FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
huffyuvenc.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2002-2014 Michael Niedermayer <michaelni@gmx.at>
3  *
4  * see http://www.pcisys.net/~melanson/codecs/huffyuv.txt for a description of
5  * the algorithm used
6  *
7  * This file is part of FFmpeg.
8  *
9  * FFmpeg is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public
11  * License as published by the Free Software Foundation; either
12  * version 2.1 of the License, or (at your option) any later version.
13  *
14  * FFmpeg is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with FFmpeg; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22  *
23  * yuva, gray, 4:4:4, 4:1:1, 4:1:0 and >8 bit per sample support sponsored by NOA
24  */
25 
26 /**
27  * @file
28  * huffyuv encoder
29  */
30 
31 #include "avcodec.h"
32 #include "huffyuv.h"
33 #include "huffman.h"
34 #include "huffyuvencdsp.h"
35 #include "internal.h"
36 #include "lossless_videoencdsp.h"
37 #include "put_bits.h"
38 #include "libavutil/opt.h"
39 #include "libavutil/pixdesc.h"
40 
41 static inline void diff_bytes(HYuvContext *s, uint8_t *dst,
42  const uint8_t *src0, const uint8_t *src1, int w)
43 {
44  if (s->bps <= 8) {
45  s->llvidencdsp.diff_bytes(dst, src0, src1, w);
46  } else {
47  s->hencdsp.diff_int16((uint16_t *)dst, (const uint16_t *)src0, (const uint16_t *)src1, s->n - 1, w);
48  }
49 }
50 
51 static inline int sub_left_prediction(HYuvContext *s, uint8_t *dst,
52  const uint8_t *src, int w, int left)
53 {
54  int i;
55  int min_width = FFMIN(w, 32);
56 
57  if (s->bps <= 8) {
58  for (i = 0; i < min_width; i++) { /* scalar loop before dsp call */
59  const int temp = src[i];
60  dst[i] = temp - left;
61  left = temp;
62  }
63  if (w < 32)
64  return left;
65  s->llvidencdsp.diff_bytes(dst + 32, src + 32, src + 31, w - 32);
66  return src[w-1];
67  } else {
68  const uint16_t *src16 = (const uint16_t *)src;
69  uint16_t *dst16 = ( uint16_t *)dst;
70  for (i = 0; i < min_width; i++) { /* scalar loop before dsp call */
71  const int temp = src16[i];
72  dst16[i] = temp - left;
73  left = temp;
74  }
75  if (w < 32)
76  return left;
77  s->hencdsp.diff_int16(dst16 + 32, src16 + 32, src16 + 31, s->n - 1, w - 32);
78  return src16[w-1];
79  }
80 }
81 
82 static inline void sub_left_prediction_bgr32(HYuvContext *s, uint8_t *dst,
83  const uint8_t *src, int w,
84  int *red, int *green, int *blue,
85  int *alpha)
86 {
87  int i;
88  int r, g, b, a;
89  int min_width = FFMIN(w, 8);
90  r = *red;
91  g = *green;
92  b = *blue;
93  a = *alpha;
94 
95  for (i = 0; i < min_width; i++) {
96  const int rt = src[i * 4 + R];
97  const int gt = src[i * 4 + G];
98  const int bt = src[i * 4 + B];
99  const int at = src[i * 4 + A];
100  dst[i * 4 + R] = rt - r;
101  dst[i * 4 + G] = gt - g;
102  dst[i * 4 + B] = bt - b;
103  dst[i * 4 + A] = at - a;
104  r = rt;
105  g = gt;
106  b = bt;
107  a = at;
108  }
109 
110  s->llvidencdsp.diff_bytes(dst + 32, src + 32, src + 32 - 4, w * 4 - 32);
111 
112  *red = src[(w - 1) * 4 + R];
113  *green = src[(w - 1) * 4 + G];
114  *blue = src[(w - 1) * 4 + B];
115  *alpha = src[(w - 1) * 4 + A];
116 }
117 
118 static inline void sub_left_prediction_rgb24(HYuvContext *s, uint8_t *dst,
119  uint8_t *src, int w,
120  int *red, int *green, int *blue)
121 {
122  int i;
123  int r, g, b;
124  r = *red;
125  g = *green;
126  b = *blue;
127  for (i = 0; i < FFMIN(w, 16); i++) {
128  const int rt = src[i * 3 + 0];
129  const int gt = src[i * 3 + 1];
130  const int bt = src[i * 3 + 2];
131  dst[i * 3 + 0] = rt - r;
132  dst[i * 3 + 1] = gt - g;
133  dst[i * 3 + 2] = bt - b;
134  r = rt;
135  g = gt;
136  b = bt;
137  }
138 
139  s->llvidencdsp.diff_bytes(dst + 48, src + 48, src + 48 - 3, w * 3 - 48);
140 
141  *red = src[(w - 1) * 3 + 0];
142  *green = src[(w - 1) * 3 + 1];
143  *blue = src[(w - 1) * 3 + 2];
144 }
145 
146 static void sub_median_prediction(HYuvContext *s, uint8_t *dst, const uint8_t *src1, const uint8_t *src2, int w, int *left, int *left_top)
147 {
148  if (s->bps <= 8) {
149  s->llvidencdsp.sub_median_pred(dst, src1, src2, w , left, left_top);
150  } else {
151  s->hencdsp.sub_hfyu_median_pred_int16((uint16_t *)dst, (const uint16_t *)src1, (const uint16_t *)src2, s->n - 1, w , left, left_top);
152  }
153 }
154 
156 {
157  int i;
158  int index = 0;
159  int n = s->vlc_n;
160 
161  for (i = 0; i < n;) {
162  int val = len[i];
163  int repeat = 0;
164 
165  for (; i < n && len[i] == val && repeat < 255; i++)
166  repeat++;
167 
168  av_assert0(val < 32 && val >0 && repeat < 256 && repeat>0);
169  if (repeat > 7) {
170  buf[index++] = val;
171  buf[index++] = repeat;
172  } else {
173  buf[index++] = val | (repeat << 5);
174  }
175  }
176 
177  return index;
178 }
179 
181 {
182  int i, ret;
183  int size = 0;
184  int count = 3;
185 
186  if (s->version > 2)
187  count = 1 + s->alpha + 2*s->chroma;
188 
189  for (i = 0; i < count; i++) {
190  if ((ret = ff_huff_gen_len_table(s->len[i], s->stats[i], s->vlc_n, 0)) < 0)
191  return ret;
192 
193  if (ff_huffyuv_generate_bits_table(s->bits[i], s->len[i], s->vlc_n) < 0) {
194  return -1;
195  }
196 
197  size += store_table(s, s->len[i], buf + size);
198  }
199  return size;
200 }
201 
203 {
204  HYuvContext *s = avctx->priv_data;
205  int i, j;
206  int ret;
208 
209  ff_huffyuv_common_init(avctx);
210  ff_huffyuvencdsp_init(&s->hencdsp, avctx);
212 
213  avctx->extradata = av_mallocz(3*MAX_N + 4);
214  if (s->flags&AV_CODEC_FLAG_PASS1) {
215 #define STATS_OUT_SIZE 21*MAX_N*3 + 4
216  avctx->stats_out = av_mallocz(STATS_OUT_SIZE); // 21*256*3(%llu ) + 3(\n) + 1(0) = 16132
217  if (!avctx->stats_out)
218  return AVERROR(ENOMEM);
219  }
220  s->version = 2;
