FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
vc1_pred.c
Go to the documentation of this file.
1 /*
2  * VC-1 and WMV3 decoder
3  * Copyright (c) 2011 Mashiat Sarker Shakkhar
4  * Copyright (c) 2006-2007 Konstantin Shishkov
5  * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
6  *
7  * This file is part of FFmpeg.
8  *
9  * FFmpeg is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public
11  * License as published by the Free Software Foundation; either
12  * version 2.1 of the License, or (at your option) any later version.
13  *
14  * FFmpeg is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with FFmpeg; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22  */
23 
24 /**
25  * @file
26  * VC-1 and WMV3 block decoding routines
27  */
28 
29 #include "mathops.h"
30 #include "mpegutils.h"
31 #include "mpegvideo.h"
32 #include "vc1.h"
33 #include "vc1_pred.h"
34 #include "vc1data.h"
35 
36 static av_always_inline int scaleforsame_x(VC1Context *v, int n /* MV */, int dir)
37 {
38  int scaledvalue, refdist;
39  int scalesame1, scalesame2;
40  int scalezone1_x, zone1offset_x;
41  int table_index = dir ^ v->second_field;
42 
43  if (v->s.pict_type != AV_PICTURE_TYPE_B)
44  refdist = v->refdist;
45  else
46  refdist = dir ? v->brfd : v->frfd;
47  if (refdist > 3)
48  refdist = 3;
49  scalesame1 = ff_vc1_field_mvpred_scales[table_index][1][refdist];
50  scalesame2 = ff_vc1_field_mvpred_scales[table_index][2][refdist];
51  scalezone1_x = ff_vc1_field_mvpred_scales[table_index][3][refdist];
52  zone1offset_x = ff_vc1_field_mvpred_scales[table_index][5][refdist];
53 
54  if (FFABS(n) > 255)
55  scaledvalue = n;
56  else {
57  if (FFABS(n) < scalezone1_x)
58  scaledvalue = (n * scalesame1) >> 8;
59  else {
60  if (n < 0)
61  scaledvalue = ((n * scalesame2) >> 8) - zone1offset_x;
62  else
63  scaledvalue = ((n * scalesame2) >> 8) + zone1offset_x;
64  }
65  }
66  return av_clip(scaledvalue, -v->range_x, v->range_x - 1);
67 }
68 
69 static av_always_inline int scaleforsame_y(VC1Context *v, int i, int n /* MV */, int dir)
70 {
71  int scaledvalue, refdist;
72  int scalesame1, scalesame2;
73  int scalezone1_y, zone1offset_y;
74  int table_index = dir ^ v->second_field;
75 
76  if (v->s.pict_type != AV_PICTURE_TYPE_B)
77  refdist = v->refdist;
78  else
79  refdist = dir ? v->brfd : v->frfd;
80  if (refdist > 3)
81  refdist = 3;
82  scalesame1 = ff_vc1_field_mvpred_scales[table_index][1][refdist];
83  scalesame2 = ff_vc1_field_mvpred_scales[table_index][2][refdist];
84  scalezone1_y = ff_vc1_field_mvpred_scales[table_index][4][refdist];
85  zone1offset_y = ff_vc1_field_mvpred_scales[table_index][6][refdist];
86 
87  if (FFABS(n) > 63)
88  scaledvalue = n;
89  else {
90  if (FFABS(n) < scalezone1_y)
91  scaledvalue = (n * scalesame1) >> 8;
92  else {
93  if (n < 0)
94  scaledvalue = ((n * scalesame2) >> 8) - zone1offset_y;
95  else
96  scaledvalue = ((n * scalesame2) >> 8) + zone1offset_y;
97  }
98  }
99 
100  if (v->cur_field_type && !v->ref_field_type[dir])
101  return av_clip(scaledvalue, -v->range_y / 2 + 1, v->range_y / 2);
102  else
103  return av_clip(scaledvalue, -v->range_y / 2, v->range_y / 2 - 1);
104 }
105 
106 static av_always_inline int scaleforopp_x(VC1Context *v, int n /* MV */)
107 {
108  int scalezone1_x, zone1offset_x;
109  int scaleopp1, scaleopp2, brfd;
110  int scaledvalue;
111 
112  brfd = FFMIN(v->brfd, 3);
113  scalezone1_x = ff_vc1_b_field_mvpred_scales[3][brfd];
114  zone1offset_x = ff_vc1_b_field_mvpred_scales[5][brfd];
115  scaleopp1 = ff_vc1_b_field_mvpred_scales[1][brfd];
116  scaleopp2 = ff_vc1_b_field_mvpred_scales[2][brfd];
117 
118  if (FFABS(n) > 255)
119  scaledvalue = n;
120  else {
121  if (FFABS(n) < scalezone1_x)
122  scaledvalue = (n * scaleopp1) >> 8;
123  else {
124  if (n < 0)
125  scaledvalue = ((n * scaleopp2) >> 8) - zone1offset_x;
126  else
127  scaledvalue = ((n * scaleopp2) >> 8) + zone1offset_x;
128  }
129  }
130  return av_clip(scaledvalue, -v->range_x, v->range_x - 1);
131 }
132 
133 static av_always_inline int scaleforopp_y(VC1Context *v, int n /* MV */, int dir)
134 {
135  int scalezone1_y, zone1offset_y;
136  int scaleopp1, scaleopp2, brfd;
137  int scaledvalue;
138 
139  brfd = FFMIN(v->brfd, 3);
140  scalezone1_y = ff_vc1_b_field_mvpred_scales[4][brfd];
141  zone1offset_y = ff_vc1_b_field_mvpred_scales[6][brfd];
142  scaleopp1 = ff_vc1_b_field_mvpred_scales[1][brfd];
143  scaleopp2 = ff_vc1_b_field_mvpred_scales[2][brfd];
144 
145  if (FFABS(n) > 63)
146  scaledvalue = n;
147  else {
148  if (FFABS(n) < scalezone1_y)
149  scaledvalue = (n * scaleopp1) >> 8;
150  else {
151  if (n < 0)
152  scaledvalue = ((n * scaleopp2) >> 8) - zone1offset_y;
153  else
154  scaledvalue = ((n * scaleopp2) >> 8) + zone1offset_y;
155  }
156  }
