FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
lagarith.c
Go to the documentation of this file.
1 /*
2  * Lagarith lossless decoder
3  * Copyright (c) 2009 Nathan Caldwell <saintdev (at) gmail.com>
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * Lagarith lossless decoder
25  * @author Nathan Caldwell
26  */
27 
28 #include "avcodec.h"
29 #include "get_bits.h"
30 #include "mathops.h"
31 #include "dsputil.h"
32 #include "lagarithrac.h"
33 #include "thread.h"
34 
36  FRAME_RAW = 1, /**< uncompressed */
37  FRAME_U_RGB24 = 2, /**< unaligned RGB24 */
38  FRAME_ARITH_YUY2 = 3, /**< arithmetic coded YUY2 */
39  FRAME_ARITH_RGB24 = 4, /**< arithmetic coded RGB24 */
40  FRAME_SOLID_GRAY = 5, /**< solid grayscale color frame */
41  FRAME_SOLID_COLOR = 6, /**< solid non-grayscale color frame */
42  FRAME_OLD_ARITH_RGB = 7, /**< obsolete arithmetic coded RGB (no longer encoded by upstream since version 1.1.0) */
43  FRAME_ARITH_RGBA = 8, /**< arithmetic coded RGBA */
44  FRAME_SOLID_RGBA = 9, /**< solid RGBA color frame */
45  FRAME_ARITH_YV12 = 10, /**< arithmetic coded YV12 */
46  FRAME_REDUCED_RES = 11, /**< reduced resolution YV12 frame */
47 };
48 
49 typedef struct LagarithContext {
52  int zeros; /**< number of consecutive zero bytes encountered */
53  int zeros_rem; /**< number of zero bytes remaining to output */
57 
58 /**
59  * Compute the 52bit mantissa of 1/(double)denom.
60  * This crazy format uses floats in an entropy coder and we have to match x86
61  * rounding exactly, thus ordinary floats aren't portable enough.
62  * @param denom denominator
63  * @return 52bit mantissa
64  * @see softfloat_mul
65  */
66 static uint64_t softfloat_reciprocal(uint32_t denom)
67 {
68  int shift = av_log2(denom - 1) + 1;
69  uint64_t ret = (1ULL << 52) / denom;
70  uint64_t err = (1ULL << 52) - ret * denom;
71  ret <<= shift;
72  err <<= shift;
73  err += denom / 2;
74  return ret + err / denom;
75 }
76 
77 /**
78  * (uint32_t)(x*f), where f has the given mantissa, and exponent 0
79  * Used in combination with softfloat_reciprocal computes x/(double)denom.
80  * @param x 32bit integer factor
81  * @param mantissa mantissa of f with exponent 0
82  * @return 32bit integer value (x*f)
83  * @see softfloat_reciprocal
84  */
85 static uint32_t softfloat_mul(uint32_t x, uint64_t mantissa)
86 {
87  uint64_t l = x * (mantissa & 0xffffffff);
88  uint64_t h = x * (mantissa >> 32);
89  h += l >> 32;
90  l &= 0xffffffff;
91  l += 1 << av_log2(h >> 21);
92  h += l >> 32;
93  return h >> 20;
94 }
95 
96 static uint8_t lag_calc_zero_run(int8_t x)
97 {
98  return (x << 1) ^ (x >> 7);
99 }
100 
101 static int lag_decode_prob(GetBitContext *gb, uint32_t *value)
102 {
103  static const uint8_t series[] = { 1, 2, 3, 5, 8, 13, 21 };
104  int i;
105  int bit = 0;
106  int bits = 0;
107  int prevbit = 0;
108  unsigned val;
109 
110  for (i = 0; i < 7; i++) {
111  if (prevbit && bit)
112  break;
113  prevbit = bit;
114  bit = get_bits1(gb);
115  if (bit && !prevbit)
116  bits += series[i];
117  }