221 
222  if (!avctx->extradata)
223  return AVERROR(ENOMEM);
224 
225 #if FF_API_CODED_FRAME
228  avctx->coded_frame->key_frame = 1;
230 #endif
231 #if FF_API_PRIVATE_OPT
233  if (avctx->context_model == 1)
234  s->context = avctx->context_model;
236 #endif
237 
238  s->bps = desc->comp[0].depth;
239  s->yuv = !(desc->flags & AV_PIX_FMT_FLAG_RGB) && desc->nb_components >= 2;
240  s->chroma = desc->nb_components > 2;
241  s->alpha = !!(desc->flags & AV_PIX_FMT_FLAG_ALPHA);
243  &s->chroma_h_shift,
244  &s->chroma_v_shift);
245 
246  switch (avctx->pix_fmt) {
247  case AV_PIX_FMT_YUV420P:
248  case AV_PIX_FMT_YUV422P:
249  if (s->width & 1) {
250  av_log(avctx, AV_LOG_ERROR, "Width must be even for this colorspace.\n");
251  return AVERROR(EINVAL);
252  }
253  s->bitstream_bpp = avctx->pix_fmt == AV_PIX_FMT_YUV420P ? 12 : 16;
254  break;
255  case AV_PIX_FMT_YUV444P:
256  case AV_PIX_FMT_YUV410P:
257  case AV_PIX_FMT_YUV411P:
258  case AV_PIX_FMT_YUV440P:
259  case AV_PIX_FMT_GBRP:
260  case AV_PIX_FMT_GBRP9:
261  case AV_PIX_FMT_GBRP10:
262  case AV_PIX_FMT_GBRP12:
263  case AV_PIX_FMT_GBRP14:
264  case AV_PIX_FMT_GBRP16:
265  case AV_PIX_FMT_GRAY8:
266  case AV_PIX_FMT_GRAY16:
267  case AV_PIX_FMT_YUVA444P:
268  case AV_PIX_FMT_YUVA420P:
269  case AV_PIX_FMT_YUVA422P:
270  case AV_PIX_FMT_GBRAP:
271  case AV_PIX_FMT_GRAY8A:
272  case AV_PIX_FMT_YUV420P9:
277  case AV_PIX_FMT_YUV422P9:
282  case AV_PIX_FMT_YUV444P9:
296  s->version = 3;
297  break;
298  case AV_PIX_FMT_RGB32:
299  s->bitstream_bpp = 32;
300  break;
301  case AV_PIX_FMT_RGB24:
302  s->bitstream_bpp = 24;
303  break;
304  default:
305  av_log(avctx, AV_LOG_ERROR, "format not supported\n");
306  return AVERROR(EINVAL);
307  }
308  s->n = 1<<s->bps;
309  s->vlc_n = FFMIN(s->n, MAX_VLC_N);
310 
312  s->decorrelate = s->bitstream_bpp >= 24 && !s->yuv && !(desc->flags & AV_PIX_FMT_FLAG_PLANAR);
313 #if FF_API_PRIVATE_OPT
315  if (avctx->prediction_method)
316  s->predictor = avctx->prediction_method;
318 #endif
319  s->interlaced = avctx->flags & AV_CODEC_FLAG_INTERLACED_ME ? 1 : 0;
320  if (s->context) {
322  av_log(avctx, AV_LOG_ERROR,
323  "context=1 is not compatible with "
324  "2 pass huffyuv encoding\n");
325  return AVERROR(EINVAL);
326  }
327  }
328 
329  if (avctx->codec->id == AV_CODEC_ID_HUFFYUV) {
330  if (avctx->pix_fmt == AV_PIX_FMT_YUV420P) {
331  av_log(avctx, AV_LOG_ERROR,
332  "Error: YV12 is not supported by huffyuv; use "
333  "vcodec=ffvhuff or format=422p\n");
334  return AVERROR(EINVAL);
335  }
336 #if FF_API_PRIVATE_OPT
337  if (s->context) {
338  av_log(avctx, AV_LOG_ERROR,
339  "Error: per-frame huffman tables are not supported "
340  "by huffyuv; use vcodec=ffvhuff\n");
341  return AVERROR(EINVAL);
342  }
343  if (s->version > 2) {
344  av_log(avctx, AV_LOG_ERROR,
345  "Error: ver>2 is not supported "
346  "by huffyuv; use vcodec=ffvhuff\n");
347  return AVERROR(EINVAL);
348  }
349 #endif
350  if (s->interlaced != ( s->height > 288 ))
351  av_log(avctx, AV_LOG_INFO,
352  "using huffyuv 2.2.0 or newer interlacing flag\n");
353  }
354 
356  av_log(avctx, AV_LOG_ERROR, "Ver > 3 is under development, files encoded with it may not be decodable with future versions!!!\n"
357  "Use vstrict=-2 / -strict -2 to use it anyway.\n");
358  return AVERROR(EINVAL);
359  }
360 
361  if (s->bitstream_bpp >= 24 && s->predictor == MEDIAN && s->version <= 2) {
362  av_log(avctx, AV_LOG_ERROR,
363  "Error: RGB is incompatible with median predictor\n");
364  return AVERROR(EINVAL);
365  }
366 
367  ((uint8_t*)avctx->extradata)[0] = s->predictor | (s->decorrelate << 6);
368  ((uint8_t*)avctx->extradata)[2] = s->interlaced ? 0x10 : 0x20;
369  if (s->context)
370  ((uint8_t*)avctx->extradata)[2] |= 0x40;
371  if (s->version < 3) {
372  ((uint8_t*)avctx->extradata)[1] = s->bitstream_bpp;
373  ((uint8_t*)avctx->extradata)[3] = 0;
374  } else {
375  ((uint8_t*)avctx->extradata)[1] = ((s->bps-1)<<4) | s->chroma_h_shift | (s->chroma_v_shift<<2);
376  if (s->chroma)
377  ((uint8_t*)avctx->extradata)[2] |= s->yuv ? 1 : 2;
378  if (s->alpha)
379  ((uint8_t*)avctx->extradata)[2] |= 4;
380  ((uint8_t*)avctx->extradata)[3] = 1;
381  }
382  s->avctx->extradata_size = 4;
383 
384  if (avctx->stats_in) {
385  char *p = avctx->stats_in;
386 
387  for (i = 0; i < 4; i++)
388  for (j = 0; j < s->vlc_n; j++)
389  s->stats[i][j] = 1;
390 
391  for (;;) {
392  for (i = 0; i < 4; i++) {
393  char *next;
394 
395  for (j = 0; j < s->vlc_n; j++) {
396  s->stats[i][j] += strtol(p, &next, 0);
397  if (next == p) return -1;
398  p = next;
399  }
400  }
401  if (p[0] == 0 || p[1] == 0 || p[2] == 0) break;
402  }
403  } else {
404  for (i = 0; i < 4; i++)
405  for (j = 0; j < s->vlc_n; j++) {
406  int d = FFMIN(j, s->vlc_n - j);
407 
408  s->stats[i][j] = 100000000 / (d*d + 1);
409  }
410  }
411 
413  if (ret < 0)
414  return ret;
415  s->avctx->extradata_size += ret;
416 
417  if (s->context) {
418  for (i = 0; i < 4; i++) {
419  int pels = s->width * s->height / (i ? 40 : 10);
420  for (j = 0; j < s->vlc_n; j++) {
421  int d = FFMIN(j, s->vlc_n - j);
422  s->stats[i][j] = pels/(d*d + 1);
423  }
424  }
425  } else {
426  for (i = 0; i < 4; i++)
427  for (j = 0; j < s->vlc_n; j++)
428  s->stats[i][j]= 0;
429  }
430 
431  if (ff_huffyuv_alloc_temp(s)) {
433  return AVERROR(ENOMEM);
434  }
435 
436  s->picture_number=0;
437 
438  return 0;
439 }
441 {
442  int i;
443  const uint8_t *y = s->temp[0] + offset;
444  const uint8_t *u = s->temp[1] + offset / 2;
445  const uint8_t *v = s->temp[2] + offset / 2;
446 
447  if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) < 2 * 4 * count) {
448  av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
449  return -1;
450  }
451 