157  if (v->cur_field_type && !v->ref_field_type[dir]) {
158  return av_clip(scaledvalue, -v->range_y / 2 + 1, v->range_y / 2);
159  } else {
160  return av_clip(scaledvalue, -v->range_y / 2, v->range_y / 2 - 1);
161  }
162 }
163 
164 static av_always_inline int scaleforsame(VC1Context *v, int i, int n /* MV */,
165  int dim, int dir)
166 {
167  int brfd, scalesame;
168  int hpel = 1 - v->s.quarter_sample;
169 
170  n >>= hpel;
171  if (v->s.pict_type != AV_PICTURE_TYPE_B || v->second_field || !dir) {
172  if (dim)
173  n = scaleforsame_y(v, i, n, dir) * (1 << hpel);
174  else
175  n = scaleforsame_x(v, n, dir) * (1 << hpel);
176  return n;
177  }
178  brfd = FFMIN(v->brfd, 3);
179  scalesame = ff_vc1_b_field_mvpred_scales[0][brfd];
180 
181  n = (n * scalesame >> 8) << hpel;
182  return n;
183 }
184 
185 static av_always_inline int scaleforopp(VC1Context *v, int n /* MV */,
186  int dim, int dir)
187 {
188  int refdist, scaleopp;
189  int hpel = 1 - v->s.quarter_sample;
190 
191  n >>= hpel;
192  if (v->s.pict_type == AV_PICTURE_TYPE_B && !v->second_field && dir == 1) {
193  if (dim)
194  n = scaleforopp_y(v, n, dir) << hpel;
195  else
196  n = scaleforopp_x(v, n) << hpel;
197  return n;
198  }
199  if (v->s.pict_type != AV_PICTURE_TYPE_B)
200  refdist = FFMIN(v->refdist, 3);
201  else
202  refdist = dir ? v->brfd : v->frfd;
203  scaleopp = ff_vc1_field_mvpred_scales[dir ^ v->second_field][0][refdist];
204 
205  n = (n * scaleopp >> 8) * (1 << hpel);
206  return n;
207 }
208 
209 /** Predict and set motion vector
210  */
211 void ff_vc1_pred_mv(VC1Context *v, int n, int dmv_x, int dmv_y,
212  int mv1, int r_x, int r_y, uint8_t* is_intra,
213  int pred_flag, int dir)
214 {
215  MpegEncContext *s = &v->s;
216  int xy, wrap, off = 0;
217  int16_t *A, *B, *C;
218  int px, py;
219  int sum;
220  int mixedmv_pic, num_samefield = 0, num_oppfield = 0;
221  int opposite, a_f, b_f, c_f;
222  int16_t field_predA[2];
223  int16_t field_predB[2];
224  int16_t field_predC[2];
225  int a_valid, b_valid, c_valid;
226  int hybridmv_thresh, y_bias = 0;
227 
228  if (v->mv_mode == MV_PMODE_MIXED_MV ||
230  mixedmv_pic = 1;
231  else
232  mixedmv_pic = 0;
233  /* scale MV difference to be quad-pel */
234  if (!s->quarter_sample) {
235  dmv_x *= 2;
236  dmv_y *= 2;
237  }
238 
239  wrap = s->b8_stride;
240  xy = s->block_index[n];
241 
242  if (s->mb_intra) {
243  s->mv[0][n][0] = s->current_picture.motion_val[0][xy + v->blocks_off][0] = 0;
244  s->mv[0][n][1] = s->current_picture.motion_val[0][xy + v->blocks_off][1] = 0;
245  s->current_picture.motion_val[1][xy + v->blocks_off][0] = 0;
246  s->current_picture.motion_val[1][xy + v->blocks_off][1] = 0;
247  if (mv1) { /* duplicate motion data for 1-MV block */
248  s->current_picture.motion_val[0][xy + 1 + v->blocks_off][0] = 0;
249  s->current_picture.motion_val[0][xy + 1 + v->blocks_off][1] = 0;
250  s->current_picture.motion_val[0][xy + wrap + v->blocks_off][0] = 0;
251  s->current_picture.motion_val[0][xy + wrap + v->blocks_off][1] = 0;
252  s->current_picture.motion_val[0][xy + wrap + 1 + v->blocks_off][0] = 0;
253  s->current_picture.motion_val[0][xy + wrap + 1 + v->blocks_off][1] = 0;
254  v->luma_mv[s->mb_x][0] = v->luma_mv[s->mb_x][1] = 0;
255  s->current_picture.motion_val[1][xy + 1 + v->blocks_off][0] = 0;
256  s->current_picture.motion_val[1][xy + 1 + v->blocks_off][1] = 0;
257  s->current_picture.motion_val[1][xy + wrap][0] = 0;
258  s->current_picture.motion_val[1][xy + wrap + v->blocks_off][1] = 0;
259  s->current_picture.motion_val[1][xy + wrap + 1 + v->blocks_off][0] = 0;
260  s->current_picture.motion_val[1][xy + wrap + 1 + v->blocks_off][1] = 0;
261  }
262  return;
263  }
264 
265  C = s->current_picture.motion_val[dir][xy - 1 + v->blocks_off];
266  A = s->current_picture.motion_val[dir][xy - wrap + v->blocks_off];
267  if (mv1) {
268  if (v->field_mode && mixedmv_pic)
269  off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
270  else
271  off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
272  } else {
273  //in 4-MV mode different blocks have different B predictor position
274  switch (n) {
275  case 0:
276  off = (s->mb_x > 0) ? -1 : 1;
277  break;
278  case 1:
279  off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
280  break;
281  case 2:
282  off = 1;
283  break;
284  case 3:
285  off = -1;
286  }
287  }
288  B = s->current_picture.motion_val[dir][xy - wrap + off + v->blocks_off];
289 
290  a_valid = !s->first_slice_line || (n == 2 || n == 3);
291  b_valid = a_valid && (s->mb_width > 1);
292  c_valid = s->mb_x || (n == 1 || n == 3);
293  if (v->field_mode) {
294  a_valid = a_valid && !is_intra[xy - wrap];
295  b_valid = b_valid && !is_intra[xy - wrap + off];
296  c_valid = c_valid && !is_intra[xy - 1];
297  }
298 
299  if (a_valid) {
