40 for (i = 0; i < 4; i++)
49 uint32_t k0 = ctx->
key[0];
50 uint32_t k1 = ctx->
key[1];
51 uint32_t k2 = ctx->
key[2];
52 uint32_t k3 = ctx->
key[3];
61 uint32_t
delta = 0x9E3779B9
U, sum = delta * 32;
63 for (i = 0; i < 32; i++) {
66 v0 -= (((v1 << 4) ^ (v1 >> 5)) + v1) ^ (sum + ctx->
key[sum & 3]);
69 #define DSTEP(SUM, K0, K1) \
70 v1 -= (((v0 << 4) ^ (v0 >> 5)) + v0) ^ (SUM + K0); \
71 v0 -= (((v1 << 4) ^ (v1 >> 5)) + v1) ^ (SUM - 0x9E3779B9U + K1)
73 DSTEP(0xC6EF3720U, k2, k3);
74 DSTEP(0x28B7BD67U, k3, k2);
75 DSTEP(0x8A8043AEU, k0, k1);
76 DSTEP(0xEC48C9F5U, k1, k0);
77 DSTEP(0x4E11503CU, k2, k3);
78 DSTEP(0xAFD9D683U, k2, k2);
79 DSTEP(0x11A25CCAU, k3, k1);
80 DSTEP(0x736AE311U, k0, k0);
81 DSTEP(0xD5336958U, k1, k3);
82 DSTEP(0x36FBEF9FU, k1, k2);
83 DSTEP(0x98C475E6U, k2, k1);
84 DSTEP(0xFA8CFC2DU, k3, k0);
85 DSTEP(0x5C558274U, k0, k3);
86 DSTEP(0xBE1E08BBU, k1, k2);
87 DSTEP(0x1FE68F02U, k1, k1);
88 DSTEP(0x81AF1549U, k2, k0);
89 DSTEP(0xE3779B90U, k3, k3);
90 DSTEP(0x454021D7U, k0, k2);
91 DSTEP(0xA708A81EU, k1, k1);
92 DSTEP(0x08D12E65U, k1, k0);
93 DSTEP(0x6A99B4ACU, k2, k3);
94 DSTEP(0xCC623AF3U, k3, k2);
95 DSTEP(0x2E2AC13AU, k0, k1);
96 DSTEP(0x8FF34781U, k0, k0);
97 DSTEP(0xF1BBCDC8U, k1, k3);
98 DSTEP(0x5384540FU, k2, k2);
99 DSTEP(0xB54CDA56U, k3, k1);
100 DSTEP(0x1715609DU, k0, k0);
101 DSTEP(0x78DDE6E4U, k0, k3);
102 DSTEP(0xDAA66D2BU, k1, k2);
103 DSTEP(0x3C6EF372U, k2, k1);
104 DSTEP(0x9E3779B9U, k3, k0);
114 uint32_t sum = 0,
delta = 0x9E3779B9
U;
116 for (i = 0; i < 32; i++) {
117 v0 += (((v1 << 4) ^ (v1 >> 5)) + v1) ^ (sum + ctx->
key[sum & 3]);
122 #define ESTEP(SUM, K0, K1) \
123 v0 += (((v1 << 4) ^ (v1 >> 5)) + v1) ^ (SUM + K0);\
124 v1 += (((v0 << 4) ^ (v0 >> 5)) + v0) ^ (SUM + 0x9E3779B9U + K1)
125 ESTEP(0x00000000U, k0, k3);
126 ESTEP(0x9E3779B9U, k1, k2);
127 ESTEP(0x3C6EF372U, k2, k1);
128 ESTEP(0xDAA66D2BU, k3, k0);
129 ESTEP(0x78DDE6E4U, k0, k0);
130 ESTEP(0x1715609DU, k1, k3);
131 ESTEP(0xB54CDA56U, k2, k2);
132 ESTEP(0x5384540FU, k3, k1);
133 ESTEP(0xF1BBCDC8U, k0, k0);
134 ESTEP(0x8FF34781U, k1, k0);
135 ESTEP(0x2E2AC13AU, k2, k3);
136 ESTEP(0xCC623AF3U, k3, k2);
137 ESTEP(0x6A99B4ACU, k0, k1);
138 ESTEP(0x08D12E65U, k1, k1);
139 ESTEP(0xA708A81EU, k2, k0);
140 ESTEP(0x454021D7U, k3, k3);
141 ESTEP(0xE3779B90U, k0, k2);
142 ESTEP(0x81AF1549U, k1, k1);
143 ESTEP(0x1FE68F02U, k2, k1);
144 ESTEP(0xBE1E08BBU, k3, k0);
145 ESTEP(0x5C558274U, k0, k3);
146 ESTEP(0xFA8CFC2DU, k1, k2);
147 ESTEP(0x98C475E6U, k2, k1);
148 ESTEP(0x36FBEF9FU, k3, k1);
149 ESTEP(0xD5336958U, k0, k0);
150 ESTEP(0x736AE311U, k1, k3);
151 ESTEP(0x11A25CCAU, k2, k2);
152 ESTEP(0xAFD9D683U, k3, k2);
153 ESTEP(0x4E11503CU, k0, k1);
154 ESTEP(0xEC48C9F5U, k1, k0);
155 ESTEP(0x8A8043AEU, k2, k3);
156 ESTEP(0x28B7BD67U, k3, k2);
179 for (i = 0; i < 8; i++)
180 dst[i] = src[i] ^ iv[i];
195 #define XTEA_NUM_TESTS 6
197 static const uint8_t xtea_test_key[XTEA_NUM_TESTS][16] = {
198 { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