118  bits--;
119  if (bits < 0 || bits > 31) {
120  *value = 0;
121  return -1;
122  } else if (bits == 0) {
123  *value = 0;
124  return 0;
125  }
126 
127  val = get_bits_long(gb, bits);
128  val |= 1 << bits;
129 
130  *value = val - 1;
131 
132  return 0;
133 }
134 
136 {
137  int i, j, scale_factor;
138  unsigned prob, cumulative_target;
139  unsigned cumul_prob = 0;
140  unsigned scaled_cumul_prob = 0;
141 
142  rac->prob[0] = 0;
143  rac->prob[257] = UINT_MAX;
144  /* Read probabilities from bitstream */
145  for (i = 1; i < 257; i++) {
146  if (lag_decode_prob(gb, &rac->prob[i]) < 0) {
147  av_log(rac->avctx, AV_LOG_ERROR, "Invalid probability encountered.\n");
148  return -1;
149  }
150  if ((uint64_t)cumul_prob + rac->prob[i] > UINT_MAX) {
151  av_log(rac->avctx, AV_LOG_ERROR, "Integer overflow encountered in cumulative probability calculation.\n");
152  return -1;
153  }
154  cumul_prob += rac->prob[i];
155  if (!rac->prob[i]) {
156  if (lag_decode_prob(gb, &prob)) {
157  av_log(rac->avctx, AV_LOG_ERROR, "Invalid probability run encountered.\n");
158  return -1;
159  }
160  if (prob > 256 - i)
161  prob = 256 - i;
162  for (j = 0; j < prob; j++)
163  rac->prob[++i] = 0;
164  }
165  }
166 
167  if (!cumul_prob) {
168  av_log(rac->avctx, AV_LOG_ERROR, "All probabilities are 0!\n");
169  return -1;
170  }
171 
172  /* Scale probabilities so cumulative probability is an even power of 2. */
173  scale_factor = av_log2(cumul_prob);
174 
175  if (cumul_prob & (cumul_prob - 1)) {
176  uint64_t mul = softfloat_reciprocal(cumul_prob);
177  for (i = 1; i < 257; i++) {
178  rac->prob[i] = softfloat_mul(rac->prob[i], mul);
179  scaled_cumul_prob += rac->prob[i];
180  }
181 
182  scale_factor++;
183  cumulative_target = 1 << scale_factor;
184 
185  if (scaled_cumul_prob > cumulative_target) {
186  av_log(rac->avctx, AV_LOG_ERROR,
187  "Scaled probabilities are larger than target!\n");
188  return -1;
189  }
190 
191  scaled_cumul_prob = cumulative_target - scaled_cumul_prob;
192 
193  for (i = 1; scaled_cumul_prob; i = (i & 0x7f) + 1) {
194  if (rac->prob[i]) {
195  rac->prob[i]++;
196  scaled_cumul_prob--;
197  }
198  /* Comment from reference source:
199  * if (b & 0x80 == 0) { // order of operations is 'wrong'; it has been left this way
200  * // since the compression change is negligible and fixing it
201  * // breaks backwards compatibility
202  * b =- (signed int)b;
203  * b &= 0xFF;
204  * } else {
205  * b++;
206  * b &= 0x7f;
207  * }
208  */
209  }
210  }
211 
212  rac->scale = scale_factor;
213 
214  /* Fill probability array with cumulative probability for each symbol. */
215  for (i = 1; i < 257; i++)
216  rac->prob[i] += rac->prob[i - 1];
217 
218  return 0;
219 }
220 
221 static void add_lag_median_prediction(uint8_t *dst, uint8_t *src1,
222  uint8_t *diff, int w, int *left,
223  int *left_top)
224 {
225  /* This is almost identical to add_hfyu_median_prediction in dsputil.h.
226  * However the &0xFF on the gradient predictor yealds incorrect output
227  * for lagarith.
