FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
exr.c
Go to the documentation of this file.
1 /*
2  * OpenEXR (.exr) image decoder
3  * Copyright (c) 2009 Jimmy Christensen
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * OpenEXR decoder
25  * @author Jimmy Christensen
26  *
27  * For more information on the OpenEXR format, visit:
28  * http://openexr.com/
29  *
30  * exr_flt2uint() and exr_halflt2uint() is credited to Reimar Döffinger.
31  * exr_half2float() is credited to Aaftab Munshi; Dan Ginsburg, Dave Shreiner.
32  *
33  */
34 
35 #include <zlib.h>
36 #include <float.h>
37 
38 #include "libavutil/imgutils.h"
39 #include "libavutil/opt.h"
40 #include "libavutil/intfloat.h"
41 
42 #include "avcodec.h"
43 #include "bytestream.h"
44 #include "get_bits.h"
45 #include "internal.h"
46 #include "mathops.h"
47 #include "thread.h"
48 
49 enum ExrCompr {
59 };
60 
66 };
67 
68 typedef struct EXRChannel {
69  int xsub, ysub;
71 } EXRChannel;
72 
73 typedef struct EXRThreadData {
76 
78  int tmp_size;
79 
81  uint16_t *lut;
83 
84 typedef struct EXRContext {
85  AVClass *class;
88 
91  int channel_offsets[4]; // 0 = red, 1 = green, 2 = blue and 3 = alpha
93 
94  int w, h;
95  uint32_t xmax, xmin;
96  uint32_t ymax, ymin;
97  uint32_t xdelta, ydelta;
98  int ysize;
99 
100  uint64_t scan_line_size;
102 
104  const uint8_t *buf;
105  int buf_size;
106 
109 
111 
112  const char *layer;
113 
114  float gamma;
115 
116  uint16_t gamma_table[65536];
117 
118 } EXRContext;
119 
120 /* -15 stored using a single precision bias of 127 */
121 #define HALF_FLOAT_MIN_BIASED_EXP_AS_SINGLE_FP_EXP 0x38000000
122 /* max exponent value in single precision that will be converted
123  * to Inf or Nan when stored as a half-float */
124 #define HALF_FLOAT_MAX_BIASED_EXP_AS_SINGLE_FP_EXP 0x47800000
125 
126 /* 255 is the max exponent biased value */
127 #define FLOAT_MAX_BIASED_EXP (0xFF << 23)
128 
129 #define HALF_FLOAT_MAX_BIASED_EXP (0x1F << 10)
130 
131 /*
132  * Convert a half float as a uint16_t into a full float.
133  *
134  * @param hf half float as uint16_t
135  *
136  * @return float value
137  */
138 static union av_intfloat32 exr_half2float(uint16_t hf)
139 {
140  unsigned int sign = (unsigned int)(hf >> 15);
141  unsigned int mantissa = (unsigned int)(hf & ((1 << 10) - 1));
142  unsigned int exp = (unsigned int)(hf & HALF_FLOAT_MAX_BIASED_EXP);
143  union av_intfloat32 f;
144 
145  if (exp == HALF_FLOAT_MAX_BIASED_EXP) {
146  // we have a half-float NaN or Inf
147  // half-float NaNs will be converted to a single precision NaN
148  // half-float Infs will be converted to a single precision Inf
149  exp = FLOAT_MAX_BIASED_EXP;
150  if (mantissa)
151  mantissa = (1 << 23) - 1; // set all bits to indicate a NaN
152  } else if (exp == 0x0) {
153  // convert half-float zero/denorm to single precision value
154  if (mantissa) {
155  mantissa <<= 1;
157  // check for leading 1 in denorm mantissa
158  while ((mantissa & (1 << 10))) {
159  // for every leading 0, decrement single precision exponent by 1
160  // and shift half-float mantissa value to the left
161  mantissa <<= 1;
162  exp -= (1 << 23);
163  }
164  // clamp the mantissa to 10-bits
165  mantissa &= ((1 << 10) - 1);
166  // shift left to generate single-precision mantissa of 23-bits
167  mantissa <<= 13;
168  }
169  } else {
170  // shift left to generate single-precision mantissa of 23-bits
171  mantissa <<= 13;
172  // generate single precision biased exponent value
173  exp = (exp << 13) + HALF_FLOAT_MIN_BIASED_EXP_AS_SINGLE_FP_EXP;
174  }
175 
176  f.i = (sign << 31) | exp | mantissa;
177 
178  return f;
179 }
180 
181 
182 /**
183  * Convert from 32-bit float as uint32_t to uint16_t.
184  *
185  * @param v 32-bit float
186  *
187  * @return normalized 16-bit unsigned int
188  */
189 static inline uint16_t exr_flt2uint(uint32_t v)
190 {
191  unsigned int exp = v >> 23;
192  // "HACK": negative values result in exp< 0, so clipping them to 0
193  // is also handled by this condition, avoids explicit check for sign bit.
194  if (exp <= 127 + 7 - 24) // we would shift out all bits anyway
195  return 0;
196  if (exp >= 127)
197  return 0xffff;
198  v &= 0x007fffff;
199  return (v + (1 << 23)) >> (127 + 7 - exp);
200 }
201 
202 /**
203  * Convert from 16-bit float as uint16_t to uint16_t.