300  a_f = v->mv_f[dir][xy - wrap + v->blocks_off];
301  num_oppfield += a_f;
302  num_samefield += 1 - a_f;
303  field_predA[0] = A[0];
304  field_predA[1] = A[1];
305  } else {
306  field_predA[0] = field_predA[1] = 0;
307  a_f = 0;
308  }
309  if (b_valid) {
310  b_f = v->mv_f[dir][xy - wrap + off + v->blocks_off];
311  num_oppfield += b_f;
312  num_samefield += 1 - b_f;
313  field_predB[0] = B[0];
314  field_predB[1] = B[1];
315  } else {
316  field_predB[0] = field_predB[1] = 0;
317  b_f = 0;
318  }
319  if (c_valid) {
320  c_f = v->mv_f[dir][xy - 1 + v->blocks_off];
321  num_oppfield += c_f;
322  num_samefield += 1 - c_f;
323  field_predC[0] = C[0];
324  field_predC[1] = C[1];
325  } else {
326  field_predC[0] = field_predC[1] = 0;
327  c_f = 0;
328  }
329 
330  if (v->field_mode) {
331  if (!v->numref)
332  // REFFIELD determines if the last field or the second-last field is
333  // to be used as reference
334  opposite = 1 - v->reffield;
335  else {
336  if (num_samefield <= num_oppfield)
337  opposite = 1 - pred_flag;
338  else
339  opposite = pred_flag;
340  }
341  } else
342  opposite = 0;
343  if (opposite) {
344  if (a_valid && !a_f) {
345  field_predA[0] = scaleforopp(v, field_predA[0], 0, dir);
346  field_predA[1] = scaleforopp(v, field_predA[1], 1, dir);
347  }
348  if (b_valid && !b_f) {
349  field_predB[0] = scaleforopp(v, field_predB[0], 0, dir);
350  field_predB[1] = scaleforopp(v, field_predB[1], 1, dir);
351  }
352  if (c_valid && !c_f) {
353  field_predC[0] = scaleforopp(v, field_predC[0], 0, dir);
354  field_predC[1] = scaleforopp(v, field_predC[1], 1, dir);
355  }
356  v->mv_f[dir][xy + v->blocks_off] = 1;
357  v->ref_field_type[dir] = !v->cur_field_type;
358  } else {
359  if (a_valid && a_f) {
360  field_predA[0] = scaleforsame(v, n, field_predA[0], 0, dir);
361  field_predA[1] = scaleforsame(v, n, field_predA[1], 1, dir);
362  }
363  if (b_valid && b_f) {
364  field_predB[0] = scaleforsame(v, n, field_predB[0], 0, dir);
365  field_predB[1] = scaleforsame(v, n, field_predB[1], 1, dir);
366  }
367  if (c_valid && c_f) {
368  field_predC[0] = scaleforsame(v, n, field_predC[0], 0, dir);
369  field_predC[1] = scaleforsame(v, n, field_predC[1], 1, dir);
370  }
371  v->mv_f[dir][xy + v->blocks_off] = 0;
372  v->ref_field_type[dir] = v->cur_field_type;
373  }
374 
375  if (a_valid) {
376  px = field_predA[0];
377  py = field_predA[1];
378  } else if (c_valid) {
379  px = field_predC[0];
380  py = field_predC[1];
381  } else if (b_valid) {
382  px = field_predB[0];
383  py = field_predB[1];
384  } else {
385  px = 0;
386  py = 0;
387  }
388 
389  if (num_samefield + num_oppfield > 1) {
390  px = mid_pred(field_predA[0], field_predB[0], field_predC[0]);
391  py = mid_pred(field_predA[1], field_predB[1], field_predC[1]);
392  }
393 
394  /* Pullback MV as specified in 8.3.5.3.4 */
395  if (!v->field_mode) {
396  int qx, qy, X, Y;
397  int MV = mv1 ? -60 : -28;
398  qx = (s->mb_x << 6) + ((n == 1 || n == 3) ? 32 : 0);
399  qy = (s->mb_y << 6) + ((n == 2 || n == 3) ? 32 : 0);
400  X = (s->mb_width << 6) - 4;
401  Y = (s->mb_height << 6) - 4;
402  if (qx + px < MV) px = MV - qx;
403  if (qy + py < MV) py = MV - qy;
404  if (qx + px > X) px = X - qx;
405  if (qy + py > Y) py = Y - qy;
406  }
407 
408  if (!v->field_mode || s->pict_type != AV_PICTURE_TYPE_B) {
409  /* Calculate hybrid prediction as specified in 8.3.5.3.5 (also 10.3.5.4.3.5) */
410  hybridmv_thresh = 32;
411  if (a_valid && c_valid) {
412  if (is_intra[xy - wrap])
413  sum = FFABS(px) + FFABS(py);
414  else
415  sum = FFABS(px - field_predA[0]) + FFABS(py - field_predA[1]);
416  if (sum > hybridmv_thresh) {
417  if (get_bits1(&s->gb)) { // read HYBRIDPRED bit
418  px = field_predA[0];
419  py = field_predA[1];
420  } else {
421  px = field_predC[0];
422  py = field_predC[1];
423  }
424  } else {
425  if (is_intra[xy - 1])
426  sum = FFABS(px) + FFABS(py);
427  else
428  sum = FFABS(px - field_predC[0]) + FFABS(py - field_predC[1]);
429  if (sum > hybridmv_thresh) {
430  if (get_bits1(&s->gb)) {
431  px = field_predA[0];
432  py = field_predA[1];
433  } else {
434  px = field_predC[0];
435  py = field_predC[1];
436  }
437  }
438  }
439  }
440  }
441 
442  if (v->field_mode && v->numref)
443  r_y >>= 1;
444  if (v->field_mode && v->cur_field_type && v->ref_field_type[dir] == 0)
445  y_bias = 1;
446  /* store MV using signed modulus of MV range defined in 4.11 */
447  s->mv[dir][n][0] = s->current_picture.motion_val[dir][xy + v->blocks_off][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
448  s->mv[dir][n][1] = s->current_picture.motion_val[dir][xy + v->blocks_off][1] = ((py + dmv_y + r_y - y_bias) & ((r_y << 1) - 1)) - r_y + y_bias;
449  if (mv1) { /* duplicate motion data for 1-MV block */
