FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
snowenc.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2004 Michael Niedermayer <michaelni@gmx.at>
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 
21 #include "libavutil/intmath.h"
22 #include "libavutil/log.h"
23 #include "libavutil/opt.h"
24 #include "avcodec.h"
25 #include "internal.h"
26 #include "snow_dwt.h"
27 #include "snow.h"
28 
29 #include "rangecoder.h"
30 #include "mathops.h"
31 
32 #include "mpegvideo.h"
33 #include "h263.h"
34 
36 {
37  SnowContext *s = avctx->priv_data;
38  int plane_index, ret;
39  int i;
40 
41  if(avctx->prediction_method == DWT_97
42  && (avctx->flags & CODEC_FLAG_QSCALE)
43  && avctx->global_quality == 0){
44  av_log(avctx, AV_LOG_ERROR, "The 9/7 wavelet is incompatible with lossless mode.\n");
45  return -1;
46  }
47 
48  s->spatial_decomposition_type= avctx->prediction_method; //FIXME add decorrelator type r transform_type
49 
50  s->mv_scale = (avctx->flags & CODEC_FLAG_QPEL) ? 2 : 4;
51  s->block_max_depth= (avctx->flags & CODEC_FLAG_4MV ) ? 1 : 0;
52 
53  for(plane_index=0; plane_index<3; plane_index++){
54  s->plane[plane_index].diag_mc= 1;
55  s->plane[plane_index].htaps= 6;
56  s->plane[plane_index].hcoeff[0]= 40;
57  s->plane[plane_index].hcoeff[1]= -10;
58  s->plane[plane_index].hcoeff[2]= 2;
59  s->plane[plane_index].fast_mc= 1;
60  }
61 
62  if ((ret = ff_snow_common_init(avctx)) < 0) {
64  return ret;
65  }
67 
69 
70  s->version=0;
71 
72  s->m.avctx = avctx;
73  s->m.flags = avctx->flags;
74  s->m.bit_rate= avctx->bit_rate;
75 
76  s->m.me.temp =
77  s->m.me.scratchpad= av_mallocz_array((avctx->width+64), 2*16*2*sizeof(uint8_t));
78  s->m.me.map = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t));
79  s->m.me.score_map = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t));
80  s->m.obmc_scratchpad= av_mallocz(MB_SIZE*MB_SIZE*12*sizeof(uint32_t));
81  if (!s->m.me.scratchpad || !s->m.me.map || !s->m.me.score_map || !s->m.obmc_scratchpad)
82  return AVERROR(ENOMEM);
83 
84  ff_h263_encode_init(&s->m); //mv_penalty
85 
86  s->max_ref_frames = FFMAX(FFMIN(avctx->refs, MAX_REF_FRAMES), 1);
87 
88  if(avctx->flags&CODEC_FLAG_PASS1){
89  if(!avctx->stats_out)
90  avctx->stats_out = av_mallocz(256);
91 
92  if (!avctx->stats_out)
93  return AVERROR(ENOMEM);
94  }
95  if((avctx->flags&CODEC_FLAG_PASS2) || !(avctx->flags&CODEC_FLAG_QSCALE)){
96  if(ff_rate_control_init(&s->m) < 0)
97  return -1;
98  }
100 
101  switch(avctx->pix_fmt){
102  case AV_PIX_FMT_YUV444P:
103 // case AV_PIX_FMT_YUV422P:
104  case AV_PIX_FMT_YUV420P:
105 // case AV_PIX_FMT_YUV411P:
106  case AV_PIX_FMT_YUV410P:
107  s->nb_planes = 3;
108  s->colorspace_type= 0;
109  break;
110  case AV_PIX_FMT_GRAY8:
111  s->nb_planes = 1;
112  s->colorspace_type = 1;
113  break;
114 /* case AV_PIX_FMT_RGB32:
115  s->colorspace= 1;
116  break;*/
117  default:
118  av_log(avctx, AV_LOG_ERROR, "pixel format not supported\n");
119  return -1;
120  }
122 
123  ff_set_cmp(&s->mecc, s->mecc.me_cmp, s->avctx->me_cmp);
125 
127  if (!s->input_picture)
128  return AVERROR(ENOMEM);
129 
130  if ((ret = ff_snow_get_buffer(s, s->input_picture)) < 0)
131  return ret;
132 
133  if(s->avctx->me_method == ME_ITER){
134  int size= s->b_width * s->b_height << 2*s->block_max_depth;
135  for(i=0; i<s->max_ref_frames; i++){
136  s->ref_mvs[i]= av_mallocz_array(size, sizeof(int16_t[2]));
137  s->ref_scores[i]= av_mallocz_array(size, sizeof(uint32_t));
138  if (!s->ref_mvs[i] || !s->ref_scores[i])
139  return AVERROR(ENOMEM);
140  }
141  }
142 
143  return 0;
144 }
145 
146 //near copy & paste from dsputil, FIXME
147 static int pix_sum(uint8_t * pix, int line_size, int w, int h)
148 {
149  int s, i, j;
150 
151  s = 0;
152  for (i = 0; i < h; i++) {
153  for (j = 0; j < w; j++) {
154  s += pix[0];
155  pix ++;
156  }
157  pix += line_size - w;
158  }
159  return s;
160 }
161 
162 //near copy & paste from dsputil, FIXME
163 static int pix_norm1(uint8_t * pix, int line_size, int w)
164 {
165  int s, i, j;
166  uint32_t *sq = ff_square_tab + 256;
167 
168  s = 0;
169  for (i = 0; i < w; i++) {
170  for (j = 0; j < w; j ++) {
171  s += sq[pix[0]];
172  pix ++;
173  }
174  pix += line_size - w;
175  }
176  return s;
177 }
178 
179 static inline int get_penalty_factor(int lambda, int lambda2, int type){
180  switch(type&0xFF){
181  default:
182  case FF_CMP_SAD:
183  return lambda>>FF_LAMBDA_SHIFT;
184  case FF_CMP_DCT:
185  return (3*lambda)>>(FF_LAMBDA_SHIFT+1);
186  case FF_CMP_W53:
187  return (4*lambda)>>(FF_LAMBDA_SHIFT);
188  case FF_CMP_W97:
189  return (2*lambda)>>(FF_LAMBDA_SHIFT);
190  case FF_CMP_SATD:
191  case FF_CMP_DCT264:
192  return (2*lambda)>>FF_LAMBDA_SHIFT;
193  case FF_CMP_RD:
194  case FF_CMP_PSNR:
195  case FF_CMP_SSE:
196  case FF_CMP_NSSE:
197  return lambda2>>FF_LAMBDA_SHIFT;
198  case FF_CMP_BIT:
199  return 1;
200  }
201 }
202 
203 //FIXME copy&paste
204 #define P_LEFT P[1]
205 #define P_TOP P[2]
206 #define P_TOPRIGHT P[3]
207 #define P_MEDIAN P[4]
208 #define P_MV1 P[9]
209 #define FLAG_QPEL 1 //must be 1
210 
211 static int encode_q_branch(SnowContext *s, int level, int x, int y){
212  uint8_t p_buffer[1024];
213  uint8_t i_buffer[1024];
214  uint8_t p_state[sizeof(s->block_state)];
215  uint8_t i_state[sizeof(s->block_state)];
216  RangeCoder pc, ic;
217  uint8_t *pbbak= s->c.bytestream;
218  uint8_t *pbbak_start= s->c.bytestream_start;
219  int score, score2, iscore, i_len, p_len, block_s, sum, base_bits;
220  const int w= s->b_width << s->block_max_depth;
221  const int h= s->b_height << s->block_max_depth;
222  const int rem_depth= s->block_max_depth - level;
223  const int index= (x + y*w) << rem_depth;
224  const int block_w= 1<<(LOG2_MB_SIZE - level);
225  int trx= (x+1)<<rem_depth;
226  int try= (y+1)<<rem_depth;
227  const BlockNode *left = x ? &s->block[index-1] : &null_block;
228  const BlockNode *top = y ? &s->block[index-w] : &null_block;
229  const BlockNode *right = trx<w ? &s->block[index+1] : &null_block;
230  const BlockNode *bottom= try<h ? &s->block[index+w] : &null_block;
231  const BlockNode *tl = y && x ? &s->block[index-w-1] : left;
232  const BlockNode *tr = y && trx<w && ((x&1)==0 || level==0) ? &s->block[index-w+(1<<rem_depth)] : tl; //FIXME use lt
233  int pl = left->color[0];
234  int pcb= left->color[1];
235  int pcr= left->color[2];
236  int pmx, pmy;
237  int mx=0, my=0;
238  int l,cr,cb;
239  const int stride= s->current_picture->linesize[0];
240  const int uvstride= s->current_picture->linesize[1];
241  uint8_t *current_data[3]= { s->input_picture->data[0] + (x + y* stride)*block_w,
242  s->input_picture->data[1] + ((x*block_w)>>s->chroma_h_shift) + ((y*uvstride*block_w)>>s->chroma_v_shift),
243  s->input_picture->data[2] + ((x*block_w)>>s->chroma_h_shift) + ((y*uvstride*block_w)>>s->chroma_v_shift)};
244  int P[10][2];
245  int16_t last_mv[3][2];
246  int qpel= !!(s->avctx->flags & CODEC_FLAG_QPEL); //unused
247  const int shift= 1+qpel;
248  MotionEstContext *c= &s->m.me;
249  int ref_context= av_log2(2*left->ref) + av_log2(2*top->ref);
250  int mx_context= av_log2(2*FFABS(left->mx - top->mx));
251  int my_context= av_log2(2*FFABS(left->my - top->my));
252  int s_context= 2*left->level + 2*top->level + tl->level + tr->level;
253  int ref, best_ref, ref_score, ref_mx, ref_my;
254 
255  av_assert0(sizeof(s->block_state) >= 256);
256  if(s->keyframe){
257  set_blocks(s, level, x, y, pl, pcb, pcr, 0, 0, 0, BLOCK_INTRA);
258  return 0;
259  }
260 
261 // clip predictors / edge ?