204  *
205  * @param v 16-bit float
206  *
207  * @return normalized 16-bit unsigned int
208  */
209 static inline uint16_t exr_halflt2uint(uint16_t v)
210 {
211  unsigned exp = 14 - (v >> 10);
212  if (exp >= 14) {
213  if (exp == 14)
214  return (v >> 9) & 1;
215  else
216  return (v & 0x8000) ? 0 : 0xffff;
217  }
218  v <<= 6;
219  return (v + (1 << 16)) >> (exp + 1);
220 }
221 
222 static void predictor(uint8_t *src, int size)
223 {
224  uint8_t *t = src + 1;
225  uint8_t *stop = src + size;
226 
227  while (t < stop) {
228  int d = (int) t[-1] + (int) t[0] - 128;
229  t[0] = d;
230  ++t;
231  }
232 }
233 
234 static void reorder_pixels(uint8_t *src, uint8_t *dst, int size)
235 {
236  const int8_t *t1 = src;
237  const int8_t *t2 = src + (size + 1) / 2;
238  int8_t *s = dst;
239  int8_t *stop = s + size;
240 
241  while (1) {
242  if (s < stop)
243  *(s++) = *(t1++);
244  else
245  break;
246 
247  if (s < stop)
248  *(s++) = *(t2++);
249  else
250  break;
251  }
252 }
253 
254 static int zip_uncompress(const uint8_t *src, int compressed_size,
255  int uncompressed_size, EXRThreadData *td)
256 {
257  unsigned long dest_len = uncompressed_size;
258 
259  if (uncompress(td->tmp, &dest_len, src, compressed_size) != Z_OK ||
260  dest_len != uncompressed_size)
261  return AVERROR_INVALIDDATA;
262 
263  predictor(td->tmp, uncompressed_size);
264  reorder_pixels(td->tmp, td->uncompressed_data, uncompressed_size);
265 
266  return 0;
267 }
268 
269 static int rle_uncompress(const uint8_t *src, int compressed_size,
270  int uncompressed_size, EXRThreadData *td)
271 {
272  uint8_t *d = td->tmp;
273  const int8_t *s = src;
274  int ssize = compressed_size;
275  int dsize = uncompressed_size;
276  uint8_t *dend = d + dsize;
277  int count;
278 
279  while (ssize > 0) {
280  count = *s++;
281 
282  if (count < 0) {
283  count = -count;
284 
285  if ((dsize -= count) < 0 ||
286  (ssize -= count + 1) < 0)
287  return AVERROR_INVALIDDATA;
288 
289  while (count--)
290  *d++ = *s++;
291  } else {
292  count++;
293 
294  if ((dsize -= count) < 0 ||
295  (ssize -= 2) < 0)
296  return AVERROR_INVALIDDATA;
297 
298  while (count--)
299  *d++ = *s;
300 
301  s++;
302  }
303  }
304 
305  if (dend != d)
306  return AVERROR_INVALIDDATA;
307 
308  predictor(td->tmp, uncompressed_size);
309  reorder_pixels(td->tmp, td->uncompressed_data, uncompressed_size);
310 
311  return 0;
312 }
313 
314 #define USHORT_RANGE (1 << 16)
315 #define BITMAP_SIZE (1 << 13)
316 
317 static uint16_t reverse_lut(const uint8_t *bitmap, uint16_t *lut)
318 {
319  int i, k = 0;
320 
321  for (i = 0; i < USHORT_RANGE; i++)
322  if ((i == 0) || (bitmap[i >> 3] & (1 << (i & 7))))
323  lut[k++] = i;
324 
325  i = k - 1;
326 
327  memset(lut + k, 0, (USHORT_RANGE - k) * 2);
328 
329  return i;
330 }
331 
332 static void apply_lut(const uint16_t *lut, uint16_t *dst, int dsize)
333 {
334  int i;
335 
336  for (i = 0; i < dsize; ++i)
337  dst[i] = lut[dst[i]];
338 }
339 
340 #define HUF_ENCBITS 16 // literal (value) bit length
341 #define HUF_DECBITS 14 // decoding bit size (>= 8)
342 
343 #define HUF_ENCSIZE ((1 << HUF_ENCBITS) + 1) // encoding table size
344 #define HUF_DECSIZE (1 << HUF_DECBITS) // decoding table size
345 #define HUF_DECMASK (HUF_DECSIZE - 1)
346 
347 typedef struct HufDec {
348  int len;
349  int lit;
350  int *p;
351 } HufDec;
352 
353 static void huf_canonical_code_table(uint64_t *hcode)
354 {
355  uint64_t c, n[59] = { 0 };
356  int i;
357 
358  for (i = 0; i < HUF_ENCSIZE; ++i)
359  n[hcode[i]] += 1;
360 
361  c = 0;
362  for (i = 58; i > 0; --i) {
363  uint64_t nc = ((c + n[i]) >> 1);
364  n[i] = c;
365  c = nc;
366  }
367 
368  for (i = 0; i < HUF_ENCSIZE; ++i) {
369  int l = hcode[i];
370 
371  if (l > 0)
372  hcode[i] = l | (n[l]++ << 6);
373  }
374 }
375 
376 #define SHORT_ZEROCODE_RUN 59
377 #define LONG_ZEROCODE_RUN 63
378 #define SHORTEST_LONG_RUN (2 + LONG_ZEROCODE_RUN - SHORT_ZEROCODE_RUN)
379 #define LONGEST_LONG_RUN (255 + SHORTEST_LONG_RUN)
380 
382  int32_t im, int32_t iM, uint64_t *hcode)
383 {
384  GetBitContext gbit;
385  int ret = init_get_bits8(&gbit, gb->buffer, bytestream2_get_bytes_left(gb));
386  if (ret < 0)
387  return ret;
388 
389  for (; im <= iM; im++) {
390  uint64_t l = hcode[im] = get_bits(&gbit, 6);
391 
392  if (l == LONG_ZEROCODE_RUN) {
393  int zerun = get_bits(&gbit, 8) + SHORTEST_LONG_RUN;
394 
395  if (im + zerun > iM + 1)
396  return AVERROR_INVALIDDATA;
397 
398  while (zerun--)
399  hcode[im++] = 0;
400 
401  im--;
402  } else if (l >= SHORT_ZEROCODE_RUN) {
403  int zerun = l - SHORT_ZEROCODE_RUN + 2;
404 
405  if (im + zerun > iM + 1)
406  return AVERROR_INVALIDDATA;
407 
408  while (zerun--)
409  hcode[im++] = 0;
410 
411  im--;
412  }
413  }