452 #define LOAD4\
453  int y0 = y[2 * i];\
454  int y1 = y[2 * i + 1];\
455  int u0 = u[i];\
456  int v0 = v[i];
457 
458  count /= 2;
459 
460  if (s->flags & AV_CODEC_FLAG_PASS1) {
461  for(i = 0; i < count; i++) {
462  LOAD4;
463  s->stats[0][y0]++;
464  s->stats[1][u0]++;
465  s->stats[0][y1]++;
466  s->stats[2][v0]++;
467  }
468  }
470  return 0;
471  if (s->context) {
472  for (i = 0; i < count; i++) {
473  LOAD4;
474  s->stats[0][y0]++;
475  put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
476  s->stats[1][u0]++;
477  put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
478  s->stats[0][y1]++;
479  put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
480  s->stats[2][v0]++;
481  put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
482  }
483  } else {
484  for(i = 0; i < count; i++) {
485  LOAD4;
486  put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
487  put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
488  put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
489  put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
490  }
491  }
492  return 0;
493 }
494 
496 {
497  int i, count = width/2;
498 
499  if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) < count * s->bps / 2) {
500  av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
501  return -1;
502  }
503 
504 #define LOADEND\
505  int y0 = s->temp[0][width-1];
506 #define LOADEND_14\
507  int y0 = s->temp16[0][width-1] & mask;
508 #define LOADEND_16\
509  int y0 = s->temp16[0][width-1];
510 #define STATEND\
511  s->stats[plane][y0]++;
512 #define STATEND_16\
513  s->stats[plane][y0>>2]++;
514 #define WRITEEND\
515  put_bits(&s->pb, s->len[plane][y0], s->bits[plane][y0]);
516 #define WRITEEND_16\
517  put_bits(&s->pb, s->len[plane][y0>>2], s->bits[plane][y0>>2]);\
518  put_bits(&s->pb, 2, y0&3);
519 
520 #define LOAD2\
521  int y0 = s->temp[0][2 * i];\
522  int y1 = s->temp[0][2 * i + 1];
523 #define LOAD2_14\
524  int y0 = s->temp16[0][2 * i] & mask;\
525  int y1 = s->temp16[0][2 * i + 1] & mask;
526 #define LOAD2_16\
527  int y0 = s->temp16[0][2 * i];\
528  int y1 = s->temp16[0][2 * i + 1];
529 #define STAT2\
530  s->stats[plane][y0]++;\
531  s->stats[plane][y1]++;
532 #define STAT2_16\
533  s->stats[plane][y0>>2]++;\
534  s->stats[plane][y1>>2]++;
535 #define WRITE2\
536  put_bits(&s->pb, s->len[plane][y0], s->bits[plane][y0]);\
537  put_bits(&s->pb, s->len[plane][y1], s->bits[plane][y1]);
538 #define WRITE2_16\
539  put_bits(&s->pb, s->len[plane][y0>>2], s->bits[plane][y0>>2]);\
540  put_bits(&s->pb, 2, y0&3);\
541  put_bits(&s->pb, s->len[plane][y1>>2], s->bits[plane][y1>>2]);\
542  put_bits(&s->pb, 2, y1&3);
543 
544  if (s->bps <= 8) {
545  if (s->flags & AV_CODEC_FLAG_PASS1) {
546  for (i = 0; i < count; i++) {
547  LOAD2;
548  STAT2;
549  }
550  if (width&1) {
551  LOADEND;
552  STATEND;
553  }
554  }
556  return 0;
557 
558  if (s->context) {
559  for (i = 0; i < count; i++) {
560  LOAD2;
561  STAT2;
562  WRITE2;
563  }
564  if (width&1) {
565  LOADEND;
566  STATEND;
567  WRITEEND;
568  }
569  } else {
570  for (i = 0; i < count; i++) {
571  LOAD2;
572  WRITE2;
573  }
574  if (width&1) {
575  LOADEND;
576  WRITEEND;
577  }
578  }
579  } else if (s->bps <= 14) {
580  int mask = s->n - 1;
581  if (s->flags & AV_CODEC_FLAG_PASS1) {
582  for (i = 0; i < count; i++) {
583  LOAD2_14;
584  STAT2;
585  }
586  if (width&1) {
587  LOADEND_14;
588  STATEND;
589  }
590  }
592  return 0;
593 
594  if (s->context) {
595  for (i = 0; i < count; i++) {
596  LOAD2_14;
597  STAT2;
598  WRITE2;
599  }
600  if (width&1) {
601  LOADEND_14;
602  STATEND;
603  WRITEEND;
604  }
605  } else {
606  for (i = 0; i < count; i++) {
607  LOAD2_14;
608  WRITE2;
609  }
610  if (width&1) {
611  LOADEND_14;
612  WRITEEND;
613  }
614  }
615  } else {
616  if (s->flags & AV_CODEC_FLAG_PASS1) {
617  for (i = 0; i < count; i++) {
618  LOAD2_16;
619  STAT2_16;
620  }
621  if (width&1) {
622  LOADEND_16;
623  STATEND_16;
624  }
625  }
627  return 0;
628 
629  if (s->context) {
630  for (i = 0; i < count; i++) {
631  LOAD2_16;
632  STAT2_16;
633  WRITE2_16;
634  }
635  if (width&1) {
636  LOADEND_16;
637  STATEND_16;
638  WRITEEND_16;
639  }
640  } else {
641  for (i = 0; i < count; i++) {
642  LOAD2_16;
643  WRITE2_16;
644  }
645  if (width&1) {
646  LOADEND_16;
647  WRITEEND_16;
648  }
649  }
650  }
651 #undef LOAD2
652 #undef STAT2
653 #undef WRITE2
654  return 0;
655 }
656 
658 {
659  int i;
660 
661  if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) < 4 * count) {
662  av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
663  return -1;
664  }
665 
666 #define LOAD2\
667  int y0 = s->temp[0][2 * i];\
668  int y1 = s->temp[0][2 * i + 1];
669 #define STAT2\
670  s->stats[0][y0]++;\
671  s->stats[0][y1]++;
672 #define WRITE2\
673  put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);\
674  put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
675 
676  count /= 2;
677 
678  if (s->flags & AV_CODEC_FLAG_PASS1) {
679  for (i = 0; i < count; i++) {
680  LOAD2;
681  STAT2;
682  }
683  }
685  return 0;
686 
687  if (s->context) {
688  for (i = 0; i < count; i++) {
689  LOAD2;
690  STAT2;
691  WRITE2;
692  }
693  } else {
694  for (i = 0; i < count; i++) {
695  LOAD2;
696  WRITE2;
697  }
698  }
699  return 0;
700 }
701 
702 static inline int encode_bgra_bitstream(HYuvContext *s, int count, int planes)
703 {
704  int i;
705 
706  if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) <
707  4 * planes * count) {
708  av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
709  return -1;
710  }
711 
712 #define LOAD_GBRA \
713  int g = s->temp[0][planes == 3 ? 3 * i + 1 : 4 * i + G]; \
714  int b =(s->temp[0][planes == 3 ? 3 * i + 2 : 4 * i + B] - g) & 0xFF;\