199 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f },
200 { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
201 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f },
202 { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
203 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f },
204 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
205 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
206 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
207 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
208 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
209 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }
212 static const uint8_t xtea_test_pt[XTEA_NUM_TESTS][8] = {
213 { 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48 },
214 { 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41 },
215 { 0x5a, 0x5b, 0x6e, 0x27, 0x89, 0x48, 0xd7, 0x7f },
216 { 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48 },
217 { 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41 },
218 { 0x70, 0xe1, 0x22, 0x5d, 0x6e, 0x4e, 0x76, 0x55 }
221 static const uint8_t xtea_test_ct[XTEA_NUM_TESTS][8] = {
222 { 0x49, 0x7d, 0xf3, 0xd0, 0x72, 0x61, 0x2c, 0xb5 },
223 { 0xe7, 0x8f, 0x2d, 0x13, 0x74, 0x43, 0x41, 0xd8 },
224 { 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41 },
225 { 0xa0, 0x39, 0x05, 0x89, 0xf8, 0xb8, 0xef, 0xa5 },
226 { 0xed, 0x23, 0x37, 0x5a, 0x82, 0x1a, 0x8c, 0x2d },
227 { 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41 }
235 if (memcmp(dst, ref, 8*len)) {
237 printf(
"%s failed\ngot ", test);
238 for (i = 0; i < 8*
len; i++)
239 printf(
"%02x ", dst[i]);
240 printf(
"\nexpected ");
241 for (i = 0; i < 8*
len; i++)
242 printf(
"%02x ", ref[i]);
253 static const uint8_t src[32] =
"HelloWorldHelloWorldHelloWorld";
257 for (i = 0; i < XTEA_NUM_TESTS; i++) {
260 test_xtea(&ctx, buf, xtea_test_pt[i], xtea_test_ct[i], 1,
NULL, 0,
"encryption");
261 test_xtea(&ctx, buf, xtea_test_ct[i], xtea_test_pt[i], 1,
NULL, 1,
"decryption");
264 memcpy(iv,
"HALLO123", 8);
268 memcpy(iv,
"HALLO123", 8);
269 test_xtea(&ctx, pl, ct, src, 4, iv, 1,
"CBC decryption");
271 memcpy(iv,
"HALLO123", 8);
272 test_xtea(&ctx, ct, ct, src, 4, iv, 1,
"CBC inplace decryption");
275 printf(
"Test encryption/decryption success.\n");
#define ESTEP(SUM, K0, K1)
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_WL16 uint64_t_TMPL AV_WB64 unsigned int_TMPL AV_RB32
void av_xtea_crypt(AVXTEA *ctx, uint8_t *dst, const uint8_t *src, int count, uint8_t *iv, int decrypt)
Encrypt or decrypt a buffer using a previously initialized context.
static void xtea_crypt_ecb(AVXTEA *ctx, uint8_t *dst, const uint8_t *src, int decrypt, uint8_t *iv)
void av_xtea_init(AVXTEA *ctx, const uint8_t key[16])
Initialize an AVXTEA context.
static void test(const char *pattern, const char *host)
Public header for libavutil XTEA algorithm.
#define DSTEP(SUM, K0, K1)
common internal and external API header
int main(int argc, char **argv)