414 
415  bytestream2_skip(gb, (get_bits_count(&gbit) + 7) / 8);
417 
418  return 0;
419 }
420 
421 static int huf_build_dec_table(const uint64_t *hcode, int im,
422  int iM, HufDec *hdecod)
423 {
424  for (; im <= iM; im++) {
425  uint64_t c = hcode[im] >> 6;
426  int i, l = hcode[im] & 63;
427 
428  if (c >> l)
429  return AVERROR_INVALIDDATA;
430 
431  if (l > HUF_DECBITS) {
432  HufDec *pl = hdecod + (c >> (l - HUF_DECBITS));
433  if (pl->len)
434  return AVERROR_INVALIDDATA;
435 
436  pl->lit++;
437 
438  pl->p = av_realloc(pl->p, pl->lit * sizeof(int));
439  if (!pl->p)
440  return AVERROR(ENOMEM);
441 
442  pl->p[pl->lit - 1] = im;
443  } else if (l) {
444  HufDec *pl = hdecod + (c << (HUF_DECBITS - l));
445 
446  for (i = 1 << (HUF_DECBITS - l); i > 0; i--, pl++) {
447  if (pl->len || pl->p)
448  return AVERROR_INVALIDDATA;
449  pl->len = l;
450  pl->lit = im;
451  }
452  }
453  }
454 
455  return 0;
456 }
457 
458 #define get_char(c, lc, gb) \
459 { \
460  c = (c << 8) | bytestream2_get_byte(gb); \
461  lc += 8; \
462 }
463 
464 #define get_code(po, rlc, c, lc, gb, out, oe) \
465 { \
466  if (po == rlc) { \
467  if (lc < 8) \
468  get_char(c, lc, gb); \
469  lc -= 8; \
470  \
471  cs = c >> lc; \
472  \
473  if (out + cs > oe) \
474  return AVERROR_INVALIDDATA; \
475  \
476  s = out[-1]; \
477  \
478  while (cs-- > 0) \
479  *out++ = s; \
480  } else if (out < oe) { \
481  *out++ = po; \
482  } else { \
483  return AVERROR_INVALIDDATA; \
484  } \
485 }
486 
487 static int huf_decode(const uint64_t *hcode, const HufDec *hdecod,
488  GetByteContext *gb, int nbits,
489  int rlc, int no, uint16_t *out)
490 {
491  uint64_t c = 0;
492  uint16_t *outb = out;
493  uint16_t *oe = out + no;
494  const uint8_t *ie = gb->buffer + (nbits + 7) / 8; // input byte size
495  uint8_t cs, s;
496  int i, lc = 0;
497 
498  while (gb->buffer < ie) {
499  get_char(c, lc, gb);
500 
501  while (lc >= HUF_DECBITS) {
502  const HufDec pl = hdecod[(c >> (lc - HUF_DECBITS)) & HUF_DECMASK];
503 
504  if (pl.len) {
505  lc -= pl.len;
506  get_code(pl.lit, rlc, c, lc, gb, out, oe);
507  } else {
508  int j;
509 
510  if (!pl.p)
511  return AVERROR_INVALIDDATA;
512 
513  for (j = 0; j < pl.lit; j++) {
514  int l = hcode[pl.p[j]] & 63;
515 
516  while (lc < l && bytestream2_get_bytes_left(gb) > 0)
517  get_char(c, lc, gb);
518 
519  if (lc >= l) {
520  if ((hcode[pl.p[j]] >> 6) ==
521  ((c >> (lc - l)) & ((1LL << l) - 1))) {
522  lc -= l;
523  get_code(pl.p[j], rlc, c, lc, gb, out, oe);
524  break;
525  }
526  }
527  }
528 
529  if (j == pl.lit)
530  return AVERROR_INVALIDDATA;
531  }
532  }
533  }
534 
535  i = (8 - nbits) & 7;
536  c >>= i;
537  lc -= i;
538 
539  while (lc > 0) {
540  const HufDec pl = hdecod[(c << (HUF_DECBITS - lc)) & HUF_DECMASK];
541 
542  if (pl.len) {
543  lc -= pl.len;
544  get_code(pl.lit, rlc, c, lc, gb, out, oe);
545  } else {
546  return AVERROR_INVALIDDATA;
547  }
548  }
549 
550  if (out - outb != no)
551  return AVERROR_INVALIDDATA;
552  return 0;
553 }
554 
556  uint16_t *dst, int dst_size)
557 {
558  int32_t src_size, im, iM;
559  uint32_t nBits;
560  uint64_t *freq;
561  HufDec *hdec;
562  int ret, i;
563 
564  src_size = bytestream2_get_le32(gb);
565  im = bytestream2_get_le32(gb);
566  iM = bytestream2_get_le32(gb);
567  bytestream2_skip(gb, 4);
568  nBits = bytestream2_get_le32(gb);
569  if (im < 0 || im >= HUF_ENCSIZE ||
570  iM < 0 || iM >= HUF_ENCSIZE ||
571  src_size < 0)
572  return AVERROR_INVALIDDATA;
573 
574  bytestream2_skip(gb, 4);
575 
576  freq = av_mallocz_array(HUF_ENCSIZE, sizeof(*freq));
577  hdec = av_mallocz_array(HUF_DECSIZE, sizeof(*hdec));
578  if (!freq || !hdec) {
579  ret = AVERROR(ENOMEM);
580  goto fail;
581  }
582 
583  if ((ret = huf_unpack_enc_table(gb, im, iM, freq)) < 0)
584  goto fail;
585 
586  if (nBits > 8 * bytestream2_get_bytes_left(gb)) {
587  ret = AVERROR_INVALIDDATA;
588  goto fail;
589  }
590 
591  if ((ret = huf_build_dec_table(freq, im, iM, hdec)) < 0)
592  goto fail;
593  ret = huf_decode(freq, hdec, gb, nBits, iM, dst_size, dst);
594 
595 fail:
596  for (i = 0; i < HUF_DECSIZE; i++)
597  if (hdec)
598  av_freep(&hdec[i].p);
599 
600  av_free(freq);
601  av_free(hdec);
602 
603  return ret;
604 }
605 
606 static inline void wdec14(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b)
607 {
608  int16_t ls = l;
609  int16_t hs = h;
610  int hi = hs;
611  int ai = ls + (hi & 1) + (hi >> 1);
612  int16_t as = ai;
613  int16_t bs = ai - hi;
614 
615  *a = as;
616  *b = bs;
617 }
618 
619 #define NBITS 16
620 #define A_OFFSET (1 << (NBITS - 1))
621 #define MOD_MASK ((1 << NBITS) - 1)
622 
623 static inline void wdec16(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b)
624 {
625  int m = l;