715  int r =(s->temp[0][planes == 3 ? 3 * i + 0 : 4 * i + R] - g) & 0xFF;\
716  int a = s->temp[0][planes * i + A];
717 
718 #define STAT_BGRA \
719  s->stats[0][b]++; \
720  s->stats[1][g]++; \
721  s->stats[2][r]++; \
722  if (planes == 4) \
723  s->stats[2][a]++;
724 
725 #define WRITE_GBRA \
726  put_bits(&s->pb, s->len[1][g], s->bits[1][g]); \
727  put_bits(&s->pb, s->len[0][b], s->bits[0][b]); \
728  put_bits(&s->pb, s->len[2][r], s->bits[2][r]); \
729  if (planes == 4) \
730  put_bits(&s->pb, s->len[2][a], s->bits[2][a]);
731 
732  if ((s->flags & AV_CODEC_FLAG_PASS1) &&
734  for (i = 0; i < count; i++) {
735  LOAD_GBRA;
736  STAT_BGRA;
737  }
738  } else if (s->context || (s->flags & AV_CODEC_FLAG_PASS1)) {
739  for (i = 0; i < count; i++) {
740  LOAD_GBRA;
741  STAT_BGRA;
742  WRITE_GBRA;
743  }
744  } else {
745  for (i = 0; i < count; i++) {
746  LOAD_GBRA;
747  WRITE_GBRA;
748  }
749  }
750  return 0;
751 }
752 
754  const AVFrame *pict, int *got_packet)
755 {
756  HYuvContext *s = avctx->priv_data;
757  const int width = s->width;
758  const int width2 = s->width>>1;
759  const int height = s->height;
760  const int fake_ystride = s->interlaced ? pict->linesize[0]*2 : pict->linesize[0];
761  const int fake_ustride = s->interlaced ? pict->linesize[1]*2 : pict->linesize[1];
762  const int fake_vstride = s->interlaced ? pict->linesize[2]*2 : pict->linesize[2];
763  const AVFrame * const p = pict;
764  int i, j, size = 0, ret;
765 
766  if ((ret = ff_alloc_packet2(avctx, pkt, width * height * 3 * 4 + AV_INPUT_BUFFER_MIN_SIZE, 0)) < 0)
767  return ret;
768 
769  if (s->context) {
770  size = store_huffman_tables(s, pkt->data);
771  if (size < 0)
772  return size;
773 
774  for (i = 0; i < 4; i++)
775  for (j = 0; j < s->vlc_n; j++)
776  s->stats[i][j] >>= 1;
777  }
778 
779  init_put_bits(&s->pb, pkt->data + size, pkt->size - size);
780 
781  if (avctx->pix_fmt == AV_PIX_FMT_YUV422P ||
782  avctx->pix_fmt == AV_PIX_FMT_YUV420P) {
783  int lefty, leftu, leftv, y, cy;
784 
785  put_bits(&s->pb, 8, leftv = p->data[2][0]);
786  put_bits(&s->pb, 8, lefty = p->data[0][1]);
787  put_bits(&s->pb, 8, leftu = p->data[1][0]);
788  put_bits(&s->pb, 8, p->data[0][0]);
789 
790  lefty = sub_left_prediction(s, s->temp[0], p->data[0], width , 0);
791  leftu = sub_left_prediction(s, s->temp[1], p->data[1], width2, 0);
792  leftv = sub_left_prediction(s, s->temp[2], p->data[2], width2, 0);
793 
794  encode_422_bitstream(s, 2, width-2);
795 
796  if (s->predictor==MEDIAN) {
797  int lefttopy, lefttopu, lefttopv;
798  cy = y = 1;
799  if (s->interlaced) {
800  lefty = sub_left_prediction(s, s->temp[0], p->data[0] + p->linesize[0], width , lefty);
801  leftu = sub_left_prediction(s, s->temp[1], p->data[1] + p->linesize[1], width2, leftu);
802  leftv = sub_left_prediction(s, s->temp[2], p->data[2] + p->linesize[2], width2, leftv);
803 
804  encode_422_bitstream(s, 0, width);
805  y++; cy++;
806  }
807 
808  lefty = sub_left_prediction(s, s->temp[0], p->data[0] + fake_ystride, 4, lefty);
809  leftu = sub_left_prediction(s, s->temp[1], p->data[1] + fake_ustride, 2, leftu);
810  leftv = sub_left_prediction(s, s->temp[2], p->data[2] + fake_vstride, 2, leftv);
811 
812  encode_422_bitstream(s, 0, 4);
813 
814  lefttopy = p->data[0][3];
815  lefttopu = p->data[1][1];
816  lefttopv = p->data[2][1];
817  s->llvidencdsp.sub_median_pred(s->temp[0], p->data[0] + 4, p->data[0] + fake_ystride + 4, width - 4, &lefty, &lefttopy);
818  s->llvidencdsp.sub_median_pred(s->temp[1], p->data[1] + 2, p->data[1] + fake_ustride + 2, width2 - 2, &leftu, &lefttopu);
819  s->llvidencdsp.sub_median_pred(s->temp[2], p->data[2] + 2, p->data[2] + fake_vstride + 2, width2 - 2, &leftv, &lefttopv);
820  encode_422_bitstream(s, 0, width - 4);
821  y++; cy++;
822 
823  for (; y < height; y++,cy++) {
824  uint8_t *ydst, *udst, *vdst;
825 
826  if (s->bitstream_bpp == 12) {
827  while (2 * cy > y) {
828  ydst = p->data[0] + p->linesize[0] * y;
829  s->llvidencdsp.sub_median_pred(s->temp[0], ydst - fake_ystride, ydst, width, &lefty, &lefttopy);
830  encode_gray_bitstream(s, width);
831  y++;
832  }
833  if (y >= height) break;
834  }
835  ydst = p->data[0] + p->linesize[0] * y;
836  udst = p->data[1] + p->linesize[1] * cy;
837  vdst = p->data[2] + p->linesize[2] * cy;
838 
839  s->llvidencdsp.sub_median_pred(s->temp[0], ydst - fake_ystride, ydst, width, &lefty, &lefttopy);
840  s->llvidencdsp.sub_median_pred(s->temp[1], udst - fake_ustride, udst, width2, &leftu, &lefttopu);
841  s->llvidencdsp.sub_median_pred(s->temp[2], vdst - fake_vstride, vdst, width2, &leftv, &lefttopv);
842 
843  encode_422_bitstream(s, 0, width);
844  }
845  } else {
846  for (cy = y = 1; y < height; y++, cy++) {
847  uint8_t *ydst, *udst, *vdst;
848 
849  /* encode a luma only line & y++ */
850  if (s->bitstream_bpp == 12) {
851  ydst = p->data[0] + p->linesize[0] * y;
852 
853  if (s->predictor == PLANE && s->interlaced < y) {
854  s->llvidencdsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
855 
856  lefty = sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
857  } else {
858  lefty = sub_left_prediction(s, s->temp[0], ydst, width , lefty);
859  }
860  encode_gray_bitstream(s, width);
861  y++;
862  if (y >= height) break;
863  }
864 
865  ydst = p->data[0] + p->linesize[0] * y;
866  udst = p->data[1] + p->linesize[1] * cy;
867  vdst = p->data[2] + p->linesize[2] * cy;
868 
869  if (s->predictor == PLANE && s->interlaced < cy) {
870  s->llvidencdsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
871  s->llvidencdsp.diff_bytes(s->temp[2], udst, udst - fake_ustride, width2);
872  s->llvidencdsp.diff_bytes(s->temp[2] + width2, vdst, vdst - fake_vstride, width2);