450  s->current_picture.motion_val[dir][xy + 1 + v->blocks_off][0] = s->current_picture.motion_val[dir][xy + v->blocks_off][0];
451  s->current_picture.motion_val[dir][xy + 1 + v->blocks_off][1] = s->current_picture.motion_val[dir][xy + v->blocks_off][1];
452  s->current_picture.motion_val[dir][xy + wrap + v->blocks_off][0] = s->current_picture.motion_val[dir][xy + v->blocks_off][0];
453  s->current_picture.motion_val[dir][xy + wrap + v->blocks_off][1] = s->current_picture.motion_val[dir][xy + v->blocks_off][1];
454  s->current_picture.motion_val[dir][xy + wrap + 1 + v->blocks_off][0] = s->current_picture.motion_val[dir][xy + v->blocks_off][0];
455  s->current_picture.motion_val[dir][xy + wrap + 1 + v->blocks_off][1] = s->current_picture.motion_val[dir][xy + v->blocks_off][1];
456  v->mv_f[dir][xy + 1 + v->blocks_off] = v->mv_f[dir][xy + v->blocks_off];
457  v->mv_f[dir][xy + wrap + v->blocks_off] = v->mv_f[dir][xy + wrap + 1 + v->blocks_off] = v->mv_f[dir][xy + v->blocks_off];
458  }
459 }
460 
461 /** Predict and set motion vector for interlaced frame picture MBs
462  */
463 void ff_vc1_pred_mv_intfr(VC1Context *v, int n, int dmv_x, int dmv_y,
464  int mvn, int r_x, int r_y, uint8_t* is_intra, int dir)
465 {
466  MpegEncContext *s = &v->s;
467  int xy, wrap, off = 0;
468  int A[2], B[2], C[2];
469  int px = 0, py = 0;
470  int a_valid = 0, b_valid = 0, c_valid = 0;
471  int field_a, field_b, field_c; // 0: same, 1: opposite
472  int total_valid, num_samefield, num_oppfield;
473  int pos_c, pos_b, n_adj;
474 
475  wrap = s->b8_stride;
476  xy = s->block_index[n];
477 
478  if (s->mb_intra) {
479  s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0;
480  s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0;
481  s->current_picture.motion_val[1][xy][0] = 0;
482  s->current_picture.motion_val[1][xy][1] = 0;
483  if (mvn == 1) { /* duplicate motion data for 1-MV block */
484  s->current_picture.motion_val[0][xy + 1][0] = 0;
485  s->current_picture.motion_val[0][xy + 1][1] = 0;
486  s->current_picture.motion_val[0][xy + wrap][0] = 0;
487  s->current_picture.motion_val[0][xy + wrap][1] = 0;
488  s->current_picture.motion_val[0][xy + wrap + 1][0] = 0;
489  s->current_picture.motion_val[0][xy + wrap + 1][1] = 0;
490  v->luma_mv[s->mb_x][0] = v->luma_mv[s->mb_x][1] = 0;
491  s->current_picture.motion_val[1][xy + 1][0] = 0;
492  s->current_picture.motion_val[1][xy + 1][1] = 0;
493  s->current_picture.motion_val[1][xy + wrap][0] = 0;
494  s->current_picture.motion_val[1][xy + wrap][1] = 0;
495  s->current_picture.motion_val[1][xy + wrap + 1][0] = 0;
496  s->current_picture.motion_val[1][xy + wrap + 1][1] = 0;
497  }
498  return;
499  }
500 
501  off = ((n == 0) || (n == 1)) ? 1 : -1;
502  /* predict A */
503  if (s->mb_x || (n == 1) || (n == 3)) {
504  if ((v->blk_mv_type[xy]) // current block (MB) has a field MV
505  || (!v->blk_mv_type[xy] && !v->blk_mv_type[xy - 1])) { // or both have frame MV
506  A[0] = s->current_picture.motion_val[dir][xy - 1][0];
507  A[1] = s->current_picture.motion_val[dir][xy - 1][1];
508  a_valid = 1;
509  } else { // current block has frame mv and cand. has field MV (so average)
510  A[0] = (s->current_picture.motion_val[dir][xy - 1][0]
511  + s->current_picture.motion_val[dir][xy - 1 + off * wrap][0] + 1) >> 1;
512  A[1] = (s->current_picture.motion_val[dir][xy - 1][1]
513  + s->current_picture.motion_val[dir][xy - 1 + off * wrap][1] + 1) >> 1;
514  a_valid = 1;
515  }
516  if (!(n & 1) && v->is_intra[s->mb_x - 1]) {
517  a_valid = 0;
518  A[0] = A[1] = 0;
519  }
520  } else
521  A[0] = A[1] = 0;
522  /* Predict B and C */
523  B[0] = B[1] = C[0] = C[1] = 0;
524  if (n == 0 || n == 1 || v->blk_mv_type[xy]) {
525  if (!s->first_slice_line) {
526  if (!v->is_intra[s->mb_x - s->mb_stride]) {
527  b_valid = 1;
528  n_adj = n | 2;
529  pos_b = s->block_index[n_adj] - 2 * wrap;
530  if (v->blk_mv_type[pos_b] && v->blk_mv_type[xy]) {
531  n_adj = (n & 2) | (n & 1);
532  }
533  B[0] = s->current_picture.motion_val[dir][s->block_index[n_adj] - 2 * wrap][0];
534  B[1] = s->current_picture.motion_val[dir][s->block_index[n_adj] - 2 * wrap][1];
535  if (v->blk_mv_type[pos_b] && !v->blk_mv_type[xy]) {
536  B[0] = (B[0] + s->current_picture.motion_val[dir][s->block_index[n_adj ^ 2] - 2 * wrap][0] + 1) >> 1;
537  B[1] = (B[1] + s->current_picture.motion_val[dir][s->block_index[n_adj ^ 2] - 2 * wrap][1] + 1) >> 1;
538  }
539  }
540  if (s->mb_width > 1) {
541  if (!v->is_intra[s->mb_x - s->mb_stride + 1]) {
542  c_valid = 1;
543  n_adj = 2;
544  pos_c = s->block_index[2] - 2 * wrap + 2;
545  if (v->blk_mv_type[pos_c] && v->blk_mv_type[xy]) {
546  n_adj = n & 2;
547  }
548  C[0] = s->current_picture.motion_val[dir][s->block_index[n_adj] - 2 * wrap + 2][0];
