parse_bintree(ctx, avctx, plane, INTRA_NULL, &curr_cell, CELL_STACK_MAX, strip_width);
891 }
892 
893 
894 #define OS_HDR_ID MKBETAG('F', 'R', 'M', 'H')
895 
897  const uint8_t *buf, int buf_size)
898 {
899  GetByteContext gb;
900  const uint8_t *bs_hdr;
901  uint32_t frame_num, word2, check_sum, data_size;
902  uint32_t y_offset, u_offset, v_offset, starts[3], ends[3];
903  uint16_t height, width;
904  int i, j;
905 
906  bytestream2_init(&gb, buf, buf_size);
907 
908  /* parse and check the OS header */
909  frame_num = bytestream2_get_le32(&gb);
910  word2 = bytestream2_get_le32(&gb);
911  check_sum = bytestream2_get_le32(&gb);
912  data_size = bytestream2_get_le32(&gb);
913 
914  if ((frame_num ^ word2 ^ data_size ^ OS_HDR_ID) != check_sum) {
915  av_log(avctx, AV_LOG_ERROR, "OS header checksum mismatch!\n");
916  return AVERROR_INVALIDDATA;
917  }
918 
919  /* parse the bitstream header */
920  bs_hdr = gb.buffer;
921 
922  if (bytestream2_get_le16(&gb) != 32) {
923  av_log(avctx, AV_LOG_ERROR, "Unsupported codec version!\n");
924  return AVERROR_INVALIDDATA;
925  }
926 
927  ctx->frame_num = frame_num;
928  ctx->frame_flags = bytestream2_get_le16(&gb);
929  ctx->data_size = (bytestream2_get_le32(&gb) + 7) >> 3;
930  ctx->cb_offset = bytestream2_get_byte(&gb);
931 
932  if (ctx->data_size == 16)
933  return 4;
934  ctx->data_size = FFMIN(ctx->data_size, buf_size - 16);
935 
936  bytestream2_skip(&gb, 3); // skip reserved byte and checksum
937 
938  /* check frame dimensions */
939  height = bytestream2_get_le16(&gb);
940  width = bytestream2_get_le16(&gb);
941  if (av_image_check_size(width, height, 0, avctx))
942  return AVERROR_INVALIDDATA;
943 
944  if (width != ctx->width || height != ctx->height) {
945  int res;
946 
947  av_dlog(avctx, "Frame dimensions changed!\n");
948 
949  if (width < 16 || width > 640 ||
950  height < 16 || height > 480 ||
951  width & 3 || height & 3) {
952  av_log(avctx, AV_LOG_ERROR,
953  "Invalid picture dimensions: %d x %d!\n", width, height);
954  return AVERROR_INVALIDDATA;
955  }
956  free_frame_buffers(ctx);
957  if ((res = allocate_frame_buffers(ctx, avctx, width, height)) < 0)
958  return res;
959  avcodec_set_dimensions(avctx, width, height);
960  }
961 
962  y_offset = bytestream2_get_le32(&gb);
963  v_offset = bytestream2_get_le32(&gb);
964  u_offset = bytestream2_get_le32(&gb);
965  bytestream2_skip(&gb, 4);
966 
967  /* unfortunately there is no common order of planes in the buffer */
968  /* so we use that sorting algo for determining planes data sizes */
969  starts[0] = y_offset;
970  starts[1] = v_offset;
971  starts[2] = u_offset;
972 
973  for (j = 0; j < 3; j++) {
974  ends[j] = ctx->data_size;
975  for (i = 2; i >= 0; i--)
976  if (starts[i] < ends[j] && starts[i] > starts[j])
977  ends[j] = starts[i];
978  }
979 
980  ctx->y_data_size = ends[0] - starts[0];
981  ctx->v_data_size = ends[1] - starts[1];
982  ctx->u_data_size = ends[2] - starts[2];
983  if (FFMAX3(y_offset, v_offset, u_offset) >= ctx->data_size - 16 ||
984  FFMIN3(y_offset, v_offset, u_offset) < gb.buffer - bs_hdr + 16 ||
985  FFMIN3(ctx->y_data_size, ctx->v_data_size, ctx->u_data_size) <= 0) {
986  av_log(avctx, AV_LOG_ERROR, "One of the y/u/v offsets is invalid\n");
987  return AVERROR_INVALIDDATA;
988  }
989 
990  ctx->y_data_ptr = bs_hdr + y_offset;
991  ctx->v_data_ptr = bs_hdr + v_offset;
992  ctx->u_data_ptr = bs_hdr + u_offset;
993  ctx->alt_quant = gb.buffer;
994 
995  if (ctx->data_size == 16) {
996  av_log(avctx, AV_LOG_DEBUG, "Sync frame encountered!\n");
997  return 16;
998  }
999 
1000  if (ctx->frame_flags & BS_8BIT_PEL) {
1001  avpriv_request_sample(avctx, "8-bit pixel format");
1002  return AVERROR_PATCHWELCOME;
1003  }
1004 
1005  if (ctx->frame_flags & BS_MV_X_HALF || ctx->frame_flags & BS_MV_Y_HALF) {
1006  avpriv_request_sample(avctx, "Halfpel motion vectors");
1007  return AVERROR_PATCHWELCOME;
1008  }
1009 
1010  return 0;
1011 }
1012 
1013 
1014 /**
1015  * Convert and output the current plane.