262 
263  P_LEFT[0]= left->mx;
264  P_LEFT[1]= left->my;
265  P_TOP [0]= top->mx;
266  P_TOP [1]= top->my;
267  P_TOPRIGHT[0]= tr->mx;
268  P_TOPRIGHT[1]= tr->my;
269 
270  last_mv[0][0]= s->block[index].mx;
271  last_mv[0][1]= s->block[index].my;
272  last_mv[1][0]= right->mx;
273  last_mv[1][1]= right->my;
274  last_mv[2][0]= bottom->mx;
275  last_mv[2][1]= bottom->my;
276 
277  s->m.mb_stride=2;
278  s->m.mb_x=
279  s->m.mb_y= 0;
280  c->skip= 0;
281 
282  av_assert1(c-> stride == stride);
283  av_assert1(c->uvstride == uvstride);
284 
289 
290  c->xmin = - x*block_w - 16+3;
291  c->ymin = - y*block_w - 16+3;
292  c->xmax = - (x+1)*block_w + (w<<(LOG2_MB_SIZE - s->block_max_depth)) + 16-3;
293  c->ymax = - (y+1)*block_w + (h<<(LOG2_MB_SIZE - s->block_max_depth)) + 16-3;
294 
295  if(P_LEFT[0] > (c->xmax<<shift)) P_LEFT[0] = (c->xmax<<shift);
296  if(P_LEFT[1] > (c->ymax<<shift)) P_LEFT[1] = (c->ymax<<shift);
297  if(P_TOP[0] > (c->xmax<<shift)) P_TOP[0] = (c->xmax<<shift);
298  if(P_TOP[1] > (c->ymax<<shift)) P_TOP[1] = (c->ymax<<shift);
299  if(P_TOPRIGHT[0] < (c->xmin<<shift)) P_TOPRIGHT[0]= (c->xmin<<shift);
300  if(P_TOPRIGHT[0] > (c->xmax<<shift)) P_TOPRIGHT[0]= (c->xmax<<shift); //due to pmx no clip
301  if(P_TOPRIGHT[1] > (c->ymax<<shift)) P_TOPRIGHT[1]= (c->ymax<<shift);
302 
303  P_MEDIAN[0]= mid_pred(P_LEFT[0], P_TOP[0], P_TOPRIGHT[0]);
304  P_MEDIAN[1]= mid_pred(P_LEFT[1], P_TOP[1], P_TOPRIGHT[1]);
305 
306  if (!y) {
307  c->pred_x= P_LEFT[0];
308  c->pred_y= P_LEFT[1];
309  } else {
310  c->pred_x = P_MEDIAN[0];
311  c->pred_y = P_MEDIAN[1];
312  }
313 
314  score= INT_MAX;
315  best_ref= 0;
316  for(ref=0; ref<s->ref_frames; ref++){
317  init_ref(c, current_data, s->last_picture[ref]->data, NULL, block_w*x, block_w*y, 0);
318 
319  ref_score= ff_epzs_motion_search(&s->m, &ref_mx, &ref_my, P, 0, /*ref_index*/ 0, last_mv,
320  (1<<16)>>shift, level-LOG2_MB_SIZE+4, block_w);
321 
322  av_assert2(ref_mx >= c->xmin);
323  av_assert2(ref_mx <= c->xmax);
324  av_assert2(ref_my >= c->ymin);
325  av_assert2(ref_my <= c->ymax);
326 
327  ref_score= c->sub_motion_search(&s->m, &ref_mx, &ref_my, ref_score, 0, 0, level-LOG2_MB_SIZE+4, block_w);
328  ref_score= ff_get_mb_score(&s->m, ref_mx, ref_my, 0, 0, level-LOG2_MB_SIZE+4, block_w, 0);
329  ref_score+= 2*av_log2(2*ref)*c->penalty_factor;
330  if(s->ref_mvs[ref]){
331  s->ref_mvs[ref][index][0]= ref_mx;
332  s->ref_mvs[ref][index][1]= ref_my;
333  s->ref_scores[ref][index]= ref_score;
334  }
335  if(score > ref_score){
336  score= ref_score;
337  best_ref= ref;
338  mx= ref_mx;
339  my= ref_my;
340  }
341  }
342  //FIXME if mb_cmp != SSE then intra cannot be compared currently and mb_penalty vs. lambda2
343 
344  // subpel search
345  base_bits= get_rac_count(&s->c) - 8*(s->c.bytestream - s->c.bytestream_start);
346  pc= s->c;
347  pc.bytestream_start=
348  pc.bytestream= p_buffer; //FIXME end/start? and at the other stoo
349  memcpy(p_state, s->block_state, sizeof(s->block_state));
350 
351  if(level!=s->block_max_depth)
352  put_rac(&pc, &p_state[4 + s_context], 1);
353  put_rac(&pc, &p_state[1 + left->type + top->type], 0);
354  if(s->ref_frames > 1)
355  put_symbol(&pc, &p_state[128 + 1024 + 32*ref_context], best_ref, 0);
356  pred_mv(s, &pmx, &pmy, best_ref, left, top, tr);
357  put_symbol(&pc, &p_state[128 + 32*(mx_context + 16*!!best_ref)], mx - pmx, 1);
358  put_symbol(&pc, &p_state[128 + 32*(my_context + 16*!!best_ref)], my - pmy, 1);
359  p_len= pc.bytestream - pc.bytestream_start;
360  score += (s->lambda2*(get_rac_count(&pc)-base_bits))>>FF_LAMBDA_SHIFT;
361 
362  block_s= block_w*block_w;
363  sum = pix_sum(current_data[0], stride, block_w, block_w);
364  l= (sum + block_s/2)/block_s;
365  iscore = pix_norm1(current_data[0], stride, block_w) - 2*l*sum + l*l*block_s;
366 
367  if (s->nb_planes > 2) {
368  block_s= block_w*block_w>>(s->chroma_h_shift + s->chroma_v_shift);
369  sum = pix_sum(current_data[1], uvstride, block_w>>s->chroma_h_shift, block_w>>s->chroma_v_shift);
370  cb= (sum + block_s/2)/block_s;
371  // iscore += pix_norm1(&current_mb[1][0], uvstride, block_w>>1) - 2*cb*sum + cb*cb*block_s;
372  sum = pix_sum(current_data[2], uvstride, block_w>>s->chroma_h_shift, block_w>>s->chroma_v_shift);
373  cr= (sum + block_s/2)/block_s;
374  // iscore += pix_norm1(&current_mb[2][0], uvstride, block_w>>1) - 2*cr*sum + cr*cr*block_s;
375  }else
376  cb = cr = 0;
377 
378  ic= s->c;
379  ic.bytestream_start=
380  ic.bytestream= i_buffer; //FIXME end/start? and at the other stoo
381  memcpy(i_state, s->block_state, sizeof(s->block_state));
382  if(level!=s->block_max_depth)
383  put_rac(&ic, &i_state[4 + s_context], 1);
384  put_rac(&ic, &i_state[1 + left->type + top->type], 1);
385  put_symbol(&ic, &i_state[32], l-pl , 1);
386  if (s->nb_planes > 2) {
387  put_symbol(&ic, &i_state[64], cb-pcb, 1);
388  put_symbol(&ic, &i_state[96], cr-pcr, 1);
389  }
390  i_len= ic.bytestream - ic.bytestream_start;
391  iscore += (s->lambda2*(get_rac_count(&ic)-base_bits))>>FF_LAMBDA_SHIFT;
392 
393  av_assert1(iscore < 255*255*256 + s->lambda2*10);
394  av_assert1(iscore >= 0);
395  av_assert1(l>=0 && l<=255);
396  av_assert1(pl>=0 && pl<=255);
397 
398  if(level==0){
399  int varc= iscore >> 8;
400  int vard= score >> 8;
401  if (vard <= 64 || vard < varc)
402  c->scene_change_score+= ff_sqrt(vard) - ff_sqrt(varc);
403  else
404  c->scene_change_score+= s->m.qscale;
405  }
406 
407  if(level!=s->block_max_depth){
408  put_rac(&s->c, &s->block_state[4 + s_context], 0);
409  score2 = encode_q_branch(s, level+1, 2*x+0, 2*y+0);
410  score2+= encode_q_branch(s, level+1, 2*x+1, 2*y+0);
411  score2+= encode_q_branch(s, level+1, 2*x+0, 2*y+1);
412  score2+= encode_q_branch(s, level+1, 2*x+1, 2*y+1);
413  score2+= s->lambda2>>FF_LAMBDA_SHIFT; //FIXME exact split overhead
414 
415  if(score2 < score && score2 < iscore)
416  return score2;
417  }
418 
419  if(iscore < score){
420  pred_mv(s, &pmx, &pmy, 0, left, top, tr);
421  memcpy(pbbak, i_buffer, i_len);
422  s->c= ic;
423  s->c.bytestream_start= pbbak_start;
424  s->c.bytestream= pbbak + i_len;
425  set_blocks(s, level, x, y, l, cb, cr, pmx, pmy, 0, BLOCK_INTRA);
426  memcpy(s->block_state, i_state, sizeof(s->block_state));
427  return iscore;
428  }else{
429  memcpy(pbbak, p_buffer, p_len);
430  s->c= pc;
431  s->c.bytestream_start= pbbak_start;
432  s->c.bytestream= pbbak + p_len;
433  set_blocks(s, level, x, y, pl, pcb, pcr, mx, my, best_ref, 0);
434  memcpy(s->block_state, p_state, sizeof(s->block_state));
435  return score;
436  }
437 }
438 
439 static void encode_q_branch2(SnowContext *s, int level, int x, int y){
440  const int w= s->b_width << s->block_max_depth;
441  const int rem_depth= s->block_max_depth - level;
442  const int index= (x + y*w) << rem_depth;
443  int trx= (x+1)<<rem_depth;
444  BlockNode *b= &s->block[index];
445  const BlockNode *left = x ? &s->block[index-1] : &null_block;
446  const BlockNode *top = y ? &s->block[index-w] : &null_block;
447  const BlockNode *tl = y && x ? &s->block[index-w-1] : left;
448  const BlockNode *tr = y && trx<w && ((x&1)==0 || level==0) ? &s->block[index-w+(1<<rem_depth)] : tl; //FIXME use lt
449  int pl = left->color[0];
450  int pcb= left->color[1];
451  int pcr= left->color[2];
452  int pmx, pmy;
453  int ref_context= av_log2(2*left->ref) + av_log2(2*top->ref);
454  int mx_context= av_log2(2*FFABS(left->mx - top->mx)) + 16*!!b->ref;
455  int my_context= av_log2(2*FFABS(left->my - top->my)) + 16*!!b->ref;
456  int s_context= 2*left->level + 2*top->level + tl->level + tr->level;
457 
458  if(s->keyframe){
459  set_blocks(s, level, x, y, pl, pcb, pcr, 0, 0, 0, BLOCK_INTRA);
460  return;
461  }
462 
463  if(level!=s->block_max_depth){
464  if(same_block(b,b+1) && same_block(b,b+w) && same_block(b,b+w+1)){
465  put_rac(&s->c, &s->block_state[4 + s_context], 1);
466  }else{
467  put_rac(&s->c, &s->block_state[4 + s_context], 0);
468  encode_q_branch2(s, level+1, 2*x+0, 2*y+0);
469  encode_q_branch2(s, level+1, 2*x+1, 2*y+0);
470  encode_q_branch2(s, level+1, 2*x+0, 2*y+1);
471  encode_q_branch2(s, level+1, 2*x+1, 2*y+1);
472  return;
473  }
474  }
475  if(b->type & BLOCK_INTRA){
476  pred_mv(s, &pmx, &pmy, 0, left, top, tr);
477  put_rac(&s->c, &s->block_state[1 + (left->type&1) + (top->type&1)], 1);
478  put_symbol(&s->c, &s->block_state[32], b->color[0]-pl , 1);
479  if (s->nb_planes > 2) {