549  C[1] = s->current_picture.motion_val[dir][s->block_index[n_adj] - 2 * wrap + 2][1];
550  if (v->blk_mv_type[pos_c] && !v->blk_mv_type[xy]) {
551  C[0] = (1 + C[0] + (s->current_picture.motion_val[dir][s->block_index[n_adj ^ 2] - 2 * wrap + 2][0])) >> 1;
552  C[1] = (1 + C[1] + (s->current_picture.motion_val[dir][s->block_index[n_adj ^ 2] - 2 * wrap + 2][1])) >> 1;
553  }
554  if (s->mb_x == s->mb_width - 1) {
555  if (!v->is_intra[s->mb_x - s->mb_stride - 1]) {
556  c_valid = 1;
557  n_adj = 3;
558  pos_c = s->block_index[3] - 2 * wrap - 2;
559  if (v->blk_mv_type[pos_c] && v->blk_mv_type[xy]) {
560  n_adj = n | 1;
561  }
562  C[0] = s->current_picture.motion_val[dir][s->block_index[n_adj] - 2 * wrap - 2][0];
563  C[1] = s->current_picture.motion_val[dir][s->block_index[n_adj] - 2 * wrap - 2][1];
564  if (v->blk_mv_type[pos_c] && !v->blk_mv_type[xy]) {
565  C[0] = (1 + C[0] + s->current_picture.motion_val[dir][s->block_index[1] - 2 * wrap - 2][0]) >> 1;
566  C[1] = (1 + C[1] + s->current_picture.motion_val[dir][s->block_index[1] - 2 * wrap - 2][1]) >> 1;
567  }
568  } else
569  c_valid = 0;
570  }
571  }
572  }
573  }
574  } else {
575  pos_b = s->block_index[1];
576  b_valid = 1;
577  B[0] = s->current_picture.motion_val[dir][pos_b][0];
578  B[1] = s->current_picture.motion_val[dir][pos_b][1];
579  pos_c = s->block_index[0];
580  c_valid = 1;
581  C[0] = s->current_picture.motion_val[dir][pos_c][0];
582  C[1] = s->current_picture.motion_val[dir][pos_c][1];
583  }
584 
585  total_valid = a_valid + b_valid + c_valid;
586  // check if predictor A is out of bounds
587  if (!s->mb_x && !(n == 1 || n == 3)) {
588  A[0] = A[1] = 0;
589  }
590  // check if predictor B is out of bounds
591  if ((s->first_slice_line && v->blk_mv_type[xy]) || (s->first_slice_line && !(n & 2))) {
592  B[0] = B[1] = C[0] = C[1] = 0;
593  }
594  if (!v->blk_mv_type[xy]) {
595  if (s->mb_width == 1) {
596  px = B[0];
597  py = B[1];
598  } else {
599  if (total_valid >= 2) {
600  px = mid_pred(A[0], B[0], C[0]);
601  py = mid_pred(A[1], B[1], C[1]);
602  } else if (total_valid) {
603  if (a_valid) { px = A[0]; py = A[1]; }
604  else if (b_valid) { px = B[0]; py = B[1]; }
605  else { px = C[0]; py = C[1]; }
606  }
607  }
608  } else {
609  if (a_valid)
610  field_a = (A[1] & 4) ? 1 : 0;
611  else
612  field_a = 0;
613  if (b_valid)
614  field_b = (B[1] & 4) ? 1 : 0;
615  else
616  field_b = 0;
617  if (c_valid)
618  field_c = (C[1] & 4) ? 1 : 0;
619  else
620  field_c = 0;
621 
622  num_oppfield = field_a + field_b + field_c;
623  num_samefield = total_valid - num_oppfield;
624  if (total_valid == 3) {
625  if ((num_samefield == 3) || (num_oppfield == 3)) {
626  px = mid_pred(A[0], B[0], C[0]);
627  py = mid_pred(A[1], B[1], C[1]);
628  } else if (num_samefield >= num_oppfield) {
629  /* take one MV from same field set depending on priority
630  the check for B may not be necessary */
631  px = !field_a ? A[0] : B[0];
632  py = !field_a ? A[1] : B[1];
633  } else {
634  px = field_a ? A[0] : B[0];
635  py = field_a ? A[1] : B[1];
636  }
637  } else if (total_valid == 2) {
638  if (num_samefield >= num_oppfield) {
639  if (!field_a && a_valid) {
640  px = A[0];
641  py = A[1];
642  } else if (!field_b && b_valid) {
643  px = B[0];
644  py = B[1];
645  } else /*if (c_valid)*/ {
646  av_assert1(c_valid);
647  px = C[0];
648  py = C[1];
649  }
650  } else {
651  if (field_a && a_valid) {
652  px = A[0];
653  py = A[1];
654  } else /*if (field_b && b_valid)*/ {
655  av_assert1(field_b && b_valid);
656  px = B[0];
657  py = B[1];
658  }
659  }
660  } else if (total_valid == 1) {
661  px = (a_valid) ? A[0] : ((b_valid) ? B[0] : C[0]);
662  py = (a_valid) ? A[1] : ((b_valid) ? B[1] : C[1]);
663  }
664  }
665 
666  /* store MV using signed modulus of MV range defined in 4.11 */
667  s->mv[dir][n][0] = s->current_picture.motion_val[dir][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
668  s->mv[dir][n][1] = s->current_picture.motion_val[dir][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
669  if (mvn == 1) { /* duplicate motion data for 1-MV block */
670  s->current_picture.motion_val[dir][xy + 1 ][0] = s->current_picture.motion_val[dir][xy][0];
671  s->current_picture.motion_val[dir][xy + 1 ][1] = s->current_picture.motion_val[dir][xy][1];
672  s->current_picture.motion_val[dir][xy + wrap ][0] = s->current_picture.motion_val[dir][xy][0];
673  s->current_picture.motion_val[dir][xy + wrap ][1] = s->current_picture.motion_val[dir][xy][1];
674  s->current_picture.motion_val[dir][xy + wrap + 1][0] = s->current_picture.motion_val[dir][xy][0];
675  s->current_picture.motion_val[dir][xy + wrap + 1][1] = s->current_picture.motion_val[dir][xy][1];
676  } else if (mvn == 2) { /* duplicate motion data for 2-Field MV block */