626  int d = h;
627  int bb = (m - (d >> 1)) & MOD_MASK;
628  int aa = (d + bb - A_OFFSET) & MOD_MASK;
629  *b = bb;
630  *a = aa;
631 }
632 
633 static void wav_decode(uint16_t *in, int nx, int ox,
634  int ny, int oy, uint16_t mx)
635 {
636  int w14 = (mx < (1 << 14));
637  int n = (nx > ny) ? ny : nx;
638  int p = 1;
639  int p2;
640 
641  while (p <= n)
642  p <<= 1;
643 
644  p >>= 1;
645  p2 = p;
646  p >>= 1;
647 
648  while (p >= 1) {
649  uint16_t *py = in;
650  uint16_t *ey = in + oy * (ny - p2);
651  uint16_t i00, i01, i10, i11;
652  int oy1 = oy * p;
653  int oy2 = oy * p2;
654  int ox1 = ox * p;
655  int ox2 = ox * p2;
656 
657  for (; py <= ey; py += oy2) {
658  uint16_t *px = py;
659  uint16_t *ex = py + ox * (nx - p2);
660 
661  for (; px <= ex; px += ox2) {
662  uint16_t *p01 = px + ox1;
663  uint16_t *p10 = px + oy1;
664  uint16_t *p11 = p10 + ox1;
665 
666  if (w14) {
667  wdec14(*px, *p10, &i00, &i10);
668  wdec14(*p01, *p11, &i01, &i11);
669  wdec14(i00, i01, px, p01);
670  wdec14(i10, i11, p10, p11);
671  } else {
672  wdec16(*px, *p10, &i00, &i10);
673  wdec16(*p01, *p11, &i01, &i11);
674  wdec16(i00, i01, px, p01);
675  wdec16(i10, i11, p10, p11);
676  }
677  }
678 
679  if (nx & p) {
680  uint16_t *p10 = px + oy1;
681 
682  if (w14)
683  wdec14(*px, *p10, &i00, p10);
684  else
685  wdec16(*px, *p10, &i00, p10);
686 
687  *px = i00;
688  }
689  }
690 
691  if (ny & p) {
692  uint16_t *px = py;
693  uint16_t *ex = py + ox * (nx - p2);
694 
695  for (; px <= ex; px += ox2) {
696  uint16_t *p01 = px + ox1;
697 
698  if (w14)
699  wdec14(*px, *p01, &i00, p01);
700  else
701  wdec16(*px, *p01, &i00, p01);
702 
703  *px = i00;
704  }
705  }
706 
707  p2 = p;
708  p >>= 1;
709  }
710 }
711 
712 static int piz_uncompress(EXRContext *s, const uint8_t *src, int ssize,
713  int dsize, EXRThreadData *td)
714 {
715  GetByteContext gb;
716  uint16_t maxval, min_non_zero, max_non_zero;
717  uint16_t *ptr;
718  uint16_t *tmp = (uint16_t *)td->tmp;
719  uint8_t *out;
720  int ret, i, j;
721 
722  if (!td->bitmap)
724  if (!td->lut)
725  td->lut = av_malloc(1 << 17);
726  if (!td->bitmap || !td->lut) {
727  av_freep(&td->bitmap);
728  av_freep(&td->lut);
729  return AVERROR(ENOMEM);
730  }
731 
732  bytestream2_init(&gb, src, ssize);
733  min_non_zero = bytestream2_get_le16(&gb);
734  max_non_zero = bytestream2_get_le16(&gb);
735 
736  if (max_non_zero >= BITMAP_SIZE)
737  return AVERROR_INVALIDDATA;
738 
739  memset(td->bitmap, 0, FFMIN(min_non_zero, BITMAP_SIZE));
740  if (min_non_zero <= max_non_zero)
741  bytestream2_get_buffer(&gb, td->bitmap + min_non_zero,
742  max_non_zero - min_non_zero + 1);
743  memset(td->bitmap + max_non_zero, 0, BITMAP_SIZE - max_non_zero);
744 
745  maxval = reverse_lut(td->bitmap, td->lut);
746 
747  ret = huf_uncompress(&gb, tmp, dsize / sizeof(uint16_t));
748  if (ret)
749  return ret;
750 
751  ptr = tmp;
752  for (i = 0; i < s->nb_channels; i++) {
753  EXRChannel *channel = &s->channels[i];
754  int size = channel->pixel_type;
755 
756  for (j = 0; j < size; j++)
757  wav_decode(ptr + j, s->xdelta, size, s->ysize,
758  s->xdelta * size, maxval);
759  ptr += s->xdelta * s->ysize * size;
760  }
761 
762  apply_lut(td->lut, tmp, dsize / sizeof(uint16_t));
763 
764  out = td->uncompressed_data;
765  for (i = 0; i < s->ysize; i++)
766  for (j = 0; j < s->nb_channels; j++) {
767  uint16_t *in = tmp + j * s->xdelta * s->ysize + i * s->xdelta;
768  memcpy(out, in, s->xdelta * 2);
769  out += s->xdelta * 2;
770  }
771 
772  return 0;
773 }
774 
776  int compressed_size, int uncompressed_size,
777  EXRThreadData *td)
778 {
779  unsigned long dest_len = uncompressed_size;
780  const uint8_t *in = td->tmp;
781  uint8_t *out;
782  int c, i, j;
783 
784  if (uncompress(td->tmp, &dest_len, src, compressed_size) != Z_OK ||
785  dest_len != uncompressed_size)
786  return AVERROR_INVALIDDATA;
787 
788  out = td->uncompressed_data;
789  for (i = 0; i < s->ysize; i++)
790  for (c = 0; c < s->nb_channels; c++) {
791  EXRChannel *channel = &s->channels[c];
792  const uint8_t *ptr[4];
793  uint32_t pixel = 0;
794 
795  switch (channel->pixel_type) {
796  case EXR_FLOAT:
797  ptr[0] = in;
798  ptr[1] = ptr[0] + s->xdelta;
799  ptr[2] = ptr[1] + s->xdelta;
800  in = ptr[2] + s->xdelta;
801 
802  for (j = 0; j < s->xdelta; ++j) {
803  uint32_t diff = (*(ptr[0]++) << 24) |
804  (*(ptr[1]++) << 16) |
805  (*(ptr[2]++) << 8);
806  pixel += diff;
807  bytestream_put_le32(&out, pixel);
808  }
809  break;
810  case EXR_HALF:
811  ptr[0] = in;
812  ptr[1] = ptr[0] + s->xdelta;
813  in = ptr[1] + s->xdelta;
814  for (j = 0; j < s->xdelta; j++) {
815  uint32_t diff = (*(ptr[0]++) << 8) | *(ptr[1]++);
816 
817  pixel += diff;
818  bytestream_put_le16(&out, pixel);