480  put_symbol(&s->c, &s->block_state[64], b->color[1]-pcb, 1);
481  put_symbol(&s->c, &s->block_state[96], b->color[2]-pcr, 1);
482  }
483  set_blocks(s, level, x, y, b->color[0], b->color[1], b->color[2], pmx, pmy, 0, BLOCK_INTRA);
484  }else{
485  pred_mv(s, &pmx, &pmy, b->ref, left, top, tr);
486  put_rac(&s->c, &s->block_state[1 + (left->type&1) + (top->type&1)], 0);
487  if(s->ref_frames > 1)
488  put_symbol(&s->c, &s->block_state[128 + 1024 + 32*ref_context], b->ref, 0);
489  put_symbol(&s->c, &s->block_state[128 + 32*mx_context], b->mx - pmx, 1);
490  put_symbol(&s->c, &s->block_state[128 + 32*my_context], b->my - pmy, 1);
491  set_blocks(s, level, x, y, pl, pcb, pcr, b->mx, b->my, b->ref, 0);
492  }
493 }
494 
495 static int get_dc(SnowContext *s, int mb_x, int mb_y, int plane_index){
496  int i, x2, y2;
497  Plane *p= &s->plane[plane_index];
498  const int block_size = MB_SIZE >> s->block_max_depth;
499  const int block_w = plane_index ? block_size>>s->chroma_h_shift : block_size;
500  const int block_h = plane_index ? block_size>>s->chroma_v_shift : block_size;
501  const uint8_t *obmc = plane_index ? ff_obmc_tab[s->block_max_depth+s->chroma_h_shift] : ff_obmc_tab[s->block_max_depth];
502  const int obmc_stride= plane_index ? (2*block_size)>>s->chroma_h_shift : 2*block_size;
503  const int ref_stride= s->current_picture->linesize[plane_index];
504  uint8_t *src= s-> input_picture->data[plane_index];
505  IDWTELEM *dst= (IDWTELEM*)s->m.obmc_scratchpad + plane_index*block_size*block_size*4; //FIXME change to unsigned
506  const int b_stride = s->b_width << s->block_max_depth;
507  const int w= p->width;
508  const int h= p->height;
509  int index= mb_x + mb_y*b_stride;
510  BlockNode *b= &s->block[index];
511  BlockNode backup= *b;
512  int ab=0;
513  int aa=0;
514 
515  av_assert2(s->chroma_h_shift == s->chroma_v_shift); //obmc stuff above
516 
517  b->type|= BLOCK_INTRA;
518  b->color[plane_index]= 0;
519  memset(dst, 0, obmc_stride*obmc_stride*sizeof(IDWTELEM));
520 
521  for(i=0; i<4; i++){
522  int mb_x2= mb_x + (i &1) - 1;
523  int mb_y2= mb_y + (i>>1) - 1;
524  int x= block_w*mb_x2 + block_w/2;
525  int y= block_h*mb_y2 + block_h/2;
526 
527  add_yblock(s, 0, NULL, dst + (i&1)*block_w + (i>>1)*obmc_stride*block_h, NULL, obmc,
528  x, y, block_w, block_h, w, h, obmc_stride, ref_stride, obmc_stride, mb_x2, mb_y2, 0, 0, plane_index);
529 
530  for(y2= FFMAX(y, 0); y2<FFMIN(h, y+block_h); y2++){
531  for(x2= FFMAX(x, 0); x2<FFMIN(w, x+block_w); x2++){
532  int index= x2-(block_w*mb_x - block_w/2) + (y2-(block_h*mb_y - block_h/2))*obmc_stride;
533  int obmc_v= obmc[index];
534  int d;
535  if(y<0) obmc_v += obmc[index + block_h*obmc_stride];
536  if(x<0) obmc_v += obmc[index + block_w];
537  if(y+block_h>h) obmc_v += obmc[index - block_h*obmc_stride];
538  if(x+block_w>w) obmc_v += obmc[index - block_w];
539  //FIXME precalculate this or simplify it somehow else
540 
541  d = -dst[index] + (1<<(FRAC_BITS-1));
542  dst[index] = d;
543  ab += (src[x2 + y2*ref_stride] - (d>>FRAC_BITS)) * obmc_v;
544  aa += obmc_v * obmc_v; //FIXME precalculate this
545  }
546  }
547  }
548  *b= backup;
549 
550  return av_clip( ROUNDED_DIV(ab<<LOG2_OBMC_MAX, aa), 0, 255); //FIXME we should not need clipping
551 }
552 
553 static inline int get_block_bits(SnowContext *s, int x, int y, int w){
554  const int b_stride = s->b_width << s->block_max_depth;
555  const int b_height = s->b_height<< s->block_max_depth;
556  int index= x + y*b_stride;
557  const BlockNode *b = &s->block[index];
558  const BlockNode *left = x ? &s->block[index-1] : &null_block;
559  const BlockNode *top = y ? &s->block[index-b_stride] : &null_block;
560  const BlockNode *tl = y && x ? &s->block[index-b_stride-1] : left;
561  const BlockNode *tr = y && x+w<b_stride ? &s->block[index-b_stride+w] : tl;
562  int dmx, dmy;
563 // int mx_context= av_log2(2*FFABS(left->mx - top->mx));
564 // int my_context= av_log2(2*FFABS(left->my - top->my));
565 
566  if(x<0 || x>=b_stride || y>=b_height)
567  return 0;
568 /*
569 1 0 0
570 01X 1-2 1
571 001XX 3-6 2-3
572 0001XXX 7-14 4-7
573 00001XXXX 15-30 8-15
574 */
575 //FIXME try accurate rate
576 //FIXME intra and inter predictors if surrounding blocks are not the same type
577  if(b->type & BLOCK_INTRA){
578  return 3+2*( av_log2(2*FFABS(left->color[0] - b->color[0]))
579  + av_log2(2*FFABS(left->color[1] - b->color[1]))
580  + av_log2(2*FFABS(left->color[2] - b->color[2])));
581  }else{
582  pred_mv(s, &dmx, &dmy, b->ref, left, top, tr);
583  dmx-= b->mx;
584  dmy-= b->my;
585  return 2*(1 + av_log2(2*FFABS(dmx)) //FIXME kill the 2* can be merged in lambda
586  + av_log2(2*FFABS(dmy))
587  + av_log2(2*b->ref));
588  }
589 }
590 
591 static int get_block_rd(SnowContext *s, int mb_x, int mb_y, int plane_index, uint8_t (*obmc_edged)[MB_SIZE * 2]){
592  Plane *p= &s->plane[plane_index];
593  const int block_size = MB_SIZE >> s->block_max_depth;
594  const int block_w = plane_index ? block_size>>s->chroma_h_shift : block_size;
595  const int block_h = plane_index ? block_size>>s->chroma_v_shift : block_size;
596  const int obmc_stride= plane_index ? (2*block_size)>>s->chroma_h_shift : 2*block_size;
597  const int ref_stride= s->current_picture->linesize[plane_index];
598  uint8_t *dst= s->current_picture->data[plane_index];
599  uint8_t *src= s-> input_picture->data[plane_index];
600  IDWTELEM *pred= (IDWTELEM*)s->m.obmc_scratchpad + plane_index*block_size*block_size*4;
601  uint8_t *cur = s->scratchbuf;
602  uint8_t *tmp = s->emu_edge_buffer;
603  const int b_stride = s->b_width << s->block_max_depth;
604  const int b_height = s->b_height<< s->block_max_depth;
605  const int w= p->width;
606  const int h= p->height;
607  int distortion;
608  int rate= 0;
609  const int penalty_factor= get_penalty_factor(s->lambda, s->lambda2, s->avctx->me_cmp);
610  int sx= block_w*mb_x - block_w/2;
611  int sy= block_h*mb_y - block_h/2;
612  int x0= FFMAX(0,-sx);
613  int y0= FFMAX(0,-sy);
614  int x1= FFMIN(block_w*2, w-sx);
615  int y1= FFMIN(block_h*2, h-sy);
616  int i,x,y;
617 
618  av_assert2(s->chroma_h_shift == s->chroma_v_shift); //obmc and square assumtions below chckinhg only block_w
619 
620  ff_snow_pred_block(s, cur, tmp, ref_stride, sx, sy, block_w*2, block_h*2, &s->block[mb_x + mb_y*b_stride], plane_index, w, h);
621 
622  for(y=y0; y<y1; y++){
623  const uint8_t *obmc1= obmc_edged[y];
624  const IDWTELEM *pred1 = pred + y*obmc_stride;
625  uint8_t *cur1 = cur + y*ref_stride;
626  uint8_t *dst1 = dst + sx + (sy+y)*ref_stride;
627  for(x=x0; x<x1; x++){
628 #if FRAC_BITS >= LOG2_OBMC_MAX
629  int v = (cur1[x] * obmc1[x]) << (FRAC_BITS - LOG2_OBMC_MAX);
630 #else
631  int v = (cur1[x] * obmc1[x] + (1<<(LOG2_OBMC_MAX - FRAC_BITS-1))) >> (LOG2_OBMC_MAX - FRAC_BITS);
632 #endif
633  v = (v + pred1[x]) >> FRAC_BITS;
634  if(v&(~255)) v= ~(v>>31);
635  dst1[x] = v;
636  }
637  }
638 
639  /* copy the regions where obmc[] = (uint8_t)256 */
640  if(LOG2_OBMC_MAX == 8
641  && (mb_x == 0 || mb_x == b_stride-1)
642  && (mb_y == 0 || mb_y == b_height-1)){
643  if(mb_x == 0)
644  x1 = block_w;
645  else
646  x0 = block_w;
647  if(mb_y == 0)
648  y1 = block_h;
649  else
650  y0 = block_h;
651  for(y=y0; y<y1; y++)
652  memcpy(dst + sx+x0 + (sy+y)*ref_stride, cur + x0 + y*ref_stride, x1-x0);
653  }
654 
655  if(block_w==16){
656  /* FIXME rearrange dsputil to fit 32x32 cmp functions */
657  /* FIXME check alignment of the cmp wavelet vs the encoding wavelet */
658  /* FIXME cmps overlap but do not cover the wavelet's whole support.
659  * So improving the score of one block is not strictly guaranteed
660  * to improve the score of the whole frame, thus iterative motion
661  * estimation does not always converge. */
662  if(s->avctx->me_cmp == FF_CMP_W97)
663  distortion = ff_w97_32_c(&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, 32);
664  else if(s->avctx->me_cmp == FF_CMP_W53)
665  distortion = ff_w53_32_c(&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, 32);
666  else{
667  distortion = 0;
668  for(i=0; i<4; i++){
669  int off = sx+16*(i&1) + (sy+16*(i>>1))*ref_stride;
670  distortion += s->mecc.me_cmp[0](&s->m, src + off, dst + off, ref_stride, 16);
671  }
672  }
673  }else{
674  av_assert2(block_w==8);
675  distortion = s->mecc.me_cmp[0](&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, block_w*2);
676  }
677 
678  if(plane_index==0){
679  for(i=0; i<4; i++){
680 /* ..RRr
681  * .RXx.
682  * rxx..