228  */
229  int i;
230  uint8_t l, lt;
231 
232  l = *left;
233  lt = *left_top;
234 
235  for (i = 0; i < w; i++) {
236  l = mid_pred(l, src1[i], l + src1[i] - lt) + diff[i];
237  lt = src1[i];
238  dst[i] = l;
239  }
240 
241  *left = l;
242  *left_top = lt;
243 }
244 
246  int width, int stride, int line)
247 {
248  int L, TL;
249 
250  if (!line) {
251  /* Left prediction only for first line */
252  L = l->dsp.add_hfyu_left_prediction(buf, buf,
253  width, 0);
254  } else {
255  /* Left pixel is actually prev_row[width] */
256  L = buf[width - stride - 1];
257 
258  if (line == 1) {
259  /* Second line, left predict first pixel, the rest of the line is median predicted
260  * NOTE: In the case of RGB this pixel is top predicted */
261  TL = l->avctx->pix_fmt == AV_PIX_FMT_YUV420P ? buf[-stride] : L;
262  } else {
263  /* Top left is 2 rows back, last pixel */
264  TL = buf[width - (2 * stride) - 1];
265  }
266 
267  add_lag_median_prediction(buf, buf - stride, buf,
268  width, &L, &TL);
269  }
270 }
271 
273  int width, int stride, int line,
274  int is_luma)
275 {
276  int L, TL;
277 
278  if (!line) {
279  L= buf[0];
280  if (is_luma)
281  buf[0] = 0;
282  l->dsp.add_hfyu_left_prediction(buf, buf, width, 0);
283  if (is_luma)
284  buf[0] = L;
285  return;
286  }
287  if (line == 1) {
288  const int HEAD = is_luma ? 4 : 2;
289  int i;
290 
291  L = buf[width - stride - 1];
292  TL = buf[HEAD - stride - 1];
293  for (i = 0; i < HEAD; i++) {
294  L += buf[i];
295  buf[i] = L;
296  }
297  for (; i<width; i++) {
298  L = mid_pred(L&0xFF, buf[i-stride], (L + buf[i-stride] - TL)&0xFF) + buf[i];
299  TL = buf[i-stride];
300  buf[i]= L;
301  }
302  } else {
303  TL = buf[width - (2 * stride) - 1];
304  L = buf[width - stride - 1];
305  l->dsp.add_hfyu_median_prediction(buf, buf - stride, buf, width,
306  &L, &TL);
307  }
308 }
309 
311  uint8_t *dst, int width, int stride,
312  int esc_count)
313 {
314  int i = 0;
315  int ret = 0;
316 
317  if (!esc_count)
318  esc_count = -1;
319 
320  /* Output any zeros remaining from the previous run */
321 handle_zeros:
322  if (l->zeros_rem) {
323  int count = FFMIN(l->zeros_rem, width - i);
324  memset(dst + i, 0, count);
325  i += count;
326  l->zeros_rem -= count;
327  }
328 
329  while (i < width) {
330  dst[i] = lag_get_rac(rac);
331  ret++;
332 
333  if (dst[i])
334  l->zeros = 0;
335  else
336  l->zeros++;
337 
338  i++;
339  if (l->zeros == esc_count) {
340  int index = lag_get_rac(rac);
341  ret++;
342 
343  l->zeros = 0;
344 
345  l->zeros_rem = lag_calc_zero_run(index);
346  goto handle_zeros;
347  }
348  }
349  return ret;
350 }
351 
353  const uint8_t *src, const uint8_t *src_end,
354  int width, int esc_count)
355 {
356  int i = 0;
357  int count;
358  uint8_t zero_run = 0;
359  const uint8_t *src_start = src;
360  uint8_t mask1 = -(esc_count < 2);
361  uint8_t mask2 = -(esc_count < 3);
362  uint8_t *end = dst + (width - 2);
363 
364 output_zeros:
365  if (l->zeros_rem) {
366  count = FFMIN(l->zeros_rem, width - i);
367  if (end - dst < count) {
368  av_log(l->avctx, AV_LOG_ERROR, "Too many zeros remaining.\n");