677  s->current_picture.motion_val[dir][xy + 1][0] = s->current_picture.motion_val[dir][xy][0];
678  s->current_picture.motion_val[dir][xy + 1][1] = s->current_picture.motion_val[dir][xy][1];
679  s->mv[dir][n + 1][0] = s->mv[dir][n][0];
680  s->mv[dir][n + 1][1] = s->mv[dir][n][1];
681  }
682 }
683 
684 void ff_vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2],
685  int direct, int mvtype)
686 {
687  MpegEncContext *s = &v->s;
688  int xy, wrap, off = 0;
689  int16_t *A, *B, *C;
690  int px, py;
691  int sum;
692  int r_x, r_y;
693  const uint8_t *is_intra = v->mb_type[0];
694 
695  av_assert0(!v->field_mode);
696 
697  r_x = v->range_x;
698  r_y = v->range_y;
699  /* scale MV difference to be quad-pel */
700  if (!s->quarter_sample) {
701  dmv_x[0] *= 2;
702  dmv_y[0] *= 2;
703  dmv_x[1] *= 2;
704  dmv_y[1] *= 2;
705  }
706 
707  wrap = s->b8_stride;
708  xy = s->block_index[0];
709 
710  if (s->mb_intra) {
711  s->current_picture.motion_val[0][xy][0] =
712  s->current_picture.motion_val[0][xy][1] =
713  s->current_picture.motion_val[1][xy][0] =
714  s->current_picture.motion_val[1][xy][1] = 0;
715  return;
716  }
717  if (direct && s->next_picture_ptr->field_picture)
718  av_log(s->avctx, AV_LOG_WARNING, "Mixed frame/field direct mode not supported\n");
719 
720  s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample);
721  s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample);
722  s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample);
723  s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample);
724 
725  /* Pullback predicted motion vectors as specified in 8.4.5.4 */
726  s->mv[0][0][0] = av_clip(s->mv[0][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
727  s->mv[0][0][1] = av_clip(s->mv[0][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
728  s->mv[1][0][0] = av_clip(s->mv[1][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
729  s->mv[1][0][1] = av_clip(s->mv[1][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
730  if (direct) {
731  s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
732  s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
733  s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
734  s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
735  return;
736  }
737 
738  if ((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
739  C = s->current_picture.motion_val[0][xy - 2];
740  A = s->current_picture.motion_val[0][xy - wrap * 2];
741  off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
742  B = s->current_picture.motion_val[0][xy - wrap * 2 + off];
743 
744  if (!s->mb_x) C[0] = C[1] = 0;
745  if (!s->first_slice_line) { // predictor A is not out of bounds
746  if (s->mb_width == 1) {
747  px = A[0];
748  py = A[1];
749  } else {
750  px = mid_pred(A[0], B[0], C[0]);
751  py = mid_pred(A[1], B[1], C[1]);
752  }
753  } else if (s->mb_x) { // predictor C is not out of bounds
754  px = C[0];
755  py = C[1];
756  } else {
757  px = py = 0;
758  }
759  /* Pullback MV as specified in 8.3.5.3.4 */
760  {
761  int qx, qy, X, Y;
762  int sh = v->profile < PROFILE_ADVANCED ? 5 : 6;
763  int MV = 4 - (1 << sh);
764  qx = (s->mb_x << sh);
765  qy = (s->mb_y << sh);
766  X = (s->mb_width << sh) - 4;
767  Y = (s->mb_height << sh) - 4;
768  if (qx + px < MV) px = MV - qx;
769  if (qy + py < MV) py = MV - qy;
770  if (qx + px > X) px = X - qx;
771  if (qy + py > Y) py = Y - qy;
772  }
773  /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
774  if (0 && !s->first_slice_line && s->mb_x) {
775  if (is_intra[xy - wrap])
776  sum = FFABS(px) + FFABS(py);
777  else
778  sum = FFABS(px - A[0]) + FFABS(py - A[1]);
779  if (sum > 32) {
780  if (get_bits1(&s->gb)) {
781  px = A[0];
782  py = A[1];
783  } else {
784  px = C[0];
785  py = C[1];
786  }
787  } else {
788  if (is_intra[xy - 2])
789  sum = FFABS(px) + FFABS(py);
790  else
791  sum = FFABS(px - C[0]) + FFABS(py - C[1]);
792  if (sum > 32) {
793  if (get_bits1(&s->gb)) {
794  px = A[0];
795  py = A[1];
796  } else {
797  px = C[0];
798  py = C[1];
799  }
800  }
801  }
802  }
803  /* store MV using signed modulus of MV range defined in 4.11 */
804  s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x;
805  s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y;
806  }
807  if ((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
808  C = s->current_picture.motion_val[1][xy - 2];
809  A = s->current_picture.motion_val[1][xy - wrap * 2];
810  off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
811  B = s->current_picture.motion_val[1][xy - wrap * 2 + off];
812 
813  if (!s->mb_x)
814  C[0] = C[1] = 0;
815  if (!s->first_slice_line) { // predictor A is not out of bounds
816  if (s->mb_width == 1) {
817  px = A[0];
818  py = A[1];
819  } else {
820  px = mid_pred(A[0], B[0], C[0]);