683  */
684  rate += get_block_bits(s, mb_x + (i&1) - (i>>1), mb_y + (i>>1), 1);
685  }
686  if(mb_x == b_stride-2)
687  rate += get_block_bits(s, mb_x + 1, mb_y + 1, 1);
688  }
689  return distortion + rate*penalty_factor;
690 }
691 
692 static int get_4block_rd(SnowContext *s, int mb_x, int mb_y, int plane_index){
693  int i, y2;
694  Plane *p= &s->plane[plane_index];
695  const int block_size = MB_SIZE >> s->block_max_depth;
696  const int block_w = plane_index ? block_size>>s->chroma_h_shift : block_size;
697  const int block_h = plane_index ? block_size>>s->chroma_v_shift : block_size;
698  const uint8_t *obmc = plane_index ? ff_obmc_tab[s->block_max_depth+s->chroma_h_shift] : ff_obmc_tab[s->block_max_depth];
699  const int obmc_stride= plane_index ? (2*block_size)>>s->chroma_h_shift : 2*block_size;
700  const int ref_stride= s->current_picture->linesize[plane_index];
701  uint8_t *dst= s->current_picture->data[plane_index];
702  uint8_t *src= s-> input_picture->data[plane_index];
703  //FIXME zero_dst is const but add_yblock changes dst if add is 0 (this is never the case for dst=zero_dst
704  // const has only been removed from zero_dst to suppress a warning
705  static IDWTELEM zero_dst[4096]; //FIXME
706  const int b_stride = s->b_width << s->block_max_depth;
707  const int w= p->width;
708  const int h= p->height;
709  int distortion= 0;
710  int rate= 0;
711  const int penalty_factor= get_penalty_factor(s->lambda, s->lambda2, s->avctx->me_cmp);
712 
713  av_assert2(s->chroma_h_shift == s->chroma_v_shift); //obmc and square assumtions below
714 
715  for(i=0; i<9; i++){
716  int mb_x2= mb_x + (i%3) - 1;
717  int mb_y2= mb_y + (i/3) - 1;
718  int x= block_w*mb_x2 + block_w/2;
719  int y= block_h*mb_y2 + block_h/2;
720 
721  add_yblock(s, 0, NULL, zero_dst, dst, obmc,
722  x, y, block_w, block_h, w, h, /*dst_stride*/0, ref_stride, obmc_stride, mb_x2, mb_y2, 1, 1, plane_index);
723 
724  //FIXME find a cleaner/simpler way to skip the outside stuff
725  for(y2= y; y2<0; y2++)
726  memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, block_w);
727  for(y2= h; y2<y+block_h; y2++)
728  memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, block_w);
729  if(x<0){
730  for(y2= y; y2<y+block_h; y2++)
731  memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, -x);
732  }
733  if(x+block_w > w){
734  for(y2= y; y2<y+block_h; y2++)
735  memcpy(dst + w + y2*ref_stride, src + w + y2*ref_stride, x+block_w - w);
736  }
737 
738  av_assert1(block_w== 8 || block_w==16);
739  distortion += s->mecc.me_cmp[block_w==8](&s->m, src + x + y*ref_stride, dst + x + y*ref_stride, ref_stride, block_h);
740  }
741 
742  if(plane_index==0){
743  BlockNode *b= &s->block[mb_x+mb_y*b_stride];
744  int merged= same_block(b,b+1) && same_block(b,b+b_stride) && same_block(b,b+b_stride+1);
745 
746 /* ..RRRr
747  * .RXXx.
748  * .RXXx.
749  * rxxx.
750  */
751  if(merged)
752  rate = get_block_bits(s, mb_x, mb_y, 2);
753  for(i=merged?4:0; i<9; i++){
754  static const int dxy[9][2] = {{0,0},{1,0},{0,1},{1,1},{2,0},{2,1},{-1,2},{0,2},{1,2}};
755  rate += get_block_bits(s, mb_x + dxy[i][0], mb_y + dxy[i][1], 1);
756  }
757  }
758  return distortion + rate*penalty_factor;
759 }
760 
761 static int encode_subband_c0run(SnowContext *s, SubBand *b, const IDWTELEM *src, const IDWTELEM *parent, int stride, int orientation){
762  const int w= b->width;
763  const int h= b->height;
764  int x, y;
765 
766  if(1){
767  int run=0;
768  int *runs = s->run_buffer;
769  int run_index=0;
770  int max_index;
771 
772  for(y=0; y<h; y++){
773  for(x=0; x<w; x++){
774  int v, p=0;
775  int /*ll=0, */l=0, lt=0, t=0, rt=0;
776  v= src[x + y*stride];
777 
778  if(y){
779  t= src[x + (y-1)*stride];
780  if(x){
781  lt= src[x - 1 + (y-1)*stride];
782  }
783  if(x + 1 < w){
784  rt= src[x + 1 + (y-1)*stride];
785  }
786  }
787  if(x){
788  l= src[x - 1 + y*stride];
789  /*if(x > 1){
790  if(orientation==1) ll= src[y + (x-2)*stride];
791  else ll= src[x - 2 + y*stride];
792  }*/
793  }
794  if(parent){
795  int px= x>>1;
796  int py= y>>1;
797  if(px<b->parent->width && py<b->parent->height)
798  p= parent[px + py*2*stride];
799  }
800  if(!(/*ll|*/l|lt|t|rt|p)){
801  if(v){
802  runs[run_index++]= run;
803  run=0;
804  }else{
805  run++;
806  }
807  }
808  }
809  }
810  max_index= run_index;
811  runs[run_index++]= run;
812  run_index=0;
813  run= runs[run_index++];
814 
815  put_symbol2(&s->c, b->state[30], max_index, 0);
816  if(run_index <= max_index)
817  put_symbol2(&s->c, b->state[1], run, 3);
818 
819  for(y=0; y<h; y++){
820  if(s->c.bytestream_end - s->c.bytestream < w*40){
821  av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
822  return -1;
823  }
824  for(x=0; x<w; x++){
825  int v, p=0;
826  int /*ll=0, */l=0, lt=0, t=0, rt=0;
827  v= src[x + y*stride];
828 
829  if(y){
830  t= src[x + (y-1)*stride];
831  if(x){
832  lt= src[x - 1 + (y-1)*stride];
833  }
834  if(x + 1 < w){
835  rt= src[x + 1 + (y-1)*stride];
836  }
837  }
838  if(x){
839  l= src[x - 1 + y*stride];
840  /*if(x > 1){
841  if(orientation==1) ll= src[y + (x-2)*stride];
842  else ll= src[x - 2 + y*stride];
843  }*/
844  }
845  if(parent){
846  int px= x>>1;
847  int py= y>>1;
848  if(px<b->parent->width && py<b->parent->height)
849  p= parent[px + py*2*stride];
850  }
851  if(/*ll|*/l|lt|t|rt|p){
852  int context= av_log2(/*FFABS(ll) + */3*FFABS(l) + FFABS(lt) + 2*FFABS(t) + FFABS(rt) + FFABS(p));
853 
854  put_rac(&s->c, &b->state[0][context], !!v);
855  }else{
856  if(!run){
857  run= runs[run_index++];
858 
859  if(run_index <= max_index)
860  put_symbol2(&s->c, b->state[1], run, 3);
861  av_assert2(v);
862  }else{
863  run--;
864  av_assert2(!v);
865  }
866  }
867  if(v){
868  int context= av_log2(/*FFABS(ll) + */3*FFABS(l) + FFABS(lt) + 2*FFABS(t) + FFABS(rt) + FFABS(p));
869  int l2= 2*FFABS(l) + (l<0);
870  int t2= 2*FFABS(t) + (t<0);
871 
872  put_symbol2(&s->c, b->state[context + 2], FFABS(v)-1, context-4);
873  put_rac(&s->c, &b->state[0][16 + 1 + 3 + ff_quant3bA[l2&0xFF] + 3*ff_quant3bA[t2&0xFF]], v<0);
874  }
875  }
876  }
877  }
878  return 0;
879 }
880 
881 static int encode_subband(SnowContext *s, SubBand *b, const IDWTELEM *src, const IDWTELEM *parent, int stride, int orientation){
882 // encode_subband_qtree(s, b, src, parent, stride, orientation);
883 // encode_subband_z0run(s, b, src, parent, stride, orientation);
884  return encode_subband_c0run(s, b, src, parent, stride, orientation);
885 // encode_subband_dzr(s, b, src, parent, stride, orientation);
886 }
887 
888 static av_always_inline int check_block(SnowContext *s, int mb_x, int mb_y, int p[3], int intra, uint8_t (*obmc_edged)[MB_SIZE * 2], int *best_rd){
889  const int b_stride= s->b_width << s->block_max_depth;
890  BlockNode *block= &s->block[mb_x + mb_y * b_stride];
891  BlockNode backup= *block;
892  unsigned value;
893  int rd, index;
894 
895  av_assert2(mb_x>=0 && mb_y>=0);
896  av_assert2(mb_x<b_stride);
897 
898  if(intra){
899  block->color[0] = p[0];
900  block->color[1] = p[1];
901  block->color[2] = p[2];
902  block->type |= BLOCK_INTRA;
903  }else{
904  index= (p[0] + 31*p[1]) & (ME_CACHE_SIZE-1);
905  value= s->me_cache_generation + (p[0]>>10) + (p[1]<<6) + (block->ref<<12);
906  if(s->me_cache[index] == value)
907  return 0;
908  s->me_cache[index]= value;
909 
910  block->mx= p[0];
911  block->my= p[1];
912  block->type &= ~BLOCK_INTRA;
913  }
914 
915  rd= get_block_rd(s, mb_x, mb_y, 0, obmc_edged);
916 
917 //FIXME chroma
918  if(rd < *best_rd){
919  *best_rd= rd;
920  return 1;
921  }else{
922  *block= backup;
923  return 0;
924  }
925 }
926 
927 /* special case for int[2] args we discard afterwards,
928  * fixes compilation problem with gcc 2.95 */
929 static av_always_inline int check_block_inter(SnowContext *s, int mb_x, int mb_y, int p0, int p1, uint8_t (*obmc_edged)[MB_SIZE * 2], int *best_rd){
930  int p[2] = {p0, p1};
931  return check_block(s, mb_x, mb_y, p, 0, obmc_edged, best_rd);
932 }
933 
934 static av_always_inline int check_4block_inter(SnowContext *s, int mb_x, int mb_y, int p0, int p1, int ref, int *best_rd){
935  const int b_stride= s->b_width << s->block_max_depth;
936  BlockNode *block= &s->block[mb_x + mb_y * b_stride];
937  BlockNode backup[4];
938  unsigned value;
939  int rd, index;
940 
941  /* We don't initialize backup[] during variable declaration, because
942  * that fails to compile on MSVC: "cannot convert from 'BlockNode' to
943  * 'int16_t'". */
944  backup[0] = block[0];
945  backup[1] = block[1];
946  backup[2] = block[b_stride];