873 
874  lefty = sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
875  leftu = sub_left_prediction(s, s->temp[1], s->temp[2], width2, leftu);
876  leftv = sub_left_prediction(s, s->temp[2], s->temp[2] + width2, width2, leftv);
877  } else {
878  lefty = sub_left_prediction(s, s->temp[0], ydst, width , lefty);
879  leftu = sub_left_prediction(s, s->temp[1], udst, width2, leftu);
880  leftv = sub_left_prediction(s, s->temp[2], vdst, width2, leftv);
881  }
882 
883  encode_422_bitstream(s, 0, width);
884  }
885  }
886  } else if(avctx->pix_fmt == AV_PIX_FMT_RGB32) {
887  uint8_t *data = p->data[0] + (height - 1) * p->linesize[0];
888  const int stride = -p->linesize[0];
889  const int fake_stride = -fake_ystride;
890  int y;
891  int leftr, leftg, leftb, lefta;
892 
893  put_bits(&s->pb, 8, lefta = data[A]);
894  put_bits(&s->pb, 8, leftr = data[R]);
895  put_bits(&s->pb, 8, leftg = data[G]);
896  put_bits(&s->pb, 8, leftb = data[B]);
897 
898  sub_left_prediction_bgr32(s, s->temp[0], data + 4, width - 1,
899  &leftr, &leftg, &leftb, &lefta);
900  encode_bgra_bitstream(s, width - 1, 4);
901 
902  for (y = 1; y < s->height; y++) {
903  uint8_t *dst = data + y*stride;
904  if (s->predictor == PLANE && s->interlaced < y) {
905  s->llvidencdsp.diff_bytes(s->temp[1], dst, dst - fake_stride, width * 4);
906  sub_left_prediction_bgr32(s, s->temp[0], s->temp[1], width,
907  &leftr, &leftg, &leftb, &lefta);
908  } else {
909  sub_left_prediction_bgr32(s, s->temp[0], dst, width,
910  &leftr, &leftg, &leftb, &lefta);
911  }
912  encode_bgra_bitstream(s, width, 4);
913  }
914  } else if (avctx->pix_fmt == AV_PIX_FMT_RGB24) {
915  uint8_t *data = p->data[0] + (height - 1) * p->linesize[0];
916  const int stride = -p->linesize[0];
917  const int fake_stride = -fake_ystride;
918  int y;
919  int leftr, leftg, leftb;
920 
921  put_bits(&s->pb, 8, leftr = data[0]);
922  put_bits(&s->pb, 8, leftg = data[1]);
923  put_bits(&s->pb, 8, leftb = data[2]);
924  put_bits(&s->pb, 8, 0);
925 
926  sub_left_prediction_rgb24(s, s->temp[0], data + 3, width - 1,
927  &leftr, &leftg, &leftb);
928  encode_bgra_bitstream(s, width-1, 3);
929 
930  for (y = 1; y < s->height; y++) {
931  uint8_t *dst = data + y * stride;
932  if (s->predictor == PLANE && s->interlaced < y) {
933  s->llvidencdsp.diff_bytes(s->temp[1], dst, dst - fake_stride,
934  width * 3);
935  sub_left_prediction_rgb24(s, s->temp[0], s->temp[1], width,
936  &leftr, &leftg, &leftb);
937  } else {
938  sub_left_prediction_rgb24(s, s->temp[0], dst, width,
939  &leftr, &leftg, &leftb);
940  }
941  encode_bgra_bitstream(s, width, 3);
942  }
943  } else if (s->version > 2) {
944  int plane;
945  for (plane = 0; plane < 1 + 2*s->chroma + s->alpha; plane++) {
946  int left, y;
947  int w = width;
948  int h = height;
949  int fake_stride = fake_ystride;
950 
951  if (s->chroma && (plane == 1 || plane == 2)) {
952  w >>= s->chroma_h_shift;
953  h >>= s->chroma_v_shift;
954  fake_stride = plane == 1 ? fake_ustride : fake_vstride;
955  }
956 
957  left = sub_left_prediction(s, s->temp[0], p->data[plane], w , 0);
958 
959  encode_plane_bitstream(s, w, plane);
960 
961  if (s->predictor==MEDIAN) {
962  int lefttop;
963  y = 1;
964  if (s->interlaced) {
965  left = sub_left_prediction(s, s->temp[0], p->data[plane] + p->linesize[plane], w , left);
966 
967  encode_plane_bitstream(s, w, plane);
968  y++;
969  }
970 
971  lefttop = p->data[plane][0];
972 
973  for (; y < h; y++) {
974  uint8_t *dst = p->data[plane] + p->linesize[plane] * y;
975 
976  sub_median_prediction(s, s->temp[0], dst - fake_stride, dst, w , &left, &lefttop);
977 
978  encode_plane_bitstream(s, w, plane);
979  }
980  } else {
981  for (y = 1; y < h; y++) {
982  uint8_t *dst = p->data[plane] + p->linesize[plane] * y;
983 
984  if (s->predictor == PLANE && s->interlaced < y) {
985  diff_bytes(s, s->temp[1], dst, dst - fake_stride, w);
986 
987  left = sub_left_prediction(s, s->temp[0], s->temp[1], w , left);
988  } else {
989  left = sub_left_prediction(s, s->temp[0], dst, w , left);
990  }
991 
992  encode_plane_bitstream(s, w, plane);
993  }
994  }
995  }
996  } else {
997  av_log(avctx, AV_LOG_ERROR, "Format not supported!\n");
998  }
999  emms_c();
1000 
1001  size += (put_bits_count(&s->pb) + 31) / 8;
1002  put_bits(&s->pb, 16, 0);
1003  put_bits(&s->pb, 15, 0);
1004  size /= 4;
1005 
1006  if ((s->flags & AV_CODEC_FLAG_PASS1) && (s->picture_number & 31) == 0) {
1007  int j;
1008  char *p = avctx->stats_out;
1009  char *end = p + STATS_OUT_SIZE;
1010  for (i = 0; i < 4; i++) {
1011  for (j = 0; j < s->vlc_n; j++) {
1012  snprintf(p, end-p, "%"PRIu64" ", s->stats[i][j]);
1013  p += strlen(p);
1014  s->stats[i][j]= 0;
1015  }
1016  snprintf(p, end-p, "\n");
1017  p++;
1018  if (end <= p)
1019  return AVERROR(ENOMEM);
1020  }
1021  } else if (avctx->stats_out)
1022  avctx->stats_out[0] = '\0';
1023  if (!(s->avctx->flags2 & AV_CODEC_FLAG2_NO_OUTPUT)) {
1024  flush_put_bits(&s->pb);
1025  s->bdsp.bswap_buf((uint32_t *) pkt->data, (uint32_t *) pkt->data, size);
1026  }
1027 
1028  s->picture_number++;
1029 
1030  pkt->size = size * 4;
1031  pkt->flags |= AV_PKT_FLAG_KEY;
1032  *got_packet = 1;
1033 
1034  return 0;
1035 }
1036 
1038 {
1039  HYuvContext *s = avctx->priv_data;
1040 
1042 
1043  av_freep(&avctx->extradata);
1044  av_freep(&avctx->stats_out);
1045 
1046  return 0;
1047 }
1048 
1049 #define OFFSET(x) offsetof(HYuvContext, x)
1050 #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
1051 
1052 #define COMMON_OPTIONS \
1053  { "non_deterministic", "Allow multithreading for e.g. context=1 at the expense of determinism", \
1054  OFFSET(non_determ), AV_OPT_TYPE_BOOL, { .i64 = 1 }, \
1055  0, 1, VE }, \