821  py = mid_pred(A[1], B[1], C[1]);
822  }
823  } else if (s->mb_x) { // predictor C is not out of bounds
824  px = C[0];
825  py = C[1];
826  } else {
827  px = py = 0;
828  }
829  /* Pullback MV as specified in 8.3.5.3.4 */
830  {
831  int qx, qy, X, Y;
832  int sh = v->profile < PROFILE_ADVANCED ? 5 : 6;
833  int MV = 4 - (1 << sh);
834  qx = (s->mb_x << sh);
835  qy = (s->mb_y << sh);
836  X = (s->mb_width << sh) - 4;
837  Y = (s->mb_height << sh) - 4;
838  if (qx + px < MV) px = MV - qx;
839  if (qy + py < MV) py = MV - qy;
840  if (qx + px > X) px = X - qx;
841  if (qy + py > Y) py = Y - qy;
842  }
843  /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
844  if (0 && !s->first_slice_line && s->mb_x) {
845  if (is_intra[xy - wrap])
846  sum = FFABS(px) + FFABS(py);
847  else
848  sum = FFABS(px - A[0]) + FFABS(py - A[1]);
849  if (sum > 32) {
850  if (get_bits1(&s->gb)) {
851  px = A[0];
852  py = A[1];
853  } else {
854  px = C[0];
855  py = C[1];
856  }
857  } else {
858  if (is_intra[xy - 2])
859  sum = FFABS(px) + FFABS(py);
860  else
861  sum = FFABS(px - C[0]) + FFABS(py - C[1]);
862  if (sum > 32) {
863  if (get_bits1(&s->gb)) {
864  px = A[0];
865  py = A[1];
866  } else {
867  px = C[0];
868  py = C[1];
869  }
870  }
871  }
872  }
873  /* store MV using signed modulus of MV range defined in 4.11 */
874 
875  s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x;
876  s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y;
877  }
878  s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
879  s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
880  s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
881  s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
882 }
883 
884 void ff_vc1_pred_b_mv_intfi(VC1Context *v, int n, int *dmv_x, int *dmv_y,
885  int mv1, int *pred_flag)
886 {
887  int dir = (v->bmvtype == BMV_TYPE_BACKWARD) ? 1 : 0;
888  MpegEncContext *s = &v->s;
889  int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
890 
891  if (v->bmvtype == BMV_TYPE_DIRECT) {
892  int total_opp, k, f;
893  if (s->next_picture.mb_type[mb_pos + v->mb_off] != MB_TYPE_INTRA) {
894  s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][s->block_index[0] + v->blocks_off][0],
895  v->bfraction, 0, s->quarter_sample);
896  s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][s->block_index[0] + v->blocks_off][1],
897  v->bfraction, 0, s->quarter_sample);
898  s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][s->block_index[0] + v->blocks_off][0],
899  v->bfraction, 1, s->quarter_sample);
900  s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][s->block_index[0] + v->blocks_off][1],
901  v->bfraction, 1, s->quarter_sample);
902 
903  total_opp = v->mv_f_next[0][s->block_index[0] + v->blocks_off]
904  + v->mv_f_next[0][s->block_index[1] + v->blocks_off]
905  + v->mv_f_next[0][s->block_index[2] + v->blocks_off]
906  + v->mv_f_next[0][s->block_index[3] + v->blocks_off];
907  f = (total_opp > 2) ? 1 : 0;
908  } else {
909  s->mv[0][0][0] = s->mv[0][0][1] = 0;
910  s->mv[1][0][0] = s->mv[1][0][1] = 0;
911  f = 0;
912  }
913  v->ref_field_type[0] = v->ref_field_type[1] = v->cur_field_type ^ f;
914  for (k = 0; k < 4; k++) {
915  s->current_picture.motion_val[0][s->block_index[k] + v->blocks_off][0] = s->mv[0][0][0];
916  s->current_picture.motion_val[0][s->block_index[k] + v->blocks_off][1] = s->mv[0][0][1];
917  s->current_picture.motion_val[1][s->block_index[k] + v->blocks_off][0] = s->mv[1][0][0];
918  s->current_picture.motion_val[1][s->block_index[k] + v->blocks_off][1] = s->mv[1][0][1];
919  v->mv_f[0][s->block_index[k] + v->blocks_off] = f;
920  v->mv_f[1][s->block_index[k] + v->blocks_off] = f;
921  }
922  return;
923  }
924  if (v->bmvtype == BMV_TYPE_INTERPOLATED) {
925  ff_vc1_pred_mv(v, 0, dmv_x[0], dmv_y[0], 1, v->range_x, v->range_y, v->mb_type[0], pred_flag[0], 0);
926  ff_vc1_pred_mv(v, 0, dmv_x[1], dmv_y[1], 1, v->range_x, v->range_y, v->mb_type[0], pred_flag[1], 1);
927  return;
928  }
929  if (dir) { // backward
930  ff_vc1_pred_mv(v, n, dmv_x[1], dmv_y[1], mv1, v->range_x, v->range_y, v->mb_type[0], pred_flag[1], 1);
931  if (n == 3 || mv1) {
932  ff_vc1_pred_mv(v, 0, dmv_x[0], dmv_y[0], 1, v->range_x, v->range_y, v->mb_type[0], 0, 0);
933  }
934  } else { // forward
935  ff_vc1_pred_mv(v, n, dmv_x[0], dmv_y[0], mv1, v->range_x, v->range_y, v->mb_type[0], pred_flag[0], 0);
936  if (n == 3 || mv1) {
937  ff_vc1_pred_mv(v, 0, dmv_x[1], dmv_y[1], 1, v->range_x, v->range_y, v->mb_type[0], 0, 1);
938  }
939  }
940 }
void ff_vc1_pred_mv(VC1Context *v, int n, int dmv_x, int dmv_y, int mv1, int r_x, int r_y, uint8_t *is_intra, int pred_flag, int dir)
Predict and set motion vector.
Definition: vc1_pred.c:211
const char * s
Definition: avisynth_c.h:631
The VC1 Context.