947  backup[3] = block[b_stride + 1];
948 
949  av_assert2(mb_x>=0 && mb_y>=0);
950  av_assert2(mb_x<b_stride);
951  av_assert2(((mb_x|mb_y)&1) == 0);
952 
953  index= (p0 + 31*p1) & (ME_CACHE_SIZE-1);
954  value= s->me_cache_generation + (p0>>10) + (p1<<6) + (block->ref<<12);
955  if(s->me_cache[index] == value)
956  return 0;
957  s->me_cache[index]= value;
958 
959  block->mx= p0;
960  block->my= p1;
961  block->ref= ref;
962  block->type &= ~BLOCK_INTRA;
963  block[1]= block[b_stride]= block[b_stride+1]= *block;
964 
965  rd= get_4block_rd(s, mb_x, mb_y, 0);
966 
967 //FIXME chroma
968  if(rd < *best_rd){
969  *best_rd= rd;
970  return 1;
971  }else{
972  block[0]= backup[0];
973  block[1]= backup[1];
974  block[b_stride]= backup[2];
975  block[b_stride+1]= backup[3];
976  return 0;
977  }
978 }
979 
980 static void iterative_me(SnowContext *s){
981  int pass, mb_x, mb_y;
982  const int b_width = s->b_width << s->block_max_depth;
983  const int b_height= s->b_height << s->block_max_depth;
984  const int b_stride= b_width;
985  int color[3];
986 
987  {
988  RangeCoder r = s->c;
989  uint8_t state[sizeof(s->block_state)];
990  memcpy(state, s->block_state, sizeof(s->block_state));
991  for(mb_y= 0; mb_y<s->b_height; mb_y++)
992  for(mb_x= 0; mb_x<s->b_width; mb_x++)
993  encode_q_branch(s, 0, mb_x, mb_y);
994  s->c = r;
995  memcpy(s->block_state, state, sizeof(s->block_state));
996  }
997 
998  for(pass=0; pass<25; pass++){
999  int change= 0;
1000 
1001  for(mb_y= 0; mb_y<b_height; mb_y++){
1002  for(mb_x= 0; mb_x<b_width; mb_x++){
1003  int dia_change, i, j, ref;
1004  int best_rd= INT_MAX, ref_rd;
1005  BlockNode backup, ref_b;
1006  const int index= mb_x + mb_y * b_stride;
1007  BlockNode *block= &s->block[index];
1008  BlockNode *tb = mb_y ? &s->block[index-b_stride ] : NULL;
1009  BlockNode *lb = mb_x ? &s->block[index -1] : NULL;
1010  BlockNode *rb = mb_x+1<b_width ? &s->block[index +1] : NULL;
1011  BlockNode *bb = mb_y+1<b_height ? &s->block[index+b_stride ] : NULL;
1012  BlockNode *tlb= mb_x && mb_y ? &s->block[index-b_stride-1] : NULL;
1013  BlockNode *trb= mb_x+1<b_width && mb_y ? &s->block[index-b_stride+1] : NULL;
1014  BlockNode *blb= mb_x && mb_y+1<b_height ? &s->block[index+b_stride-1] : NULL;
1015  BlockNode *brb= mb_x+1<b_width && mb_y+1<b_height ? &s->block[index+b_stride+1] : NULL;
1016  const int b_w= (MB_SIZE >> s->block_max_depth);
1017  uint8_t obmc_edged[MB_SIZE * 2][MB_SIZE * 2];
1018 
1019  if(pass && (block->type & BLOCK_OPT))
1020  continue;
1021  block->type |= BLOCK_OPT;
1022 
1023  backup= *block;
1024 
1025  if(!s->me_cache_generation)
1026  memset(s->me_cache, 0, sizeof(s->me_cache));
1027  s->me_cache_generation += 1<<22;
1028 
1029  //FIXME precalculate
1030  {
1031  int x, y;
1032  for (y = 0; y < b_w * 2; y++)
1033  memcpy(obmc_edged[y], ff_obmc_tab[s->block_max_depth] + y * b_w * 2, b_w * 2);
1034  if(mb_x==0)
1035  for(y=0; y<b_w*2; y++)
1036  memset(obmc_edged[y], obmc_edged[y][0] + obmc_edged[y][b_w-1], b_w);
1037  if(mb_x==b_stride-1)
1038  for(y=0; y<b_w*2; y++)
1039  memset(obmc_edged[y]+b_w, obmc_edged[y][b_w] + obmc_edged[y][b_w*2-1], b_w);
1040  if(mb_y==0){
1041  for(x=0; x<b_w*2; x++)
1042  obmc_edged[0][x] += obmc_edged[b_w-1][x];
1043  for(y=1; y<b_w; y++)
1044  memcpy(obmc_edged[y], obmc_edged[0], b_w*2);
1045  }
1046  if(mb_y==b_height-1){
1047  for(x=0; x<b_w*2; x++)
1048  obmc_edged[b_w*2-1][x] += obmc_edged[b_w][x];
1049  for(y=b_w; y<b_w*2-1; y++)
1050  memcpy(obmc_edged[y], obmc_edged[b_w*2-1], b_w*2);
1051  }
1052  }
1053 
1054  //skip stuff outside the picture
1055  if(mb_x==0 || mb_y==0 || mb_x==b_width-1 || mb_y==b_height-1){
1056  uint8_t *src= s-> input_picture->data[0];
1057  uint8_t *dst= s->current_picture->data[0];
1058  const int stride= s->current_picture->linesize[0];
1059  const int block_w= MB_SIZE >> s->block_max_depth;
1060  const int block_h= MB_SIZE >> s->block_max_depth;
1061  const int sx= block_w*mb_x - block_w/2;
1062  const int sy= block_h*mb_y - block_h/2;
1063  const int w= s->plane[0].width;
1064  const int h= s->plane[0].height;
1065  int y;
1066 
1067  for(y=sy; y<0; y++)
1068  memcpy(dst + sx + y*stride, src + sx + y*stride, block_w*2);
1069  for(y=h; y<sy+block_h*2; y++)
1070  memcpy(dst + sx + y*stride, src + sx + y*stride, block_w*2);
1071  if(sx<0){
1072  for(y=sy; y<sy+block_h*2; y++)
1073  memcpy(dst + sx + y*stride, src + sx + y*stride, -sx);
1074  }
1075  if(sx+block_w*2 > w){
1076  for(y=sy; y<sy+block_h*2; y++)
1077  memcpy(dst + w + y*stride, src + w + y*stride, sx+block_w*2 - w);
1078  }
1079  }
1080 
1081  // intra(black) = neighbors' contribution to the current block
1082  for(i=0; i < s->nb_planes; i++)
1083  color[i]= get_dc(s, mb_x, mb_y, i);
1084 
1085  // get previous score (cannot be cached due to OBMC)
1086  if(pass > 0 && (block->type&BLOCK_INTRA)){
1087  int color0[3]= {block->color[0], block->color[1], block->color[2]};
1088  check_block(s, mb_x, mb_y, color0, 1, obmc_edged, &best_rd);
1089  }else
1090  check_block_inter(s, mb_x, mb_y, block->mx, block->my, obmc_edged, &best_rd);
1091 
1092  ref_b= *block;
1093  ref_rd= best_rd;
1094  for(ref=0; ref < s->ref_frames; ref++){
1095  int16_t (*mvr)[2]= &s->ref_mvs[ref][index];
1096  if(s->ref_scores[ref][index] > s->ref_scores[ref_b.ref][index]*3/2) //FIXME tune threshold
1097  continue;
1098  block->ref= ref;
1099  best_rd= INT_MAX;
1100 
1101  check_block_inter(s, mb_x, mb_y, mvr[0][0], mvr[0][1], obmc_edged, &best_rd);
1102  check_block_inter(s, mb_x, mb_y, 0, 0, obmc_edged, &best_rd);
1103  if(tb)
1104  check_block_inter(s, mb_x, mb_y, mvr[-b_stride][0], mvr[-b_stride][1], obmc_edged, &best_rd);
1105  if(lb)
1106  check_block_inter(s, mb_x, mb_y, mvr[-1][0], mvr[-1][1], obmc_edged, &best_rd);
1107  if(rb)
1108  check_block_inter(s, mb_x, mb_y, mvr[1][0], mvr[1][1], obmc_edged, &best_rd);
1109  if(bb)
1110  check_block_inter(s, mb_x, mb_y, mvr[b_stride][0], mvr[b_stride][1], obmc_edged, &best_rd);
1111 
1112  /* fullpel ME */
1113  //FIXME avoid subpel interpolation / round to nearest integer
1114  do{
1115  dia_change=0;
1116  for(i=0; i<FFMAX(s->avctx->dia_size, 1); i++){
1117  for(j=0; j<i; j++){
1118  dia_change |= check_block_inter(s, mb_x, mb_y, block->mx+4*(i-j), block->my+(4*j), obmc_edged, &best_rd);
1119  dia_change |= check_block_inter(s, mb_x, mb_y, block->mx-4*(i-j), block->my-(4*j), obmc_edged, &best_rd);
1120  dia_change |= check_block_inter(s, mb_x, mb_y, block->mx+4*(i-j), block->my-(4*j), obmc_edged, &best_rd);
1121  dia_change |= check_block_inter(s, mb_x, mb_y, block->mx-4*(i-j), block->my+(4*j), obmc_edged, &best_rd);
1122  }
1123  }
1124  }while(dia_change);
1125  /* subpel ME */
1126  do{
1127  static const int square[8][2]= {{+1, 0},{-1, 0},{ 0,+1},{ 0,-1},{+1,+1},{-1,-1},{+1,-1},{-1,+1},};
1128  dia_change=0;
1129  for(i=0; i<8; i++)
1130  dia_change |= check_block_inter(s, mb_x, mb_y, block->mx+square[i][0], block->my+square[i][1], obmc_edged, &best_rd);
1131  }while(dia_change);
1132  //FIXME or try the standard 2 pass qpel or similar
1133 
1134  mvr[0][0]= block->mx;
1135  mvr[0][1]= block->my;
1136  if(ref_rd > best_rd){
1137  ref_rd= best_rd;
1138  ref_b= *block;
1139  }
1140  }
1141  best_rd= ref_rd;
1142  *block= ref_b;
1143  check_block(s, mb_x, mb_y, color, 1, obmc_edged, &best_rd);
1144  //FIXME RD style color selection
1145  if(!same_block(block, &backup)){
1146  if(tb ) tb ->type &= ~BLOCK_OPT;
1147  if(lb ) lb ->type &= ~BLOCK_OPT;
1148  if(rb ) rb ->type &= ~BLOCK_OPT;
1149  if(bb ) bb ->type &= ~BLOCK_OPT;
1150  if(tlb) tlb->type &= ~BLOCK_OPT;
1151  if(trb) trb->type &= ~BLOCK_OPT;
1152  if(blb) blb->type &= ~BLOCK_OPT;
1153  if(brb) brb->type &= ~BLOCK_OPT;
1154  change ++;
1155  }
1156  }
1157  }
1158  av_log(s->avctx, AV_LOG_ERROR, "pass:%d changed:%d\n", pass, change);
1159  if(!change)
1160  break;
1161  }
1162 
1163  if(s->block_max_depth == 1){
1164  int change= 0;
1165  for(mb_y= 0; mb_y<b_height; mb_y+=2){
1166  for(mb_x= 0; mb_x<b_width; mb_x+=2){
1167  int i;
1168  int best_rd, init_rd;
1169  const int index= mb_x + mb_y * b_stride;
1170  BlockNode *b[4];
1171 
1172  b[0]= &s->block[index];
1173  b[1]= b[0]+1;
1174  b[2]= b[0]+b_stride;
1175  b[3]= b[2]+1;
1176  if(same_block(b[0], b[1]) &&
1177  same_block(b[0], b[2]) &&
1178  same_block(b[0], b[3]))
1179  continue;
1180 
1181  if(!s->me_cache_generation)
1182  memset(s->me_cache, 0, sizeof(s->me_cache));
1183  s->me_cache_generation += 1<<22;
1184 
1185  init_rd= best_rd= get_4block_rd(s, mb_x, mb_y, 0);
1186 
1187  //FIXME more multiref search?