1016  * All pixel values will be upsampled by shifting right by one bit.
1017  *
1018  * @param[in] plane pointer to the descriptor of the plane being processed
1019  * @param[in] buf_sel indicates which frame buffer the input data stored in
1020  * @param[out] dst pointer to the buffer receiving converted pixels
1021  * @param[in] dst_pitch pitch for moving to the next y line
1022  * @param[in] dst_height output plane height
1023  */
1024 static void output_plane(const Plane *plane, int buf_sel, uint8_t *dst,
1025  int dst_pitch, int dst_height)
1026 {
1027  int x,y;
1028  const uint8_t *src = plane->pixels[buf_sel];
1029  uint32_t pitch = plane->pitch;
1030 
1031  dst_height = FFMIN(dst_height, plane->height);
1032  for (y = 0; y < dst_height; y++) {
1033  /* convert four pixels at once using SWAR */
1034  for (x = 0; x < plane->width >> 2; x++) {
1035  AV_WN32A(dst, (AV_RN32A(src) & 0x7F7F7F7F) << 1);
1036  src += 4;
1037  dst += 4;
1038  }
1039 
1040  for (x <<= 2; x < plane->width; x++)
1041  *dst++ = *src++ << 1;
1042 
1043  src += pitch - plane->width;
1044  dst += dst_pitch - plane->width;
1045  }
1046 }
1047 
1048 
1050 {
1051  Indeo3DecodeContext *ctx = avctx->priv_data;
1052 
1053  ctx->avctx = avctx;
1054  avctx->pix_fmt = AV_PIX_FMT_YUV410P;
1055 
1057 
1058  ff_hpeldsp_init(&ctx->hdsp, avctx->flags);
1059 
1060  return allocate_frame_buffers(ctx, avctx, avctx->width, avctx->height);
1061 }
1062 
1063 
1064 static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame,
1065  AVPacket *avpkt)
1066 {
1067  Indeo3DecodeContext *ctx = avctx->priv_data;
1068  const uint8_t *buf = avpkt->data;
1069  int buf_size = avpkt->size;
1070  AVFrame *frame = data;
1071  int res;
1072 
1073  res = decode_frame_headers(ctx, avctx, buf, buf_size);
1074  if (res < 0)
1075  return res;
1076 
1077  /* skip sync(null) frames */
1078  if (res) {
1079  // we have processed 16 bytes but no data was decoded
1080  *got_frame = 0;
1081  return buf_size;
1082  }
1083 
1084  /* skip droppable INTER frames if requested */
1085  if (ctx->frame_flags & BS_NONREF &&
1086  (avctx->skip_frame >= AVDISCARD_NONREF))
1087  return 0;
1088 
1089  /* skip INTER frames if requested */
1090  if (!(ctx->frame_flags & BS_KEYFRAME) && avctx->skip_frame >= AVDISCARD_NONKEY)
1091  return 0;
1092 
1093  /* use BS_BUFFER flag for buffer switching */
1094  ctx->buf_sel = (ctx->frame_flags >> BS_BUFFER) & 1;
1095 
1096  if ((res = ff_get_buffer(avctx, frame, 0)) < 0)
1097  return res;
1098 
1099  /* decode luma plane */
1100  if ((res = decode_plane(ctx, avctx, ctx->planes, ctx->y_data_ptr, ctx->y_data_size, 40)))
1101  return res;
1102 
1103  /* decode chroma planes */
1104  if ((res = decode_plane(ctx, avctx, &ctx->planes[1], ctx->u_data_ptr, ctx->u_data_size, 10)))
1105  return res;
1106 
1107  if ((res = decode_plane(ctx, avctx, &ctx->planes[2], ctx->v_data_ptr, ctx->v_data_size, 10)))
1108  return res;
1109 
1110  output_plane(&ctx->planes[0], ctx->buf_sel,
1111  frame->data[0], frame->linesize[0],
1112  avctx->height);
1113  output_plane(&ctx->planes[1], ctx->buf_sel,
1114  frame->data[1], frame->linesize[1],
1115  (avctx->height + 3) >> 2);
1116  output_plane(&ctx->planes[2], ctx->buf_sel,
1117  frame->data[2], frame->linesize[2],
1118  (avctx->height + 3) >> 2);
1119 
1120  *got_frame = 1;
1121 
1122  return buf_size;
1123 }
1124 
1125 
1127 {
1128  free_frame_buffers(avctx->priv_data);
1129 
1130  return 0;
1131 }
1132 
1134  .name = "indeo3",
1135  .type = AVMEDIA_TYPE_VIDEO,
1136  .id = AV_CODEC_ID_INDEO3,
1137  .priv_data_size = sizeof(Indeo3DecodeContext),
1138  .init = decode_init,
1139  .close = decode_close,
1140  .decode = decode_frame,
1141  .capabilities = CODEC_CAP_DR1,
1142  .long_name = NULL_IF_CONFIG_SMALL("Intel Indeo 3"),
1143 };