819  }
820  break;
821  default:
822  return AVERROR_INVALIDDATA;
823  }
824  }
825 
826  return 0;
827 }
828 
829 static int decode_block(AVCodecContext *avctx, void *tdata,
830  int jobnr, int threadnr)
831 {
832  EXRContext *s = avctx->priv_data;
833  AVFrame *const p = s->picture;
834  EXRThreadData *td = &s->thread_data[threadnr];
835  const uint8_t *channel_buffer[4] = { 0 };
836  const uint8_t *buf = s->buf;
837  uint64_t line_offset, uncompressed_size;
838  uint32_t xdelta = s->xdelta;
839  uint16_t *ptr_x;
840  uint8_t *ptr;
841  uint32_t data_size, line;
842  const uint8_t *src;
843  int axmax = (avctx->width - (s->xmax + 1)) * 2 * s->desc->nb_components;
844  int bxmin = s->xmin * 2 * s->desc->nb_components;
845  int i, x, buf_size = s->buf_size;
846  int ret;
847  float one_gamma = 1.0f / s->gamma;
848 
849  line_offset = AV_RL64(s->gb.buffer + jobnr * 8);
850  // Check if the buffer has the required bytes needed from the offset
851  if (line_offset > buf_size - 8)
852  return AVERROR_INVALIDDATA;
853 
854  src = buf + line_offset + 8;
855  line = AV_RL32(src - 8);
856  if (line < s->ymin || line > s->ymax)
857  return AVERROR_INVALIDDATA;
858 
859  data_size = AV_RL32(src - 4);
860  if (data_size <= 0 || data_size > buf_size)
861  return AVERROR_INVALIDDATA;
862 
863  s->ysize = FFMIN(s->scan_lines_per_block, s->ymax - line + 1);
864  uncompressed_size = s->scan_line_size * s->ysize;
865  if ((s->compression == EXR_RAW && (data_size != uncompressed_size ||
866  line_offset > buf_size - uncompressed_size)) ||
867  (s->compression != EXR_RAW && (data_size > uncompressed_size ||
868  line_offset > buf_size - data_size))) {
869  return AVERROR_INVALIDDATA;
870  }
871 
872  if (data_size < uncompressed_size) {
874  &td->uncompressed_size, uncompressed_size);
875  av_fast_padded_malloc(&td->tmp, &td->tmp_size, uncompressed_size);
876  if (!td->uncompressed_data || !td->tmp)
877  return AVERROR(ENOMEM);
878 
879  ret = AVERROR_INVALIDDATA;
880  switch (s->compression) {
881  case EXR_ZIP1:
882  case EXR_ZIP16:
883  ret = zip_uncompress(src, data_size, uncompressed_size, td);
884  break;
885  case EXR_PIZ:
886  ret = piz_uncompress(s, src, data_size, uncompressed_size, td);
887  break;
888  case EXR_PXR24:
889  ret = pxr24_uncompress(s, src, data_size, uncompressed_size, td);
890  break;
891  case EXR_RLE:
892  ret = rle_uncompress(src, data_size, uncompressed_size, td);
893  }
894  if (ret < 0) {
895  av_log(avctx, AV_LOG_ERROR, "decode_block() failed.\n");
896  return ret;
897  }
898  src = td->uncompressed_data;
899  }
900 
901  channel_buffer[0] = src + xdelta * s->channel_offsets[0];
902  channel_buffer[1] = src + xdelta * s->channel_offsets[1];
903  channel_buffer[2] = src + xdelta * s->channel_offsets[2];
904  if (s->channel_offsets[3] >= 0)
905  channel_buffer[3] = src + xdelta * s->channel_offsets[3];
906 
907  ptr = p->data[0] + line * p->linesize[0];
908  for (i = 0;
909  i < s->scan_lines_per_block && line + i <= s->ymax;
910  i++, ptr += p->linesize[0]) {
911  const uint8_t *r, *g, *b, *a;
912 
913  r = channel_buffer[0];
914  g = channel_buffer[1];
915  b = channel_buffer[2];
916  if (channel_buffer[3])
917  a = channel_buffer[3];
918 
919  ptr_x = (uint16_t *) ptr;
920 
921  // Zero out the start if xmin is not 0
922  memset(ptr_x, 0, bxmin);
923  ptr_x += s->xmin * s->desc->nb_components;
924  if (s->pixel_type == EXR_FLOAT) {
925  // 32-bit
926  for (x = 0; x < xdelta; x++) {
927  union av_intfloat32 t;
928  t.i = bytestream_get_le32(&r);
929  if ( t.f > 0.0f ) /* avoid negative values */
930  t.f = powf(t.f, one_gamma);
931  *ptr_x++ = exr_flt2uint(t.i);
932 
933  t.i = bytestream_get_le32(&g);
934  if ( t.f > 0.0f )
935  t.f = powf(t.f, one_gamma);
936  *ptr_x++ = exr_flt2uint(t.i);
937 
938  t.i = bytestream_get_le32(&b);
939  if ( t.f > 0.0f )
940  t.f = powf(t.f, one_gamma);
941  *ptr_x++ = exr_flt2uint(t.i);
942  if (channel_buffer[3])
943  *ptr_x++ = exr_flt2uint(bytestream_get_le32(&a));
944  }
945  } else {
946  // 16-bit
947  for (x = 0; x < xdelta; x++) {
948  *ptr_x++ = s->gamma_table[bytestream_get_le16(&r)];
949  *ptr_x++ = s->gamma_table[bytestream_get_le16(&g)];
950  *ptr_x++ = s->gamma_table[bytestream_get_le16(&b)];
951  if (channel_buffer[3])
952  *ptr_x++ = exr_halflt2uint(bytestream_get_le16(&a));
953  }
954  }
955 
956  // Zero out the end if xmax+1 is not w
957  memset(ptr_x, 0, axmax);
958 
959  channel_buffer[0] += s->scan_line_size;
960  channel_buffer[1] += s->scan_line_size;
961  channel_buffer[2] += s->scan_line_size;
962  if (channel_buffer[3])
963  channel_buffer[3] += s->scan_line_size;
964  }
965 
966  return 0;
967 }
968 
969 /**
970  * Check if the variable name corresponds to its data type.