369  return AVERROR_INVALIDDATA;
370  }
371 
372  memset(dst, 0, count);
373  l->zeros_rem -= count;
374  dst += count;
375  }
376 
377  while (dst < end) {
378  i = 0;
379  while (!zero_run && dst + i < end) {
380  i++;
381  if (i+2 >= src_end - src)
382  return AVERROR_INVALIDDATA;
383  zero_run =
384  !(src[i] | (src[i + 1] & mask1) | (src[i + 2] & mask2));
385  }
386  if (zero_run) {
387  zero_run = 0;
388  i += esc_count;
389  memcpy(dst, src, i);
390  dst += i;
391  l->zeros_rem = lag_calc_zero_run(src[i]);
392 
393  src += i + 1;
394  goto output_zeros;
395  } else {
396  memcpy(dst, src, i);
397  src += i;
398  dst += i;
399  }
400  }
401  return src - src_start;
402 }
403 
404 
405 
407  int width, int height, int stride,
408  const uint8_t *src, int src_size)
409 {
410  int i = 0;
411  int read = 0;
412  uint32_t length;
413  uint32_t offset = 1;
414  int esc_count;
415  GetBitContext gb;
416  lag_rac rac;
417  const uint8_t *src_end = src + src_size;
418 
419  rac.avctx = l->avctx;
420  l->zeros = 0;
421 
422  if(src_size < 2)
423  return AVERROR_INVALIDDATA;
424 
425  esc_count = src[0];
426  if (esc_count < 4) {
427  length = width * height;
428  if(src_size < 5)
429  return AVERROR_INVALIDDATA;
430  if (esc_count && AV_RL32(src + 1) < length) {
431  length = AV_RL32(src + 1);
432  offset += 4;
433  }
434 
435  init_get_bits(&gb, src + offset, src_size * 8);
436 
437  if (lag_read_prob_header(&rac, &gb) < 0)
438  return -1;
439 
440  ff_lag_rac_init(&rac, &gb, length - stride);
441 
442  for (i = 0; i < height; i++)
443  read += lag_decode_line(l, &rac, dst + (i * stride), width,
444  stride, esc_count);
445 
446  if (read > length)
448  "Output more bytes than length (%d of %d)\n", read,
449  length);
450  } else if (esc_count < 8) {
451  esc_count -= 4;
452  if (esc_count > 0) {
453  /* Zero run coding only, no range coding. */
454  for (i = 0; i < height; i++) {
455  int res = lag_decode_zero_run_line(l, dst + (i * stride), src,
456  src_end, width, esc_count);
457  if (res < 0)
458  return res;
459  src += res;
460  }
461  } else {
462  if (src_size < width * height)
463  return AVERROR_INVALIDDATA; // buffer not big enough
464  /* Plane is stored uncompressed */
465  for (i = 0; i < height; i++) {
466  memcpy(dst + (i * stride), src, width);
467  src += width;
468  }
469  }
470  } else if (esc_count == 0xff) {
471  /* Plane is a solid run of given value */
472  for (i = 0; i < height; i++)
473  memset(dst + i * stride, src[1], width);
474  /* Do not apply prediction.
475  Note: memset to 0 above, setting first value to src[1]
476  and applying prediction gives the same result. */
477  return 0;
478  } else {
480  "Invalid zero run escape code! (%#x)\n", esc_count);
481  return -1;
482  }
483 
484  if (l->avctx->pix_fmt != AV_PIX_FMT_YUV422P) {
485  for (i = 0; i < height; i++) {
486  lag_pred_line(l, dst, width, stride, i);
487  dst += stride;
488  }
489  } else {
490  for (i = 0; i < height; i++) {
491  lag_pred_line_yuy2(l, dst, width, stride, i,
492  width == l->avctx->width);
493  dst += stride;
494  }
495  }
496 
497  return 0;
498 }
499 
500 /**
501  * Decode a frame.