1188  check_4block_inter(s, mb_x, mb_y,
1189  (b[0]->mx + b[1]->mx + b[2]->mx + b[3]->mx + 2) >> 2,
1190  (b[0]->my + b[1]->my + b[2]->my + b[3]->my + 2) >> 2, 0, &best_rd);
1191 
1192  for(i=0; i<4; i++)
1193  if(!(b[i]->type&BLOCK_INTRA))
1194  check_4block_inter(s, mb_x, mb_y, b[i]->mx, b[i]->my, b[i]->ref, &best_rd);
1195 
1196  if(init_rd != best_rd)
1197  change++;
1198  }
1199  }
1200  av_log(s->avctx, AV_LOG_ERROR, "pass:4mv changed:%d\n", change*4);
1201  }
1202 }
1203 
1204 static void encode_blocks(SnowContext *s, int search){
1205  int x, y;
1206  int w= s->b_width;
1207  int h= s->b_height;
1208 
1209  if(s->avctx->me_method == ME_ITER && !s->keyframe && search)
1210  iterative_me(s);
1211 
1212  for(y=0; y<h; y++){
1213  if(s->c.bytestream_end - s->c.bytestream < w*MB_SIZE*MB_SIZE*3){ //FIXME nicer limit
1214  av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
1215  return;
1216  }
1217  for(x=0; x<w; x++){
1218  if(s->avctx->me_method == ME_ITER || !search)
1219  encode_q_branch2(s, 0, x, y);
1220  else
1221  encode_q_branch (s, 0, x, y);
1222  }
1223  }
1224 }
1225 
1226 static void quantize(SnowContext *s, SubBand *b, IDWTELEM *dst, DWTELEM *src, int stride, int bias){
1227  const int w= b->width;
1228  const int h= b->height;
1229  const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16);
1230  const int qmul= ff_qexp[qlog&(QROOT-1)]<<((qlog>>QSHIFT) + ENCODER_EXTRA_BITS);
1231  int x,y, thres1, thres2;
1232 
1233  if(s->qlog == LOSSLESS_QLOG){
1234  for(y=0; y<h; y++)
1235  for(x=0; x<w; x++)
1236  dst[x + y*stride]= src[x + y*stride];
1237  return;
1238  }
1239 
1240  bias= bias ? 0 : (3*qmul)>>3;
1241  thres1= ((qmul - bias)>>QEXPSHIFT) - 1;
1242  thres2= 2*thres1;
1243 
1244  if(!bias){
1245  for(y=0; y<h; y++){
1246  for(x=0; x<w; x++){
1247  int i= src[x + y*stride];
1248 
1249  if((unsigned)(i+thres1) > thres2){
1250  if(i>=0){
1251  i<<= QEXPSHIFT;
1252  i/= qmul; //FIXME optimize
1253  dst[x + y*stride]= i;
1254  }else{
1255  i= -i;
1256  i<<= QEXPSHIFT;
1257  i/= qmul; //FIXME optimize
1258  dst[x + y*stride]= -i;
1259  }
1260  }else
1261  dst[x + y*stride]= 0;
1262  }
1263  }
1264  }else{
1265  for(y=0; y<h; y++){
1266  for(x=0; x<w; x++){
1267  int i= src[x + y*stride];
1268 
1269  if((unsigned)(i+thres1) > thres2){
1270  if(i>=0){
1271  i<<= QEXPSHIFT;
1272  i= (i + bias) / qmul; //FIXME optimize
1273  dst[x + y*stride]= i;
1274  }else{
1275  i= -i;
1276  i<<= QEXPSHIFT;
1277  i= (i + bias) / qmul; //FIXME optimize
1278  dst[x + y*stride]= -i;
1279  }
1280  }else
1281  dst[x + y*stride]= 0;
1282  }
1283  }
1284  }
1285 }
1286 
1287 static void dequantize(SnowContext *s, SubBand *b, IDWTELEM *src, int stride){
1288  const int w= b->width;
1289  const int h= b->height;
1290  const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16);
1291  const int qmul= ff_qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT);
1292  const int qadd= (s->qbias*qmul)>>QBIAS_SHIFT;
1293  int x,y;
1294 
1295  if(s->qlog == LOSSLESS_QLOG) return;
1296 
1297  for(y=0; y<h; y++){
1298  for(x=0; x<w; x++){
1299  int i= src[x + y*stride];
1300  if(i<0){
1301  src[x + y*stride]= -((-i*qmul + qadd)>>(QEXPSHIFT)); //FIXME try different bias
1302  }else if(i>0){
1303  src[x + y*stride]= (( i*qmul + qadd)>>(QEXPSHIFT));
1304  }
1305  }
1306  }
1307 }
1308 
1309 static void decorrelate(SnowContext *s, SubBand *b, IDWTELEM *src, int stride, int inverse, int use_median){
1310  const int w= b->width;
1311  const int h= b->height;
1312  int x,y;
1313 
1314  for(y=h-1; y>=0; y--){
1315  for(x=w-1; x>=0; x--){
1316  int i= x + y*stride;
1317 
1318  if(x){
1319  if(use_median){
1320  if(y && x+1<w) src[i] -= mid_pred(src[i - 1], src[i - stride], src[i - stride + 1]);
1321  else src[i] -= src[i - 1];
1322  }else{
1323  if(y) src[i] -= mid_pred(src[i - 1], src[i - stride], src[i - 1] + src[i - stride] - src[i - 1 - stride]);
1324  else src[i] -= src[i - 1];
1325  }
1326  }else{
1327  if(y) src[i] -= src[i - stride];
1328  }
1329  }
1330  }
1331 }
1332 
1333 static void correlate(SnowContext *s, SubBand *b, IDWTELEM *src, int stride, int inverse, int use_median){
1334  const int w= b->width;
1335  const int h= b->height;
1336  int x,y;
1337 
1338  for(y=0; y<h; y++){
1339  for(x=0; x<w; x++){
1340  int i= x + y*stride;
1341 
1342  if(x){
1343  if(use_median){
1344  if(y && x+1<w) src[i] += mid_pred(src[i - 1], src[i - stride], src[i - stride + 1]);
1345  else src[i] += src[i - 1];
1346  }else{
1347  if(y) src[i] += mid_pred(src[i - 1], src[i - stride], src[i - 1] + src[i - stride] - src[i - 1 - stride]);
1348  else src[i] += src[i - 1];
1349  }
1350  }else{
1351  if(y) src[i] += src[i - stride];
1352  }
1353  }
1354  }
1355 }
1356 
1357 static void encode_qlogs(SnowContext *s){
1358  int plane_index, level, orientation;
1359 
1360  for(plane_index=0; plane_index<FFMIN(s->nb_planes, 2); plane_index++){
1361  for(level=0; level<s->spatial_decomposition_count; level++){
1362  for(orientation=level ? 1:0; orientation<4; orientation++){
1363  if(orientation==2) continue;
1364  put_symbol(&s->c, s->header_state, s->plane[plane_index].band[level][orientation].qlog, 1);
1365  }
1366  }
1367  }
1368 }
1369 
1370 static void encode_header(SnowContext *s){
1371  int plane_index, i;
1372  uint8_t kstate[32];
1373 
1374  memset(kstate, MID_STATE, sizeof(kstate));
1375 
1376  put_rac(&s->c, kstate, s->keyframe);
1377  if(s->keyframe || s->always_reset){
1380  s->last_qlog=
1381  s->last_qbias=
1382  s->last_mv_scale=
1383  s->last_block_max_depth= 0;
1384  for(plane_index=0; plane_index<2; plane_index++){
1385  Plane *p= &s->plane[plane_index];
1386  p->last_htaps=0;
1387  p->last_diag_mc=0;
1388  memset(p->last_hcoeff, 0, sizeof(p->last_hcoeff));
1389  }
1390  }
1391  if(s->keyframe){
1392  put_symbol(&s->c, s->header_state, s->version, 0);
1393  put_rac(&s->c, s->header_state, s->always_reset);
1397  put_symbol(&s->c, s->header_state, s->colorspace_type, 0);
1398  if (s->nb_planes > 2) {
1399  put_symbol(&s->c, s->header_state, s->chroma_h_shift, 0);
1400  put_symbol(&s->c, s->header_state, s->chroma_v_shift, 0);
1401  }
1403 // put_rac(&s->c, s->header_state, s->rate_scalability);
1404  put_symbol(&s->c, s->header_state, s->max_ref_frames-1, 0);
1405 
1406  encode_qlogs(s);
1407  }
1408 
1409  if(!s->keyframe){
1410  int update_mc=0;
1411  for(plane_index=0; plane_index<FFMIN(s->nb_planes, 2); plane_index++){
1412  Plane *p= &s->plane[plane_index];
1413  update_mc |= p->last_htaps != p->htaps;
1414  update_mc |= p->last_diag_mc != p->diag_mc;
1415  update_mc |= !!memcmp(p->last_hcoeff, p->hcoeff, sizeof(p->hcoeff));
1416  }
1417  put_rac(&s->c, s->header_state, update_mc);
1418  if(update_mc){
1419  for(plane_index=0; plane_index<FFMIN(s->nb_planes, 2); plane_index++){
1420  Plane *p= &s->plane[plane_index];
1421  put_rac(&s->c, s->header_state, p->diag_mc);
1422  put_symbol(&s->c, s->header_state, p->htaps/2-1, 0);
1423  for(i= p->htaps/2; i; i--)
1424  put_symbol(&s->c, s->header_state, FFABS(p->hcoeff[i]), 0);
1425  }
1426  }
1428  put_rac(&s->c, s->header_state, 1);
1430  encode_qlogs(s);
1431  }else
1432  put_rac(&s->c, s->header_state, 0);
1433  }
1434 
1436  put_symbol(&s->c, s->header_state, s->qlog - s->last_qlog , 1);
1437  put_symbol(&s->c, s->header_state, s->mv_scale - s->last_mv_scale, 1);
1438  put_symbol(&s->c, s->header_state, s->qbias - s->last_qbias , 1);
1440 
1441 }
1442 
1444  int plane_index;
1445 
1446  if(!s->keyframe){
1447  for(plane_index=0; plane_index<2; plane_index++){
1448  Plane *p= &s->plane[plane_index];
1449  p->last_diag_mc= p->diag_mc;
1450  p->last_htaps = p->htaps;
1451  memcpy(p->last_hcoeff, p->hcoeff, sizeof(p->hcoeff));
1452  }
1453  }
1454 
1456  s->last_qlog = s->qlog;
1457  s->last_qbias = s->qbias;
1458  s->last_mv_scale = s->mv_scale;
1461 }
1462 
1463 static int qscale2qlog(int qscale){
1464  return rint(QROOT*log2(qscale / (float)FF_QP2LAMBDA))
1465  + 61*QROOT/8; ///< 64 > 60
1466 }
1467 
1469 {
1470  /* Estimate the frame's complexity as a sum of weighted dwt coefficients.