1056  { "pred", "Prediction method", OFFSET(predictor), AV_OPT_TYPE_INT, { .i64 = LEFT }, LEFT, MEDIAN, VE, "pred" }, \
1057  { "left", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = LEFT }, INT_MIN, INT_MAX, VE, "pred" }, \
1058  { "plane", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = PLANE }, INT_MIN, INT_MAX, VE, "pred" }, \
1059  { "median", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = MEDIAN }, INT_MIN, INT_MAX, VE, "pred" }, \
1060 
1061 static const AVOption normal_options[] = {
1063  { NULL },
1064 };
1065 
1066 static const AVOption ff_options[] = {
1068  { "context", "Set per-frame huffman tables", OFFSET(context), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, VE },
1069  { NULL },
1070 };
1071 
1072 static const AVClass normal_class = {
1073  .class_name = "huffyuv",
1074  .item_name = av_default_item_name,
1075  .option = normal_options,
1076  .version = LIBAVUTIL_VERSION_INT,
1077 };
1078 
1079 static const AVClass ff_class = {
1080  .class_name = "ffvhuff",
1081  .item_name = av_default_item_name,
1082  .option = ff_options,
1083  .version = LIBAVUTIL_VERSION_INT,
1084 };
1085 
1087  .name = "huffyuv",
1088  .long_name = NULL_IF_CONFIG_SMALL("Huffyuv / HuffYUV"),
1089  .type = AVMEDIA_TYPE_VIDEO,
1090  .id = AV_CODEC_ID_HUFFYUV,
1091  .priv_data_size = sizeof(HYuvContext),
1092  .init = encode_init,
1093  .encode2 = encode_frame,
1094  .close = encode_end,
1096  .priv_class = &normal_class,
1097  .pix_fmts = (const enum AVPixelFormat[]){
1100  },
1101  .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE |
1103 };
1104 
1105 #if CONFIG_FFVHUFF_ENCODER
1107  .name = "ffvhuff",
1108  .long_name = NULL_IF_CONFIG_SMALL("Huffyuv FFmpeg variant"),
1109  .type = AVMEDIA_TYPE_VIDEO,
1110  .id = AV_CODEC_ID_FFVHUFF,
1111  .priv_data_size = sizeof(HYuvContext),
1112  .init = encode_init,
1113  .encode2 = encode_frame,
1114  .close = encode_end,
1116  .priv_class = &ff_class,
1117  .pix_fmts = (const enum AVPixelFormat[]){
1134  },
1135  .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE |
1137 };
1138 #endif
#define FF_CODEC_CAP_INIT_CLEANUP
The codec allows calling the close function for deallocation even if the init function returned a fai...
Definition: internal.h:48
#define AV_CODEC_FLAG_INTERLACED_ME
interlaced motion estimation
Definition: avcodec.h:904
void(* bswap_buf)(uint32_t *dst, const uint32_t *src, int w)
Definition: bswapdsp.h:25
int plane
Definition: avisynth_c.h:422
#define FF_COMPLIANCE_EXPERIMENTAL
Allow nonstandardized experimental things.
Definition: avcodec.h:2597
#define NULL
Definition: coverity.c:32
const struct AVCodec * codec
Definition: avcodec.h:1542
const char const char void * val
Definition: avisynth_c.h:771
#define AV_PIX_FMT_YUVA422P16
Definition: pixfmt.h:420
void(* sub_hfyu_median_pred_int16)(uint16_t *dst, const uint16_t *src1, const uint16_t *src2, unsigned mask, int w, int *left, int *left_top)
Definition: huffyuvencdsp.h:32
#define AV_PIX_FMT_YUVA422P9
Definition: pixfmt.h:414
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
Definition: pixdesc.c:2446
This structure describes decoded (raw) audio or video data.
Definition: frame.h:226
static av_cold int encode_init(AVCodecContext *avctx)
Definition: huffyuvenc.c:202
AVOption.
Definition: opt.h:246
ptrdiff_t const GLvoid * data
Definition: opengl_enc.c:101
#define AV_PIX_FMT_YUVA420P10
Definition: pixfmt.h:416
#define AV_PIX_FMT_YUV444P14
Definition: pixfmt.h:389
#define AV_PIX_FMT_YUVA422P10
Definition: pixfmt.h:417
int bitstream_bpp
Definition: huffyuv.h:63
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
Definition: pixfmt.h:71
static void put_bits(Jpeg2000EncoderContext *s, int val, int n)
put n times val bit
Definition: j2kenc.c:208
#define LIBAVUTIL_VERSION_INT
Definition: version.h:85
packed RGB 8:8:8, 24bpp, RGBRGB...
Definition: pixfmt.h:68
#define STATEND
else temp
Definition: vf_mcdeint.c:256
const char * g
Definition: vf_curves.c:115
const char * desc
Definition: nvenc.c:65
static av_cold int init(AVCodecContext *avctx)
Definition: avrndec.c:35
void(* diff_int16)(uint16_t *dst, const uint16_t *src1, const uint16_t *src2, unsigned mask, int w)
Definition: huffyuvencdsp.h:27
planar GBR 4:4:4 24bpp
Definition: pixfmt.h:168
int size
Definition: avcodec.h:1446
const char * b
Definition: vf_curves.c:116
#define AV_PIX_FMT_GBRP10
Definition: pixfmt.h:395
const char * av_default_item_name(void *ptr)
Return the context name.
Definition: log.c:191
static int encode_plane_bitstream(HYuvContext *s, int width, int plane)
Definition: huffyuvenc.c:495
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
Definition: avcodec.h:1743
#define AV_PIX_FMT_YUV420P12
Definition: pixfmt.h:383
char * stats_in
pass2 encoding statistics input buffer Concatenated stuff from stats_out of pass1 should be placed he...
Definition: avcodec.h:2556
#define MAX_VLC_N
Definition: huffyuv.h:47
int context
Definition: huffyuv.h:77
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
Definition: mem.c:236
GLfloat v0
Definition: opengl_enc.c:107
static AVPacket pkt
#define src
Definition: vp8dsp.c:254
LLVidEncDSPContext llvidencdsp
Definition: huffyuv.h:93
AVCodec.
Definition: avcodec.h:3424
int height
Definition: huffyuv.h:75
#define AV_CODEC_CAP_INTRA_ONLY
Codec is intra only.
Definition: avcodec.h:1054
#define LOAD_GBRA
av_cold void ff_huffyuvencdsp_init(HuffYUVEncDSPContext *c, AVCodecContext *avctx)
Definition: huffyuvencdsp.c:71
av_cold void ff_llvidencdsp_init(LLVidEncDSPContext *c)
void(* diff_bytes)(uint8_t *dst, const uint8_t *src1, const uint8_t *src2, intptr_t w)
const char * class_name
The name of the class; usually it is the same name as the context structure type to which the AVClass...