971  *
972  * @param s the EXRContext
973  * @param value_name name of the variable to check
974  * @param value_type type of the variable to check
975  * @param minimum_length minimum length of the variable data
976  *
977  * @return bytes to read containing variable data
978  * -1 if variable is not found
979  * 0 if buffer ended prematurely
980  */
982  const char *value_name,
983  const char *value_type,
984  unsigned int minimum_length)
985 {
986  int var_size = -1;
987 
988  if (bytestream2_get_bytes_left(&s->gb) >= minimum_length &&
989  !strcmp(s->gb.buffer, value_name)) {
990  // found value_name, jump to value_type (null terminated strings)
991  s->gb.buffer += strlen(value_name) + 1;
992  if (!strcmp(s->gb.buffer, value_type)) {
993  s->gb.buffer += strlen(value_type) + 1;
994  var_size = bytestream2_get_le32(&s->gb);
995  // don't go read past boundaries
996  if (var_size > bytestream2_get_bytes_left(&s->gb))
997  var_size = 0;
998  } else {
999  // value_type not found, reset the buffer
1000  s->gb.buffer -= strlen(value_name) + 1;
1002  "Unknown data type %s for header variable %s.\n",
1003  value_type, value_name);
1004  }
1005  }
1006 
1007  return var_size;
1008 }
1009 
1011 {
1012  int current_channel_offset = 0;
1013  int magic_number, version, flags, i;
1014 
1015  if (bytestream2_get_bytes_left(&s->gb) < 10) {
1016  av_log(s->avctx, AV_LOG_ERROR, "Header too short to parse.\n");
1017  return AVERROR_INVALIDDATA;
1018  }
1019 
1020  magic_number = bytestream2_get_le32(&s->gb);
1021  if (magic_number != 20000630) {
1022  /* As per documentation of OpenEXR, it is supposed to be
1023  * int 20000630 little-endian */
1024  av_log(s->avctx, AV_LOG_ERROR, "Wrong magic number %d.\n", magic_number);
1025  return AVERROR_INVALIDDATA;
1026  }
1027 
1028  version = bytestream2_get_byte(&s->gb);
1029  if (version != 2) {
1030  avpriv_report_missing_feature(s->avctx, "Version %d", version);
1031  return AVERROR_PATCHWELCOME;
1032  }
1033 
1034  flags = bytestream2_get_le24(&s->gb);
1035  if (flags & 0x02) {
1036  avpriv_report_missing_feature(s->avctx, "Tile support");
1037  return AVERROR_PATCHWELCOME;
1038  }
1039 
1040  // Parse the header
1041  while (bytestream2_get_bytes_left(&s->gb) > 0 && *s->gb.buffer) {
1042  int var_size;
1043  if ((var_size = check_header_variable(s, "channels",
1044  "chlist", 38)) >= 0) {
1045  GetByteContext ch_gb;
1046  if (!var_size)
1047  return AVERROR_INVALIDDATA;
1048 
1049  bytestream2_init(&ch_gb, s->gb.buffer, var_size);
1050 
1051  while (bytestream2_get_bytes_left(&ch_gb) >= 19) {
1052  EXRChannel *channel;
1053  enum ExrPixelType current_pixel_type;
1054  int channel_index = -1;
1055  int xsub, ysub;
1056 
1057  if (strcmp(s->layer, "") != 0) {
1058  if (strncmp(ch_gb.buffer, s->layer, strlen(s->layer)) == 0) {
1059  ch_gb.buffer += strlen(s->layer);
1060  if (*ch_gb.buffer == '.')
1061  ch_gb.buffer++; /* skip dot if not given */
1062  av_log(s->avctx, AV_LOG_INFO,
1063  "Layer %s.%s matched.\n", s->layer, ch_gb.buffer);
1064  }
1065  }
1066 
1067  if (!strcmp(ch_gb.buffer, "R") ||
1068  !strcmp(ch_gb.buffer, "X") ||
1069  !strcmp(ch_gb.buffer, "U"))
1070  channel_index = 0;
1071  else if (!strcmp(ch_gb.buffer, "G") ||
1072  !strcmp(ch_gb.buffer, "Y") ||
1073  !strcmp(ch_gb.buffer, "V"))
1074  channel_index = 1;
1075  else if (!strcmp(ch_gb.buffer, "B") ||
1076  !strcmp(ch_gb.buffer, "Z") ||
1077  !strcmp(ch_gb.buffer, "W"))
1078  channel_index = 2;
1079  else if (!strcmp(ch_gb.buffer, "A"))
1080  channel_index = 3;
1081  else
1083  "Unsupported channel %.256s.\n", ch_gb.buffer);
1084 
1085  /* skip until you get a 0 */
1086  while (bytestream2_get_bytes_left(&ch_gb) > 0 &&
1087  bytestream2_get_byte(&ch_gb))
1088  continue;
1089 
1090  if (bytestream2_get_bytes_left(&ch_gb) < 4) {
1091  av_log(s->avctx, AV_LOG_ERROR, "Incomplete header.\n");
1092  return AVERROR_INVALIDDATA;
1093  }
1094 
1095  current_pixel_type = bytestream2_get_le32(&ch_gb);
1096  if (current_pixel_type >= EXR_UNKNOWN) {
1098  "Pixel type %d.\n",
1099  current_pixel_type);
1100  return AVERROR_PATCHWELCOME;
1101  }
1102 
1103  bytestream2_skip(&ch_gb, 4);
1104  xsub = bytestream2_get_le32(&ch_gb);
1105  ysub = bytestream2_get_le32(&ch_gb);
1106  if (xsub != 1 || ysub != 1) {
1108  "Subsampling %dx%d",
1109  xsub, ysub);
1110  return AVERROR_PATCHWELCOME;
1111  }
1112 
1113  if (channel_index >= 0) {
1114  if (s->pixel_type != EXR_UNKNOWN &&
1115  s->pixel_type != current_pixel_type) {
1117  "RGB channels not of the same depth.\n");
1118  return AVERROR_INVALIDDATA;
1119  }
1120  s->pixel_type = current_pixel_type;
1121  s->channel_offsets[channel_index] = current_channel_offset;
1122  }
1123 
1124  s->channels = av_realloc(s->channels,
1125  ++s->nb_channels * sizeof(EXRChannel));
1126  if (!s->channels)