1471  * FIXME we know exact mv bits at this point,
1472  * but ratecontrol isn't set up to include them. */
1473  uint32_t coef_sum= 0;
1474  int level, orientation, delta_qlog;
1475 
1476  for(level=0; level<s->spatial_decomposition_count; level++){
1477  for(orientation=level ? 1 : 0; orientation<4; orientation++){
1478  SubBand *b= &s->plane[0].band[level][orientation];
1479  IDWTELEM *buf= b->ibuf;
1480  const int w= b->width;
1481  const int h= b->height;
1482  const int stride= b->stride;
1483  const int qlog= av_clip(2*QROOT + b->qlog, 0, QROOT*16);
1484  const int qmul= ff_qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT);
1485  const int qdiv= (1<<16)/qmul;
1486  int x, y;
1487  //FIXME this is ugly
1488  for(y=0; y<h; y++)
1489  for(x=0; x<w; x++)
1490  buf[x+y*stride]= b->buf[x+y*stride];
1491  if(orientation==0)
1492  decorrelate(s, b, buf, stride, 1, 0);
1493  for(y=0; y<h; y++)
1494  for(x=0; x<w; x++)
1495  coef_sum+= abs(buf[x+y*stride]) * qdiv >> 16;
1496  }
1497  }
1498 
1499  /* ugly, ratecontrol just takes a sqrt again */
1500  av_assert0(coef_sum < INT_MAX);
1501  coef_sum = (uint64_t)coef_sum * coef_sum >> 16;
1502 
1503  if(pict->pict_type == AV_PICTURE_TYPE_I){
1504  s->m.current_picture.mb_var_sum= coef_sum;
1506  }else{
1507  s->m.current_picture.mc_mb_var_sum= coef_sum;
1509  }
1510 
1511  pict->quality= ff_rate_estimate_qscale(&s->m, 1);
1512  if (pict->quality < 0)
1513  return INT_MIN;
1514  s->lambda= pict->quality * 3/2;
1515  delta_qlog= qscale2qlog(pict->quality) - s->qlog;
1516  s->qlog+= delta_qlog;
1517  return delta_qlog;
1518 }
1519 
1521  int width = p->width;
1522  int height= p->height;
1523  int level, orientation, x, y;
1524 
1525  for(level=0; level<s->spatial_decomposition_count; level++){
1526  for(orientation=level ? 1 : 0; orientation<4; orientation++){
1527  SubBand *b= &p->band[level][orientation];
1528  IDWTELEM *ibuf= b->ibuf;
1529  int64_t error=0;
1530 
1531  memset(s->spatial_idwt_buffer, 0, sizeof(*s->spatial_idwt_buffer)*width*height);
1532  ibuf[b->width/2 + b->height/2*b->stride]= 256*16;
1534  for(y=0; y<height; y++){
1535  for(x=0; x<width; x++){
1536  int64_t d= s->spatial_idwt_buffer[x + y*width]*16;
1537  error += d*d;
1538  }
1539  }
1540 
1541  b->qlog= (int)(log(352256.0/sqrt(error)) / log(pow(2.0, 1.0/QROOT))+0.5);
1542  }
1543  }
1544 }
1545 
1547  const AVFrame *pict, int *got_packet)
1548 {
1549  SnowContext *s = avctx->priv_data;
1550  RangeCoder * const c= &s->c;
1551  AVFrame *pic = pict;
1552  const int width= s->avctx->width;
1553  const int height= s->avctx->height;
1554  int level, orientation, plane_index, i, y, ret;
1555  uint8_t rc_header_bak[sizeof(s->header_state)];
1556  uint8_t rc_block_bak[sizeof(s->block_state)];
1557 
1558  if ((ret = ff_alloc_packet2(avctx, pkt, s->b_width*s->b_height*MB_SIZE*MB_SIZE*3 + FF_MIN_BUFFER_SIZE)) < 0)
1559  return ret;
1560 
1561  ff_init_range_encoder(c, pkt->data, pkt->size);
1562  ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
1563 
1564  for(i=0; i < s->nb_planes; i++){
1565  int hshift= i ? s->chroma_h_shift : 0;
1566  int vshift= i ? s->chroma_v_shift : 0;
1567  for(y=0; y<(height>>vshift); y++)
1568  memcpy(&s->input_picture->data[i][y * s->input_picture->linesize[i]],
1569  &pict->data[i][y * pict->linesize[i]],
1570  width>>hshift);
1572  width >> hshift, height >> vshift,
1573  EDGE_WIDTH >> hshift, EDGE_WIDTH >> vshift,
1574  EDGE_TOP | EDGE_BOTTOM);
1575 
1576  }
1577  emms_c();
1578  s->new_picture = pict;
1579 
1580  s->m.picture_number= avctx->frame_number;
1581  if(avctx->flags&CODEC_FLAG_PASS2){
1583  s->keyframe = pic->pict_type == AV_PICTURE_TYPE_I;
1584  if(!(avctx->flags&CODEC_FLAG_QSCALE)) {
1585  pic->quality = ff_rate_estimate_qscale(&s->m, 0);
1586  if (pic->quality < 0)
1587  return -1;
1588  }
1589  }else{
1590  s->keyframe= avctx->gop_size==0 || avctx->frame_number % avctx->gop_size == 0;
1592  }
1593 
1594  if(s->pass1_rc && avctx->frame_number == 0)
1595  pic->quality = 2*FF_QP2LAMBDA;
1596  if (pic->quality) {
1597  s->qlog = qscale2qlog(pic->quality);
1598  s->lambda = pic->quality * 3/2;
1599  }
1600  if (s->qlog < 0 || (!pic->quality && (avctx->flags & CODEC_FLAG_QSCALE))) {
1601  s->qlog= LOSSLESS_QLOG;
1602  s->lambda = 0;
1603  }//else keep previous frame's qlog until after motion estimation
1604 
1605  if (s->current_picture->data[0] && !(s->avctx->flags&CODEC_FLAG_EMU_EDGE)) {
1606  int w = s->avctx->width;
1607  int h = s->avctx->height;
1608 
1610  s->current_picture->linesize[0], w , h ,
1612  if (s->current_picture->data[2]) {
1619  }
1620  }
1621 
1623  avctx->coded_frame= s->current_picture;
1624 
1627  s->m.current_picture.f->pts = pict->pts;
1628  if(pic->pict_type == AV_PICTURE_TYPE_P){
1629  int block_width = (width +15)>>4;
1630  int block_height= (height+15)>>4;
1631  int stride= s->current_picture->linesize[0];
1632 
1634  av_assert0(s->last_picture[0]->data[0]);
1635 
1636  s->m.avctx= s->avctx;
1637  s->m. last_picture.f = s->last_picture[0];
1638  s->m. new_picture.f = s->input_picture;
1639  s->m. last_picture_ptr= &s->m. last_picture;
1640  s->m.linesize = stride;
1641  s->m.uvlinesize= s->current_picture->linesize[1];
1642  s->m.width = width;
1643  s->m.height= height;
1644  s->m.mb_width = block_width;
1645  s->m.mb_height= block_height;
1646  s->m.mb_stride= s->m.mb_width+1;
1647  s->m.b8_stride= 2*s->m.mb_width+1;
1648  s->m.f_code=1;
1649  s->m.pict_type = pic->pict_type;
1650  s->m.me_method= s->avctx->me_method;
1651  s->m.me.scene_change_score=0;
1652  s->m.flags= s->avctx->flags;
1653  s->m.quarter_sample= (s->avctx->flags & CODEC_FLAG_QPEL)!=0;
1654  s->m.out_format= FMT_H263;
1655  s->m.unrestricted_mv= 1;
1656 
1657  s->m.lambda = s->lambda;
1658  s->m.qscale= (s->m.lambda*139 + FF_LAMBDA_SCALE*64) >> (FF_LAMBDA_SHIFT + 7);
1659  s->lambda2= s->m.lambda2= (s->m.lambda*s->m.lambda + FF_LAMBDA_SCALE/2) >> FF_LAMBDA_SHIFT;
1660 
1661  s->m.mecc= s->mecc; //move
1662  s->m.qdsp= s->qdsp; //move
1663  s->m.hdsp = s->hdsp;
1664  ff_init_me(&s->m);
1665  s->hdsp = s->m.hdsp;
1666  s->mecc= s->m.mecc;
1667  }
1668 
1669  if(s->pass1_rc){
1670  memcpy(rc_header_bak, s->header_state, sizeof(s->header_state));
1671  memcpy(rc_block_bak, s->block_state, sizeof(s->block_state));
1672  }
1673 
1674 redo_frame:
1675 
1677 
1678  while( !(width >>(s->chroma_h_shift + s->spatial_decomposition_count))
1679  || !(height>>(s->chroma_v_shift + s->spatial_decomposition_count)))
1681 
1682  if (s->spatial_decomposition_count <= 0) {
1683  av_log(avctx, AV_LOG_ERROR, "Resolution too low\n");
1684  return AVERROR(EINVAL);
1685  }
1686 
1687  s->m.pict_type = pic->pict_type;
1688  s->qbias = pic->pict_type == AV_PICTURE_TYPE_P ? 2 : 0;
1689 
1691 
1693  for(plane_index=0; plane_index < s->nb_planes; plane_index++){
1694  calculate_visual_weight(s, &s->plane[plane_index]);
1695  }
1696  }
1697 
1698  encode_header(s);
1699  s->m.misc_bits = 8*(s->c.bytestream - s->c.bytestream_start);
1700  encode_blocks(s, 1);
1701  s->m.mv_bits = 8*(s->c.bytestream - s->c.bytestream_start) - s->m.misc_bits;
1702 
1703  for(plane_index=0; plane_index < s->nb_planes; plane_index++){
1704  Plane *p= &s->plane[plane_index];
1705  int w= p->width;
1706  int h= p->height;
1707  int x, y;
1708 // int bits= put_bits_count(&s->c.pb);
1709 
1710  if (!s->memc_only) {
1711  //FIXME optimize
1712  if(pict->data[plane_index]) //FIXME gray hack
1713  for(y=0; y<h; y++){
1714  for(x=0; x<w; x++){
1715  s->spatial_idwt_buffer[y*w + x]= pict->data[plane_index][y*pict->linesize[plane_index] + x]<<FRAC_BITS;
1716  }
1717  }
1718  predict_plane(s, s->spatial_idwt_buffer, plane_index, 0);
1719 
1720  if( plane_index==0
1721  && pic->pict_type == AV_PICTURE_TYPE_P
1722  && !(avctx->flags&CODEC_FLAG_PASS2)
1724  ff_init_range_encoder(c, pkt->data, pkt->size);
1725  ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
1727  s->keyframe=1;
1728  s->current_picture->key_frame=1;
1729  goto redo_frame;
1730  }
1731 
1732  if(s->qlog == LOSSLESS_QLOG){
1733  for(y=0; y<h; y++){
1734  for(x=0; x<w; x++){
1735  s->spatial_dwt_buffer[y*w + x]= (s->spatial_idwt_buffer[y*w + x] + (1<<(FRAC_BITS-1))-1)>>FRAC_BITS;
1736  }
1737  }
1738  }else{
1739  for(y=0; y<h; y++){