Definition: log.h:72
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
int ff_alloc_packet2(AVCodecContext *avctx, AVPacket *avpkt, int64_t size, int64_t min_size)
Check AVPacket size and/or allocate data.
Definition: encode.c:32
#define FF_CODEC_CAP_INIT_THREADSAFE
The codec does not modify any global variables in the init function, allowing to call the init functi...
Definition: internal.h:40
planar YUV 4:2:0, 20bpp, (1 Cr & Cb sample per 2x2 Y & A samples)
Definition: pixfmt.h:101
AVComponentDescriptor comp[4]
Parameters that describe how pixels are packed.
Definition: pixdesc.h:117
uint8_t
#define av_cold
Definition: attributes.h:82
#define AV_PIX_FMT_FLAG_ALPHA
The pixel format has an alpha channel.
Definition: pixdesc.h:177
AVOptions.
#define STATEND_16
static av_cold int end(AVCodecContext *avctx)
Definition: avrndec.c:90
int bps
Definition: huffyuv.h:67
uint8_t * extradata
some codecs need / can use extradata like Huffman tables.
Definition: avcodec.h:1634
#define u(width, name, range_min, range_max)
Definition: cbs_h2645.c:253
#define AV_PIX_FMT_YUVA420P9
Definition: pixfmt.h:413
#define AV_PIX_FMT_GBRP9
Definition: pixfmt.h:394
static void sub_median_prediction(HYuvContext *s, uint8_t *dst, const uint8_t *src1, const uint8_t *src2, int w, int *left, int *left_top)
Definition: huffyuvenc.c:146
#define height
uint8_t * data
Definition: avcodec.h:1445
attribute_deprecated int context_model
Definition: avcodec.h:2452
#define STATS_OUT_SIZE
int vlc_n
Definition: huffyuv.h:69
#define AV_PIX_FMT_YUV444P16
Definition: pixfmt.h:392
static void sub_left_prediction_rgb24(HYuvContext *s, uint8_t *dst, uint8_t *src, int w, int *red, int *green, int *blue)
Definition: huffyuvenc.c:118
ptrdiff_t size
Definition: opengl_enc.c:101
int chroma_h_shift
Definition: huffyuv.h:73
int bits_per_coded_sample
bits per sample/pixel from the demuxer (needed for huffyuv).
Definition: avcodec.h:2750
#define LOAD2
#define AV_PIX_FMT_YUV422P12
Definition: pixfmt.h:384
char * stats_out
pass1 encoding statistics output buffer
Definition: avcodec.h:2548
#define AV_PIX_FMT_YUVA420P16
Definition: pixfmt.h:419
#define A(x)
Definition: vp56_arith.h:28
#define AV_INPUT_BUFFER_MIN_SIZE
minimum encoding buffer size Used to avoid some checks during header writing.
Definition: avcodec.h:789
#define av_log(a,...)
#define AV_PKT_FLAG_KEY
The packet contains a keyframe.
Definition: avcodec.h:1477
uint8_t len[4][MAX_VLC_N]
Definition: huffyuv.h:83
#define MAX_N
Definition: huffyuv.h:46
static int encode_frame(AVCodecContext *avctx, AVPacket *pkt, const AVFrame *pict, int *got_packet)
Definition: huffyuvenc.c:753
#define LOAD2_14
av_cold int ff_huffyuv_alloc_temp(HYuvContext *s)
Definition: huffyuv.c:58
enum AVCodecID id
Definition: avcodec.h:3438
planar YUV 4:2:2 24bpp, (1 Cr & Cb sample per 2x1 Y & A samples)
Definition: pixfmt.h:176
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
#define R
Definition: huffyuvdsp.h:34
int chroma_v_shift
Definition: huffyuv.h:74
Definition: huffyuv.h:51
av_cold void ff_huffyuv_common_end(HYuvContext *s)
Definition: huffyuv.c:86
AVCodec ff_ffvhuff_encoder
static const uint16_t mask[17]
Definition: lzw.c:38
#define AVERROR(e)
Definition: error.h:43
int flags
Definition: huffyuv.h:76
#define AV_PIX_FMT_FLAG_RGB
The pixel format contains RGB-like data (as opposed to YUV/grayscale).
Definition: pixdesc.h:148
int av_pix_fmt_get_chroma_sub_sample(enum AVPixelFormat pix_fmt, int *h_shift, int *v_shift)
Utility function to access log2_chroma_w log2_chroma_h from the pixel format AVPixFmtDescriptor.
Definition: pixdesc.c:2474
#define B
Definition: huffyuvdsp.h:32
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
Definition: internal.h:186
const char * r
Definition: vf_curves.c:114
static const AVClass ff_class
Definition: huffyuvenc.c:1079
#define AV_PIX_FMT_YUVA444P16
Definition: pixfmt.h:421
int flags
AV_CODEC_FLAG_*.
Definition: avcodec.h:1613
uint8_t * buf
Definition: put_bits.h:38
const char * name
Name of the codec implementation.
Definition: avcodec.h:3431
#define AV_PIX_FMT_YUV444P10
Definition: pixfmt.h:382
static const AVClass normal_class
Definition: huffyuvenc.c:1072
int chroma
Definition: huffyuv.h:71
static const uint8_t offset[127][2]
Definition: vf_spp.c:92
GLsizei count
Definition: opengl_enc.c:109
#define COMMON_OPTIONS
Definition: huffyuvenc.c:1052
huffyuv codec for libavcodec.
#define AV_CODEC_CAP_FRAME_THREADS
Codec supports frame-level multithreading.
Definition: avcodec.h:1024
int flags
A combination of AV_PKT_FLAG values.
Definition: avcodec.h:1451
static int put_bits_count(PutBitContext *s)
Definition: put_bits.h:85
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
Definition: pixfmt.h:70
void(* sub_median_pred)(uint8_t *dst, const uint8_t *src1, const uint8_t *src2, intptr_t w, int *left, int *left_top)
Subtract HuffYUV's variant of median prediction.
#define WRITE_GBRA
uint64_t flags
Combination of AV_PIX_FMT_FLAG_...
Definition: pixdesc.h:106
#define AV_PIX_FMT_YUV422P9
Definition: pixfmt.h:377
static const struct @304 planes[]
uint8_t nb_components
The number of components each pixel has, (1-4)
Definition: pixdesc.h:83
#define WRITE2
int decorrelate
Definition: huffyuv.h:62
enum AVPictureType pict_type
Picture type of the frame.
Definition: frame.h:309
#define AV_PIX_FMT_GBRP16
Definition: pixfmt.h:398
alias for AV_PIX_FMT_YA8
Definition: pixfmt.h:146
#define AV_PIX_FMT_GRAY16
Definition: pixfmt.h:363
#define FFMIN(a, b)
Definition: common.h:96
int width
Definition: huffyuv.h:75
AVCodec ff_huffyuv_encoder
Definition: huffyuvenc.c:1086
#define width
uint8_t w
Definition: llviddspenc.c:38
#define AV_CODEC_FLAG_PASS1
Use internal 2pass ratecontrol in first pass mode.