Definition: vc1.h:173
int reffield
if numref = 0 (1 reference) then reffield decides which
Definition: vc1.h:358
static av_always_inline int scaleforopp_x(VC1Context *v, int n)
Definition: vc1_pred.c:106
#define C
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:182
static av_always_inline int scaleforsame(VC1Context *v, int i, int n, int dim, int dir)
Definition: vc1_pred.c:164
int field_picture
whether or not the picture was encoded in separate fields
Definition: mpegpicture.h:79
#define MB_TYPE_INTRA
Definition: mpegutils.h:75
int frfd
Definition: vc1.h:367
mpegvideo header.
uint8_t * mv_f[2]
0: MV obtained from same field, 1: opposite field
Definition: vc1.h:350
int range_x
Definition: vc1.h:237
const uint16_t ff_vc1_b_field_mvpred_scales[7][4]
Definition: vc1data.c:1121
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
int refdist
distance of the current picture from reference
Definition: vc1.h:355
VC-1 tables.
void ff_vc1_pred_b_mv_intfi(VC1Context *v, int n, int *dmv_x, int *dmv_y, int mv1, int *pred_flag)
Definition: vc1_pred.c:884
uint8_t
#define Y
Definition: vf_boxblur.c:76
static av_always_inline int scaleforopp_y(VC1Context *v, int n, int dir)
Definition: vc1_pred.c:133
int second_field
Definition: vc1.h:354
Definition: vf_geq.c:46
Picture current_picture
copy of the current picture structure.
Definition: mpegvideo.h:177
int16_t bfraction
Relative position % anchors=> how to scale MVs.
Definition: vc1.h:272
int16_t((* luma_mv)[2]
Definition: vc1.h:388
int profile
Sequence header data for all Profiles TODO: choose between ints, uint8_ts and monobit flags...
Definition: vc1.h:218
int mb_height
number of MBs horizontally & vertically
Definition: mpegvideo.h:126
#define A(x)
Definition: vp56_arith.h:28
#define av_log(a,...)
int range_y
MV range.
Definition: vc1.h:237
static av_always_inline int scaleforsame_y(VC1Context *v, int i, int n, int dir)
Definition: vc1_pred.c:69
#define wrap(func)
Definition: neontest.h:65
int quarter_sample
1->qpel, 0->half pel ME/MC
Definition: mpegvideo.h:399
GetBitContext gb
Definition: mpegvideo.h:445
uint8_t * blk_mv_type
0: frame MV, 1: field MV (interlaced frame)
Definition: vc1.h:349
int cur_field_type
0: top, 1: bottom
Definition: vc1.h:362
#define av_assert1(cond)
assert() equivalent, that does not lie in speed critical code.
Definition: avassert.h:53
#define scale_mv(n, dim)
#define FFMIN(a, b)
Definition: common.h:96
int field_mode
1 for interlaced field pictures
Definition: vc1.h:352
uint8_t mv_mode
Frame decoding info for all profiles.
Definition: vc1.h:233
int16_t(*[2] motion_val)[2]
Definition: mpegpicture.h:53
int mb_off
Definition: vc1.h:364
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Definition: common.h:72
int n
Definition: avisynth_c.h:547
const uint16_t ff_vc1_field_mvpred_scales[2][7][4]
Definition: vc1data.c:1097
int block_index[6]
index to current MB in block based arrays with edges
Definition: mpegvideo.h:293
int first_slice_line
used in MPEG-4 too to handle resync markers
Definition: mpegvideo.h:433
static av_always_inline int scaleforsame_x(VC1Context *v, int n, int dir)
Definition: vc1_pred.c:36
uint8_t * is_intra
Definition: vc1.h:387
void ff_vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mvtype)
Definition: vc1_pred.c:684
static unsigned int get_bits1(GetBitContext *s)
Definition: get_bits.h:299
#define mid_pred
Definition: mathops.h:96
int dim
int ref_field_type[2]
forward and backward reference field type (top or bottom)
Definition: vc1.h:363
int pict_type
AV_PICTURE_TYPE_I, AV_PICTURE_TYPE_P, AV_PICTURE_TYPE_B, ...
Definition: mpegvideo.h:209
int numref
number of past field pictures used as reference
Definition: vc1.h:356
int blocks_off
Definition: vc1.h:364
int mv[2][4][2]
motion vectors for a macroblock first coordinate : 0 = forward 1 = backward second " : depend...
Definition: mpegvideo.h:276
int b8_stride
2*mb_width+1 used for some 8x8 block arrays to allow simple addressing
Definition: mpegvideo.h:128
MpegEncContext s
Definition: vc1.h:174
MpegEncContext.
Definition: mpegvideo.h:78
Picture * next_picture_ptr
pointer to the next picture (for bidir pred)
Definition: mpegvideo.h:180
struct AVCodecContext * avctx
Definition: mpegvideo.h:95
int mb_stride
mb_width+1 used for some arrays to allow simple addressing of left & top MBs without sig11 ...
Definition: mpegvideo.h:127
Bi-dir predicted.
Definition: avutil.h:268
void ff_vc1_pred_mv_intfr(VC1Context *v, int n, int dmv_x, int dmv_y, int mvn, int r_x, int r_y, uint8_t *is_intra, int dir)
Predict and set motion vector for interlaced frame picture MBs.
Definition: vc1_pred.c:463
int bmvtype
Definition: vc1.h:366
Picture next_picture
copy of the next picture structure.
Definition: mpegvideo.h:165
int brfd
reference frame distance (forward or backward)
Definition: vc1.h:367
uint32_t * mb_type
types and macros are defined in mpegutils.h
Definition: mpegpicture.h:56
#define av_always_inline
Definition: attributes.h:39
uint8_t mv_mode2
Secondary MV coding mode (B-frames)
Definition: vc1.h:234
uint8_t * mv_f_next[2]
Definition: vc1.h:351
uint8_t * mb_type[3]
Definition: vc1.h:264
static av_always_inline int scaleforopp(VC1Context *v, int n, int dim, int dir)
Definition: vc1_pred.c:185