1740  for(x=0; x<w; x++){
1742  }
1743  }
1744  }
1745 
1747 
1748  if(s->pass1_rc && plane_index==0){
1749  int delta_qlog = ratecontrol_1pass(s, pic);
1750  if (delta_qlog <= INT_MIN)
1751  return -1;
1752  if(delta_qlog){
1753  //reordering qlog in the bitstream would eliminate this reset
1754  ff_init_range_encoder(c, pkt->data, pkt->size);
1755  memcpy(s->header_state, rc_header_bak, sizeof(s->header_state));
1756  memcpy(s->block_state, rc_block_bak, sizeof(s->block_state));
1757  encode_header(s);
1758  encode_blocks(s, 0);
1759  }
1760  }
1761 
1762  for(level=0; level<s->spatial_decomposition_count; level++){
1763  for(orientation=level ? 1 : 0; orientation<4; orientation++){
1764  SubBand *b= &p->band[level][orientation];
1765 
1766  quantize(s, b, b->ibuf, b->buf, b->stride, s->qbias);
1767  if(orientation==0)
1768  decorrelate(s, b, b->ibuf, b->stride, pic->pict_type == AV_PICTURE_TYPE_P, 0);
1769  if (!s->no_bitstream)
1770  encode_subband(s, b, b->ibuf, b->parent ? b->parent->ibuf : NULL, b->stride, orientation);
1771  av_assert0(b->parent==NULL || b->parent->stride == b->stride*2);
1772  if(orientation==0)
1773  correlate(s, b, b->ibuf, b->stride, 1, 0);
1774  }
1775  }
1776 
1777  for(level=0; level<s->spatial_decomposition_count; level++){
1778  for(orientation=level ? 1 : 0; orientation<4; orientation++){
1779  SubBand *b= &p->band[level][orientation];
1780 
1781  dequantize(s, b, b->ibuf, b->stride);
1782  }
1783  }
1784 
1786  if(s->qlog == LOSSLESS_QLOG){
1787  for(y=0; y<h; y++){
1788  for(x=0; x<w; x++){
1789  s->spatial_idwt_buffer[y*w + x]<<=FRAC_BITS;
1790  }
1791  }
1792  }
1793  predict_plane(s, s->spatial_idwt_buffer, plane_index, 1);
1794  }else{
1795  //ME/MC only
1796  if(pic->pict_type == AV_PICTURE_TYPE_I){
1797  for(y=0; y<h; y++){
1798  for(x=0; x<w; x++){
1799  s->current_picture->data[plane_index][y*s->current_picture->linesize[plane_index] + x]=
1800  pict->data[plane_index][y*pict->linesize[plane_index] + x];
1801  }
1802  }
1803  }else{
1804  memset(s->spatial_idwt_buffer, 0, sizeof(IDWTELEM)*w*h);
1805  predict_plane(s, s->spatial_idwt_buffer, plane_index, 1);
1806  }
1807  }
1808  if(s->avctx->flags&CODEC_FLAG_PSNR){
1809  int64_t error= 0;
1810 
1811  if(pict->data[plane_index]) //FIXME gray hack
1812  for(y=0; y<h; y++){
1813  for(x=0; x<w; x++){
1814  int d= s->current_picture->data[plane_index][y*s->current_picture->linesize[plane_index] + x] - pict->data[plane_index][y*pict->linesize[plane_index] + x];
1815  error += d*d;
1816  }
1817  }
1818  s->avctx->error[plane_index] += error;
1819  s->current_picture->error[plane_index] = error;
1820  }
1821 
1822  }
1823 
1825 
1826  ff_snow_release_buffer(avctx);
1827 
1829  s->current_picture->pict_type = pict->pict_type;
1830  s->current_picture->quality = pict->quality;
1831  s->m.frame_bits = 8*(s->c.bytestream - s->c.bytestream_start);
1832  s->m.p_tex_bits = s->m.frame_bits - s->m.misc_bits - s->m.mv_bits;
1835  s->m.current_picture.f->quality = pic->quality;
1836  s->m.total_bits += 8*(s->c.bytestream - s->c.bytestream_start);
1837  if(s->pass1_rc)
1838  if (ff_rate_estimate_qscale(&s->m, 0) < 0)
1839  return -1;
1840  if(avctx->flags&CODEC_FLAG_PASS1)
1841  ff_write_pass1_stats(&s->m);
1842  s->m.last_pict_type = s->m.pict_type;
1843  avctx->frame_bits = s->m.frame_bits;
1844  avctx->mv_bits = s->m.mv_bits;
1845  avctx->misc_bits = s->m.misc_bits;
1846  avctx->p_tex_bits = s->m.p_tex_bits;
1847 
1848  emms_c();
1849 
1850  pkt->size = ff_rac_terminate(c);
1851  if (avctx->coded_frame->key_frame)
1852  pkt->flags |= AV_PKT_FLAG_KEY;
1853  *got_packet = 1;
1854 
1855  return 0;
1856 }
1857 
1859 {
1860  SnowContext *s = avctx->priv_data;
1861 
1862  ff_snow_common_end(s);
1865  av_free(avctx->stats_out);
1866 
1867  return 0;
1868 }
1869 
1870 #define OFFSET(x) offsetof(SnowContext, x)
1871 #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
1872 static const AVOption options[] = {
1873  { "memc_only", "Only do ME/MC (I frames -> ref, P frame -> ME+MC).", OFFSET(memc_only), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, VE },
1874  { "no_bitstream", "Skip final bitstream writeout.", OFFSET(no_bitstream), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, VE },
1875  { NULL },
1876 };
1877 
1878 static const AVClass snowenc_class = {
1879  .class_name = "snow encoder",
1880  .item_name = av_default_item_name,
1881  .option = options,
1882  .version = LIBAVUTIL_VERSION_INT,
1883 };
1884 
1886  .name = "snow",
1887  .long_name = NULL_IF_CONFIG_SMALL("Snow"),
1888  .type = AVMEDIA_TYPE_VIDEO,
1889  .id = AV_CODEC_ID_SNOW,
1890  .priv_data_size = sizeof(SnowContext),
1891  .init = encode_init,
1892  .encode2 = encode_frame,
1893  .close = encode_end,
1894  .pix_fmts = (const enum AVPixelFormat[]){
1898  },
1899  .priv_class = &snowenc_class,
1900 };
1901 
1902 
1903 #ifdef TEST
1904 #undef malloc
1905 #undef free
1906 #undef printf
1907 
1908 #include "libavutil/lfg.h"
1909 #include "libavutil/mathematics.h"
1910 
1911 int main(void){
1912 #define width 256
1913 #define height 256
1914  int buffer[2][width*height];
1915  SnowContext s;
1916  int i;
1917  AVLFG prng;
1920 
1921  s.temp_dwt_buffer = av_mallocz(width * sizeof(DWTELEM));
1922  s.temp_idwt_buffer = av_mallocz(width * sizeof(IDWTELEM));
1923 
1924  av_lfg_init(&prng, 1);
1925 
1926  printf("testing 5/3 DWT\n");
1927  for(i=0; i<width*height; i++)
1928  buffer[0][i] = buffer[1][i] = av_lfg_get(&prng) % 54321 - 12345;
1929 
1932 
1933  for(i=0; i<width*height; i++)
1934  if(buffer[0][i]!= buffer[1][i]) printf("fsck: %6d %12d %7d\n",i, buffer[0][i], buffer[1][i]);
1935 
1936  printf("testing 9/7 DWT\n");
1938  for(i=0; i<width*height; i++)
1939  buffer[0][i] = buffer[1][i] = av_lfg_get(&prng) % 54321 - 12345;
1940 
1943 
1944  for(i=0; i<width*height; i++)
1945  if(FFABS(buffer[0][i] - buffer[1][i])>20) printf("fsck: %6d %12d %7d\n",i, buffer[0][i], buffer[1][i]);
1946 
1947  {
1948  int level, orientation, x, y;
1949  int64_t errors[8][4];
1950  int64_t g=0;
1951 
1952  memset(errors, 0, sizeof(errors));
1955  for(level=0; level<s.spatial_decomposition_count; level++){
1956  for(orientation=level ? 1 : 0; orientation<4; orientation++){
1957  int w= width >> (s.spatial_decomposition_count-level);
1958  int h= height >> (s.spatial_decomposition_count-level);
1959  int stride= width << (s.spatial_decomposition_count-level);
1960  DWTELEM *buf= buffer[0];
1961  int64_t error=0;
1962 
1963  if(orientation&1) buf+=w;
1964  if(orientation>1) buf+=stride>>1;
1965 
1966  memset(buffer[0], 0, sizeof(int)*width*height);
1967  buf[w/2 + h/2*stride]= 256*256;
1969  for(y=0; y<height; y++){
1970  for(x=0; x<width; x++){
1971  int64_t d= buffer[0][x + y*width];
1972  error += d*d;
1973  if(FFABS(width/2-x)<9 && FFABS(height/2-y)<9 && level==2) printf("%8"PRId64" ", d);
1974  }
1975  if(FFABS(height/2-y)<9 && level==2) printf("\n");
1976  }
1977  error= (int)(sqrt(error)+0.5);
1978  errors[level][orientation]= error;
1979  if(g) g=av_gcd(g, error);
1980  else g= error;
1981  }
1982  }
1983  printf("static int const visual_weight[][4]={\n");
1984  for(level=0; level<s.spatial_decomposition_count; level++){
1985  printf(" {");
1986  for(orientation=0; orientation<4; orientation++){
1987  printf("%8"PRId64",", errors[level][orientation]/g);
1988  }
1989  printf("},\n");
1990  }
1991  printf("};\n");
1992  {
1993  int level=2;
1994  int w= width >> (s.spatial_decomposition_count-level);
1995  //int h= height >> (s.spatial_decomposition_count-level);
1996  int stride= width << (s.spatial_decomposition_count-level);
1997  DWTELEM *buf= buffer[0];
1998  int64_t error=0;
1999 
2000  buf+=w;
2001  buf+=stride>>1;
2002 
2003  memset(buffer[0], 0, sizeof(int)*width*height);
2004  for(y=0; y<height; y++){
2005  for(x=0; x<width; x++){
2006  int tab[4]={0,2,3,1};
2007  buffer[0][x+width*y]= 256*256*tab[(x&1) + 2*(y&1)];
2008  }
2009  }
2011  for(y=0; y<height; y++){
2012  for(x=0; x<width; x++){
2013  int64_t d= buffer[0][x + y*width];
2014  error += d*d;
2015  if(FFABS(width/2-x)<9 && FFABS(height/2-y)<9) printf("%8"PRId64" ", d);
2016  }
2017  if(FFABS(height/2-y)<9) printf("\n");
2018  }
2019  }
2020 
2021  }
2022  return 0;
2023 }
2024 #endif /* TEST */