502  * @param avctx codec context
503  * @param data output AVFrame
504  * @param data_size size of output data or 0 if no picture is returned
505  * @param avpkt input packet
506  * @return number of consumed bytes on success or negative if decode fails
507  */
509  void *data, int *got_frame, AVPacket *avpkt)
510 {
511  const uint8_t *buf = avpkt->data;
512  unsigned int buf_size = avpkt->size;
513  LagarithContext *l = avctx->priv_data;
514  ThreadFrame frame = { .f = data };
515  AVFrame *const p = data;
516  uint8_t frametype = 0;
517  uint32_t offset_gu = 0, offset_bv = 0, offset_ry = 9;
518  uint32_t offs[4];
519  uint8_t *srcs[4], *dst;
520  int i, j, planes = 3;
521  int ret;
522 
523  p->key_frame = 1;
524 
525  frametype = buf[0];
526 
527  offset_gu = AV_RL32(buf + 1);
528  offset_bv = AV_RL32(buf + 5);
529 
530  switch (frametype) {
531  case FRAME_SOLID_RGBA:
532  avctx->pix_fmt = AV_PIX_FMT_RGB32;
533  case FRAME_SOLID_GRAY:
534  if (frametype == FRAME_SOLID_GRAY)
535  if (avctx->bits_per_coded_sample == 24) {
536  avctx->pix_fmt = AV_PIX_FMT_RGB24;
537  } else {
538  avctx->pix_fmt = AV_PIX_FMT_0RGB32;
539  planes = 4;
540  }
541 
542  if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
543  return ret;
544 
545  dst = p->data[0];
546  if (frametype == FRAME_SOLID_RGBA) {
547  for (j = 0; j < avctx->height; j++) {
548  for (i = 0; i < avctx->width; i++)
549  AV_WN32(dst + i * 4, offset_gu);
550  dst += p->linesize[0];
551  }
552  } else {
553  for (j = 0; j < avctx->height; j++) {
554  memset(dst, buf[1], avctx->width * planes);
555  dst += p->linesize[0];
556  }
557  }
558  break;
559  case FRAME_SOLID_COLOR:
560  if (avctx->bits_per_coded_sample == 24) {
561  avctx->pix_fmt = AV_PIX_FMT_RGB24;
562  } else {
563  avctx->pix_fmt = AV_PIX_FMT_RGB32;
564  offset_gu |= 0xFFU << 24;
565  }
566 
567  if ((ret = ff_thread_get_buffer(avctx, &frame,0)) < 0)
568  return ret;
569 
570  dst = p->data[0];
571  for (j = 0; j < avctx->height; j++) {
572  for (i = 0; i < avctx->width; i++)
573  if (avctx->bits_per_coded_sample == 24) {
574  AV_WB24(dst + i * 3, offset_gu);
575  } else {
576  AV_WN32(dst + i * 4, offset_gu);
577  }
578  dst += p->linesize[0];
579  }
580  break;
581  case FRAME_ARITH_RGBA:
582  avctx->pix_fmt = AV_PIX_FMT_RGB32;
583  planes = 4;
584  offset_ry += 4;
585  offs[3] = AV_RL32(buf + 9);
586  case FRAME_ARITH_RGB24:
587  case FRAME_U_RGB24:
588  if (frametype == FRAME_ARITH_RGB24 || frametype == FRAME_U_RGB24)
589  avctx->pix_fmt = AV_PIX_FMT_RGB24;
590 
591  if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
592  return ret;
593 
594  offs[0] = offset_bv;
595  offs[1] = offset_gu;
596  offs[2] = offset_ry;
597 
598  if (!l->rgb_planes) {
599  l->rgb_stride = FFALIGN(avctx->width, 16);
600  l->rgb_planes = av_malloc(l->rgb_stride * avctx->height * 4 + 16);
601  if (!l->rgb_planes) {
602  av_log(avctx, AV_LOG_ERROR, "cannot allocate temporary buffer\n");
603  return AVERROR(ENOMEM);
604  }
605  }
606  for (i = 0; i < planes; i++)
607  srcs[i] = l->rgb_planes + (i + 1) * l->rgb_stride * avctx->height - l->rgb_stride;
608  for (i = 0; i < planes; i++)
609  if (buf_size <= offs[i]) {
610  av_log(avctx, AV_LOG_ERROR,
611  "Invalid frame offsets\n");
612  return AVERROR_INVALIDDATA;
613  }
614 