Definition: avcodec.h:858
int ff_huffyuv_generate_bits_table(uint32_t *dst, const uint8_t *len_table, int n)
Definition: huffyuv.c:39
#define s(width, name)
Definition: cbs_vp9.c:257
int n
Definition: avisynth_c.h:684
#define AV_PIX_FMT_YUVA444P10
Definition: pixfmt.h:418
uint8_t * temp[3]
Definition: huffyuv.h:80
static av_cold int encode_end(AVCodecContext *avctx)
Definition: huffyuvenc.c:1037
#define AV_PIX_FMT_YUV444P9
Definition: pixfmt.h:378
#define AV_PIX_FMT_GBRP14
Definition: pixfmt.h:397
int alpha
Definition: huffyuv.h:70
#define AV_PIX_FMT_YUV420P16
Definition: pixfmt.h:390
#define src1
Definition: h264pred.c:139
#define AV_LOG_INFO
Standard information.
Definition: log.h:187
#define AV_PIX_FMT_YUV420P14
Definition: pixfmt.h:387
int picture_number
Definition: huffyuv.h:78
int ff_huff_gen_len_table(uint8_t *dst, const uint64_t *stats, int stats_size, int skip0)
Definition: huffman.c:58
static int sub_left_prediction(HYuvContext *s, uint8_t *dst, const uint8_t *src, int w, int left)
Definition: huffyuvenc.c:51
Libavcodec external API header.
static int encode_422_bitstream(HYuvContext *s, int offset, int count)
Definition: huffyuvenc.c:440
attribute_deprecated int prediction_method
Definition: avcodec.h:1892
int yuv
Definition: huffyuv.h:72
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Definition: frame.h:257
static const AVOption ff_options[]
Definition: huffyuvenc.c:1066
planar YUV 4:4:4 32bpp, (1 Cr & Cb sample per 1x1 Y & A samples)
Definition: pixfmt.h:177
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
Definition: pixdesc.h:81
static const int16_t alpha[]
Definition: ilbcdata.h:55
main external API structure.
Definition: avcodec.h:1533
#define AV_PIX_FMT_RGB32
Definition: pixfmt.h:352
#define STAT2
uint8_t * buf_end
Definition: put_bits.h:38
void * buf
Definition: avisynth_c.h:690
int interlaced
Definition: huffyuv.h:61
int extradata_size
Definition: avcodec.h:1635
#define AV_PIX_FMT_YUV420P10
Definition: pixfmt.h:379
planar YUV 4:1:0, 9bpp, (1 Cr & Cb sample per 4x4 Y samples)
Definition: pixfmt.h:72
Describe the class of an AVClass context structure.
Definition: log.h:67
int index
Definition: gxfenc.c:89
#define WRITEEND
huffman tree builder and VLC generator
#define STAT2_16
#define src0
Definition: h264pred.c:138
static int encode_bgra_bitstream(HYuvContext *s, int count, int planes)
Definition: huffyuvenc.c:702
#define LOAD4
#define STAT_BGRA
#define AV_PIX_FMT_YUV420P9
Definition: pixfmt.h:376
#define snprintf
Definition: snprintf.h:34
static enum AVPixelFormat pix_fmts[]
Definition: libkvazaar.c:266
#define AV_PIX_FMT_YUV422P14
Definition: pixfmt.h:388
#define AV_PIX_FMT_GBRP12
Definition: pixfmt.h:396
HuffYUVEncDSPContext hencdsp
Definition: huffyuv.h:91
int version
Definition: huffyuv.h:64
#define AV_PIX_FMT_YUV422P10
Definition: pixfmt.h:380
#define AV_PIX_FMT_YUV444P12
Definition: pixfmt.h:386
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:240
Predictor predictor
Definition: huffyuv.h:58
static void diff_bytes(HYuvContext *s, uint8_t *dst, const uint8_t *src0, const uint8_t *src1, int w)
Definition: huffyuvenc.c:41
AVCodecContext * avctx
Definition: huffyuv.h:57
#define WRITE2_16
GLint GLenum GLboolean GLsizei stride
Definition: opengl_enc.c:105
PutBitContext pb
Definition: huffyuv.h:60
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
Definition: pixfmt.h:66
Y , 8bpp.
Definition: pixfmt.h:74
Definition: huffyuv.h:52
#define OFFSET(x)
Definition: huffyuvenc.c:1049
#define FF_DISABLE_DEPRECATION_WARNINGS
Definition: internal.h:84
common internal api header.
static void flush_put_bits(PutBitContext *s)
Pad the end of the output stream with zeros.
Definition: put_bits.h:101
static int store_huffman_tables(HYuvContext *s, uint8_t *buf)
Definition: huffyuvenc.c:180
#define VE
Definition: huffyuvenc.c:1050
#define G
Definition: huffyuvdsp.h:33
planar GBRA 4:4:4:4 32bpp
Definition: pixfmt.h:215
static int store_table(HYuvContext *s, const uint8_t *len, uint8_t *buf)
Definition: huffyuvenc.c:155
#define LOAD2_16
#define AV_CODEC_FLAG2_NO_OUTPUT
Skip bitstream encoding.
Definition: avcodec.h:914
#define AV_PIX_FMT_YUVA444P9
Definition: pixfmt.h:415
attribute_deprecated AVFrame * coded_frame
the picture in the bitstream
Definition: avcodec.h:2776
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples)
Definition: pixfmt.h:73
static int encode_gray_bitstream(HYuvContext *s, int count)
Definition: huffyuvenc.c:657
static void init_put_bits(PutBitContext *s, uint8_t *buffer, int buffer_size)
Initialize the PutBitContext s.
Definition: put_bits.h:48
static void sub_left_prediction_bgr32(HYuvContext *s, uint8_t *dst, const uint8_t *src, int w, int *red, int *green, int *blue, int *alpha)
Definition: huffyuvenc.c:82
av_cold void ff_huffyuv_common_init(AVCodecContext *avctx)
Definition: huffyuv.c:71
#define AV_CODEC_FLAG_PASS2
Use internal 2pass ratecontrol in second pass mode.
Definition: avcodec.h:862
void * priv_data
Definition: avcodec.h:1560
#define FF_ENABLE_DEPRECATION_WARNINGS
Definition: internal.h:85
int len
int key_frame
1 -> keyframe, 0-> not
Definition: frame.h:304
int flags2
AV_CODEC_FLAG2_*.
Definition: avcodec.h:1620
#define WRITEEND_16
#define LOADEND_16
#define av_freep(p)
planar YUV 4:4:0 (1 Cr & Cb sample per 1x2 Y samples)
Definition: pixfmt.h:99
#define LOADEND
uint32_t bits[4][MAX_VLC_N]
Definition: huffyuv.h:84
uint64_t stats[4][MAX_VLC_N]
Definition: huffyuv.h:82
#define stride
static const AVOption normal_options[]
Definition: huffyuvenc.c:1061
int depth
Number of bits in the component.
Definition: pixdesc.h:58
#define LOADEND_14
AVPixelFormat
Pixel format.
Definition: pixfmt.h:64
This structure stores compressed data.
Definition: avcodec.h:1422
BswapDSPContext bdsp
Definition: huffyuv.h:89
#define AV_PIX_FMT_FLAG_PLANAR
At least one pixel component is not in the first data plane.
Definition: pixdesc.h:144
int strict_std_compliance
strictly follow the standard (MPEG-4, ...).
Definition: avcodec.h:2592
#define AV_PIX_FMT_YUV422P16
Definition: pixfmt.h:391
for(j=16;j >0;--j)
bitstream writer API