1127  return AVERROR(ENOMEM);
1128  channel = &s->channels[s->nb_channels - 1];
1129  channel->pixel_type = current_pixel_type;
1130  channel->xsub = xsub;
1131  channel->ysub = ysub;
1132 
1133  current_channel_offset += 1 << current_pixel_type;
1134  }
1135 
1136  /* Check if all channels are set with an offset or if the channels
1137  * are causing an overflow */
1138  if (FFMIN3(s->channel_offsets[0],
1139  s->channel_offsets[1],
1140  s->channel_offsets[2]) < 0) {
1141  if (s->channel_offsets[0] < 0)
1142  av_log(s->avctx, AV_LOG_ERROR, "Missing red channel.\n");
1143  if (s->channel_offsets[1] < 0)
1144  av_log(s->avctx, AV_LOG_ERROR, "Missing green channel.\n");
1145  if (s->channel_offsets[2] < 0)
1146  av_log(s->avctx, AV_LOG_ERROR, "Missing blue channel.\n");
1147  return AVERROR_INVALIDDATA;
1148  }
1149 
1150  // skip one last byte and update main gb
1151  s->gb.buffer = ch_gb.buffer + 1;
1152  continue;
1153  } else if ((var_size = check_header_variable(s, "dataWindow", "box2i",
1154  31)) >= 0) {
1155  if (!var_size)
1156  return AVERROR_INVALIDDATA;
1157 
1158  s->xmin = bytestream2_get_le32(&s->gb);
1159  s->ymin = bytestream2_get_le32(&s->gb);
1160  s->xmax = bytestream2_get_le32(&s->gb);
1161  s->ymax = bytestream2_get_le32(&s->gb);
1162  s->xdelta = (s->xmax - s->xmin) + 1;
1163  s->ydelta = (s->ymax - s->ymin) + 1;
1164 
1165  continue;
1166  } else if ((var_size = check_header_variable(s, "displayWindow",
1167  "box2i", 34)) >= 0) {
1168  if (!var_size)
1169  return AVERROR_INVALIDDATA;
1170 
1171  bytestream2_skip(&s->gb, 8);
1172  s->w = bytestream2_get_le32(&s->gb) + 1;
1173  s->h = bytestream2_get_le32(&s->gb) + 1;
1174 
1175  continue;
1176  } else if ((var_size = check_header_variable(s, "lineOrder",
1177  "lineOrder", 25)) >= 0) {
1178  int line_order;
1179  if (!var_size)
1180  return AVERROR_INVALIDDATA;
1181 
1182  line_order = bytestream2_get_byte(&s->gb);
1183  av_log(s->avctx, AV_LOG_DEBUG, "line order: %d.\n", line_order);
1184  if (line_order > 2) {
1185  av_log(s->avctx, AV_LOG_ERROR, "Unknown line order.\n");
1186  return AVERROR_INVALIDDATA;
1187  }
1188 
1189  continue;
1190  } else if ((var_size = check_header_variable(s, "pixelAspectRatio",
1191  "float", 31)) >= 0) {
1192  if (!var_size)
1193  return AVERROR_INVALIDDATA;
1194 
1195  ff_set_sar(s->avctx,
1196  av_d2q(av_int2float(bytestream2_get_le32(&s->gb)), 255));
1197 
1198  continue;
1199  } else if ((var_size = check_header_variable(s, "compression",
1200  "compression", 29)) >= 0) {
1201  if (!var_size)
1202  return AVERROR_INVALIDDATA;
1203 
1204  if (s->compression == EXR_UNKN)
1205  s->compression = bytestream2_get_byte(&s->gb);
1206  else
1208  "Found more than one compression attribute.\n");
1209 
1210  continue;
1211  }
1212 
1213  // Check if there are enough bytes for a header
1214  if (bytestream2_get_bytes_left(&s->gb) <= 9) {
1215  av_log(s->avctx, AV_LOG_ERROR, "Incomplete header\n");
1216  return AVERROR_INVALIDDATA;
1217  }
1218 
1219  // Process unknown variables
1220  for (i = 0; i < 2; i++) // value_name and value_type
1221  while (bytestream2_get_byte(&s->gb) != 0);
1222 
1223  // Skip variable length
1224  bytestream2_skip(&s->gb, bytestream2_get_le32(&s->gb));
1225  }
1226 
1227  if (s->compression == EXR_UNKN) {
1228  av_log(s->avctx, AV_LOG_ERROR, "Missing compression attribute.\n");
1229  return AVERROR_INVALIDDATA;
1230  }
1231  s->scan_line_size = s->xdelta * current_channel_offset;
1232 
1233  if (bytestream2_get_bytes_left(&s->gb) <= 0) {
1234  av_log(s->avctx, AV_LOG_ERROR, "Incomplete frame.\n");
1235  return AVERROR_INVALIDDATA;
1236  }
1237 
1238  // aaand we are done
1239  bytestream2_skip(&s->gb, 1);
1240  return 0;
1241 }
1242 
1243 static int decode_frame(AVCodecContext *avctx, void *data,
1244  int *got_frame, AVPacket *avpkt)
1245 {
1246  EXRContext *s = avctx->priv_data;
1247  ThreadFrame frame = { .f = data };
1248  AVFrame *picture = data;
1249  uint8_t *ptr;
1250 
1251  int y, ret;
1252  int out_line_size;
1253  int scan_line_blocks;
1254 
1255  bytestream2_init(&s->gb, avpkt->data, avpkt->size);
1256 
1257  if ((ret = decode_header(s)) < 0)
1258  return ret;
1259 
1260  switch (s->pixel_type) {
1261  case EXR_FLOAT:
1262  case EXR_HALF:
1263  if (s->channel_offsets[3] >= 0)
1264  avctx->pix_fmt = AV_PIX_FMT_RGBA64;
1265  else
1266  avctx->pix_fmt = AV_PIX_FMT_RGB48;
1267  break;
1268  case EXR_UINT:
1269  avpriv_request_sample(avctx, "32-bit unsigned int");
1270  return AVERROR_PATCHWELCOME;
1271  default:
1272  av_log(avctx, AV_LOG_ERROR, "Missing channel list.\n");
1273  return AVERROR_INVALIDDATA;
1274  }
1275 
1276  switch (s->compression) {
1277  case EXR_RAW:
1278  case EXR_RLE:
1279  case EXR_ZIP1:
1280  s->scan_lines_per_block = 1;
1281  break;
1282  case EXR_PXR24:
1283  case EXR_ZIP16:
1284  s->scan_lines_per_block = 16;
1285  break;
1286  case EXR_PIZ:
1287  s->scan_lines_per_block = 32;
1288  break;
1289  default:
1290  avpriv_report_missing_feature(avctx, "Compression %d", s->compression);
1291  return AVERROR_PATCHWELCOME;
1292  }
1293 
1294  /* Verify the xmin, xmax, ymin, ymax and xdelta before setting
1295  * the actual image size. */
1296  if (s->xmin > s->xmax ||
1297  s->ymin > s->ymax ||
1298  s->xdelta != s->xmax - s->xmin + 1 ||
1299  s->xmax >= s->w ||
1300  s->ymax >= s->h) {
1301  av_log(avctx, AV_LOG_ERROR, "Wrong or missing size information.\n");
1302  return AVERROR_INVALIDDATA;
1303  }
1304 
1305  if ((ret = ff_set_dimensions(avctx, s->w, s->h)) < 0)
1306  return ret;
1307 
1308  s->desc = av_pix_fmt_desc_get(avctx->pix_fmt);
1309  if (!s->desc)
1310  return AVERROR_INVALIDDATA;
1311  out_line_size = avctx->width * 2 * s->desc->nb_components;
1312  scan_line_blocks = (s->ydelta + s->scan_lines_per_block - 1) /
1314 
1315  if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
1316  return ret;
1317 
1318  if (bytestream2_get_bytes_left(&s->gb) < scan_line_blocks * 8)
1319  return AVERROR_INVALIDDATA;
1320 
1321  // save pointer we are going to use in decode_block
1322  s->buf = avpkt->data;
1323  s->buf_size = avpkt->size;
1324  ptr = picture->data[0];
1325 
1326  // Zero out the start if ymin is not 0
1327  for (y = 0; y < s->ymin; y++) {
1328  memset(ptr, 0, out_line_size);
1329  ptr += picture->linesize[0];
1330  }
1331 
1332  s->picture = picture;
1333  avctx->execute2(avctx, decode_block, s->thread_data, NULL, scan_line_blocks);
1334 
1335  // Zero out the end if ymax+1 is not h
1336  for (y = s->ymax + 1; y < avctx->height; y++) {
1337  memset(ptr, 0, out_line_size);
1338  ptr += picture->linesize[0];
1339  }
1340 
1341  picture->pict_type = AV_PICTURE_TYPE_I;
1342  *got_frame = 1;
1343 
1344  return avpkt->size;
1345 }
1346 
1348 {
1349  uint32_t i;
1350  union av_intfloat32 t;
1351  EXRContext *s = avctx->priv_data;
1352  float one_gamma = 1.0f / s->gamma;
1353 
1354  s->avctx = avctx;
1355  s->xmin = ~0;
1356  s->xmax = ~0;
1357  s->ymin = ~0;
1358  s->ymax = ~0;
1359  s->xdelta = ~0;
1360  s->ydelta = ~0;
1361  s->channel_offsets[0] = -1;
1362  s->channel_offsets[1] = -1;
1363  s->channel_offsets[2] = -1;
1364  s->channel_offsets[3] = -1;
1365  s->pixel_type = EXR_UNKNOWN;
1366  s->compression = EXR_UNKN;
1367  s->nb_channels = 0;
1368  s->w = 0;
1369  s->h = 0;
1370 
1371  if ( one_gamma > 0.9999f && one_gamma < 1.0001f ) {
1372  for ( i = 0; i < 65536; ++i ) {
1373  s->gamma_table[i] = exr_halflt2uint(i);
1374  }
1375  } else {
1376  for ( i = 0; i < 65536; ++i ) {
1377  t = exr_half2float(i);
1378  /* If negative value we reuse half value */
1379  if ( t.f <= 0.0f ) {
1380  s->gamma_table[i] = exr_halflt2uint(i);
1381  } else {
1382  t.f = powf(t.f, one_gamma);
1383  s->gamma_table[i] = exr_flt2uint(t.i);
1384  }
1385  }
1386  }
1387 
1388  // allocate thread data, used for non EXR_RAW compreesion types
1389  s->thread_data = av_mallocz_array(avctx->thread_count, sizeof(EXRThreadData));
1390  if (!s->thread_data)
1391  return AVERROR_INVALIDDATA;
1392 
1393  return 0;
1394 }
1395 
1397 { EXRContext *s = avctx->priv_data;
1398 
1399  // allocate thread data, used for non EXR_RAW compreesion types
1401  if (!s->thread_data)
1402  return AVERROR_INVALIDDATA;
1403 
1404  return 0;
1405 }
1406 
1408 {
1409  EXRContext *s = avctx->priv_data;
1410  int i;
1411  for (i = 0; i < avctx->thread_count; i++) {
1412  EXRThreadData *td = &s->thread_data[i];
1414  av_freep(&td->tmp);
1415  av_freep(&td->bitmap);
1416  av_freep(&td->lut);
1417  }
1418 
1419  av_freep(&s->thread_data);
1420  av_freep(&s->channels);
1421 
1422  return 0;
1423 }
1424 
1425 #define OFFSET(x) offsetof(EXRContext, x)
1426 #define VD AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_DECODING_PARAM
1427 static const AVOption options[] = {
1428  { "layer", "Set the decoding layer", OFFSET(layer),
1429  AV_OPT_TYPE_STRING, { .str = "" }, 0, 0, VD },
1430  { "gamma", "Set the float gamma value when decoding (experimental/unsupported)", OFFSET(gamma),
1431  AV_OPT_TYPE_FLOAT, { .dbl = 1.0f }, 0.001, FLT_MAX, VD },
1432  { NULL },
1433 };
1434 
1435 static const AVClass exr_class = {
1436  .class_name = "EXR",
1437  .item_name = av_default_item_name,
1438  .option = options,
1439  .version = LIBAVUTIL_VERSION_INT,
1440 };
1441 
1443  .name = "exr",
1444  .long_name = NULL_IF_CONFIG_SMALL("OpenEXR image"),
1445  .type = AVMEDIA_TYPE_VIDEO,
1446  .id = AV_CODEC_ID_EXR,
1447  .priv_data_size = sizeof(EXRContext),
1448  .init = decode_init,
1450  .close = decode_end,
1451  .decode = decode_frame,
1452  .capabilities = CODEC_CAP_DR1 | CODEC_CAP_FRAME_THREADS |
1454  .priv_class = &exr_class,
1455 };