615  for (i = 0; i < planes; i++)
616  lag_decode_arith_plane(l, srcs[i],
617  avctx->width, avctx->height,
618  -l->rgb_stride, buf + offs[i],
619  buf_size - offs[i]);
620  dst = p->data[0];
621  for (i = 0; i < planes; i++)
622  srcs[i] = l->rgb_planes + i * l->rgb_stride * avctx->height;
623  for (j = 0; j < avctx->height; j++) {
624  for (i = 0; i < avctx->width; i++) {
625  uint8_t r, g, b, a;
626  r = srcs[0][i];
627  g = srcs[1][i];
628  b = srcs[2][i];
629  r += g;
630  b += g;
631  if (frametype == FRAME_ARITH_RGBA) {
632  a = srcs[3][i];
633  AV_WN32(dst + i * 4, MKBETAG(a, r, g, b));
634  } else {
635  dst[i * 3 + 0] = r;
636  dst[i * 3 + 1] = g;
637  dst[i * 3 + 2] = b;
638  }
639  }
640  dst += p->linesize[0];
641  for (i = 0; i < planes; i++)
642  srcs[i] += l->rgb_stride;
643  }
644  break;
645  case FRAME_ARITH_YUY2:
646  avctx->pix_fmt = AV_PIX_FMT_YUV422P;
647 
648  if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
649  return ret;
650 
651  if (offset_ry >= buf_size ||
652  offset_gu >= buf_size ||
653  offset_bv >= buf_size) {
654  av_log(avctx, AV_LOG_ERROR,
655  "Invalid frame offsets\n");
656  return AVERROR_INVALIDDATA;
657  }
658 
659  lag_decode_arith_plane(l, p->data[0], avctx->width, avctx->height,
660  p->linesize[0], buf + offset_ry,
661  buf_size - offset_ry);
662  lag_decode_arith_plane(l, p->data[1], avctx->width / 2,
663  avctx->height, p->linesize[1],
664  buf + offset_gu, buf_size - offset_gu);
665  lag_decode_arith_plane(l, p->data[2], avctx->width / 2,
666  avctx->height, p->linesize[2],
667  buf + offset_bv, buf_size - offset_bv);
668  break;
669  case FRAME_ARITH_YV12:
670  avctx->pix_fmt = AV_PIX_FMT_YUV420P;
671 
672  if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
673  return ret;
674  if (buf_size <= offset_ry || buf_size <= offset_gu || buf_size <= offset_bv) {
675  return AVERROR_INVALIDDATA;
676  }
677 
678  if (offset_ry >= buf_size ||
679  offset_gu >= buf_size ||
680  offset_bv >= buf_size) {
681  av_log(avctx, AV_LOG_ERROR,
682  "Invalid frame offsets\n");
683  return AVERROR_INVALIDDATA;
684  }
685 
686  lag_decode_arith_plane(l, p->data[0], avctx->width, avctx->height,
687  p->linesize[0], buf + offset_ry,
688  buf_size - offset_ry);
689  lag_decode_arith_plane(l, p->data[2], avctx->width / 2,
690  avctx->height / 2, p->linesize[2],
691  buf + offset_gu, buf_size - offset_gu);
692  lag_decode_arith_plane(l, p->data[1], avctx->width / 2,
693  avctx->height / 2, p->linesize[1],
694  buf + offset_bv, buf_size - offset_bv);
695  break;
696  default:
697  av_log(avctx, AV_LOG_ERROR,
698  "Unsupported Lagarith frame type: %#x\n", frametype);
699  return AVERROR_PATCHWELCOME;
700  }
701 
702  *got_frame = 1;
703 
704  return buf_size;
705 }
706 
708 {
709  LagarithContext *l = avctx->priv_data;
710  l->avctx = avctx;
711 
712  ff_dsputil_init(&l->dsp, avctx);
713 
714  return 0;
715 }
716 
718 {
719  LagarithContext *l = avctx->priv_data;
720 
721  av_freep(&l->rgb_planes);
722 
723  return 0;
724 }
725 
727  .name = "lagarith",
728  .type = AVMEDIA_TYPE_VIDEO,
729  .id = AV_CODEC_ID_LAGARITH,
730  .priv_data_size = sizeof(LagarithContext),
734  .capabilities = CODEC_CAP_DR1 | CODEC_CAP_FRAME_THREADS,
735  .long_name = NULL_IF_CONFIG_SMALL("Lagarith lossless"),
736 };