Go to the documentation of this file.
28 #define UNCHECKED_BITSTREAM_READER 1
37 #define BIT_PLANAR 0x00
39 #define BYTE_PLANAR 0x40
41 #define BYTE_LINE 0xC0
60 c->new_video_size = 0;
70 for (
i = 0;
i <
c->palette_size / 2;
i++) {
71 unsigned rgb =
AV_RB16(&
c->palette[
i * 2]);
72 unsigned r = ((rgb >> 8) & 0xF) * 0x11;
73 unsigned g = ((rgb >> 4) & 0xF) * 0x11;
74 unsigned b = (rgb & 0xF) * 0x11;
75 AV_WN32(&new_palette[
i], (0xFFU << 24) | (
r << 16) | (
g << 8) |
b);
87 for (y = 0; y <
c->avctx->height; y++) {
88 for (x = 0; x <
c->avctx->width; x++)
102 for (y = 0; y <
c->avctx->height; y++) {
104 for (x = 0; x <
c->avctx->width; x++)
117 for (y = 0; y <
c->avctx->height; y++) {
124 memset(
out, 0, linesize *
c->avctx->height);
141 uint32_t *new_palette = (uint32_t *)
frame->data[1];
156 uint32_t new_palette[16],
r,
g,
b;
166 for (y = 0; y < avctx->
height; y++) {
167 r = new_palette[0] & 0xFF0000;
168 g = new_palette[0] & 0xFF00;
169 b = new_palette[0] & 0xFF;
170 for (x = 0; x < avctx->
width; x++) {
176 r = new_palette[
index] & 0xFF0000;
177 g = new_palette[
index] & 0xFF00;
178 b = new_palette[
index] & 0xFF;
199 uint32_t new_palette[64],
r,
g,
b;
209 for (y = 0; y < avctx->
height; y++) {
210 r = new_palette[0] & 0xFF0000;
211 g = new_palette[0] & 0xFF00;
212 b = new_palette[0] & 0xFF;
213 for (x = 0; x < avctx->
width; x++) {
219 r = new_palette[
index] & 0xFF0000;
220 g = new_palette[
index] & 0xFF00;
221 b = new_palette[
index] & 0xFF;
227 r = (
index << 18) | (
r & (3 << 16));
230 g = (
index << 10) | (
g & (3 << 8));
244 int ret,
w,
h, encoding, aligned_width, buf_size =
pkt->
size;
249 encoding =
buf[1] & 7;
250 c->format =
buf[1] & 0xE0;
255 c->palette =
buf + 32;
256 c->video =
c->palette +
c->palette_size;
257 c->video_size = buf_size -
c->palette_size - 32;
259 if (
c->palette_size > 512)
261 if (buf_size < c->palette_size + 32)
274 aligned_width = avctx->
width;
276 aligned_width =
FFALIGN(
c->avctx->width, 16);
277 c->padded_bits = aligned_width -
c->avctx->width;
278 if (
c->video_size < aligned_width * avctx->
height * (int64_t)
c->bpp / 8)
280 if (!encoding &&
c->palette_size &&
c->bpp <= 8 &&
c->format !=
CHUNKY) {
282 }
else if (encoding == 1 && (
c->bpp == 6 ||
c->bpp == 8) &&
c->format !=
CHUNKY) {
283 if (
c->palette_size != (1 << (
c->bpp - 1)))
286 }
else if (!encoding &&
c->bpp == 24 &&
c->format ==
CHUNKY &&
291 encoding,
c->bpp,
c->format);
static av_cold int init(AVCodecContext *avctx)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
This structure describes decoded (raw) audio or video data.
@ AV_PIX_FMT_BGR24
packed RGB 8:8:8, 24bpp, BGRBGR...
static void cdxl_decode_rgb(CDXLVideoContext *c, AVFrame *frame)
static void skip_bits(GetBitContext *s, int n)
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
static av_cold int cdxl_decode_end(AVCodecContext *avctx)
static void decode(AVCodecContext *dec_ctx, AVPacket *pkt, AVFrame *frame, FILE *outfile)
static int op(uint8_t **dst, const uint8_t *dst_end, GetByteContext *gb, int pixel, int count, int *x, int width, int linesize)
Perform decode operation.
static void bitplanar2chunky(CDXLVideoContext *c, int linesize, uint8_t *out)
static void import_format(CDXLVideoContext *c, int linesize, uint8_t *out)
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
@ AV_PICTURE_TYPE_I
Intra.
static unsigned int get_bits1(GetBitContext *s)
static av_always_inline unsigned int bytestream2_get_buffer(GetByteContext *g, uint8_t *dst, unsigned int size)
static int cdxl_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *pkt)
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
enum AVPictureType pict_type
Picture type of the frame.
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame.
@ AV_PIX_FMT_RGB24
packed RGB 8:8:8, 24bpp, RGBRGB...
static void bitline2chunky(CDXLVideoContext *c, int linesize, uint8_t *out)
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() for allocating buffers and supports custom allocators.
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
static void cdxl_decode_raw(CDXLVideoContext *c, AVFrame *frame)
static void chunky2chunky(CDXLVideoContext *c, int linesize, uint8_t *out)
static void import_palette(CDXLVideoContext *c, uint32_t *new_palette)
#define i(width, name, range_min, range_max)
static av_cold int cdxl_decode_init(AVCodecContext *avctx)
void av_fast_padded_malloc(void *ptr, unsigned int *size, size_t min_size)
Same behaviour av_fast_malloc but the buffer has additional AV_INPUT_BUFFER_PADDING_SIZE at the end w...
static void cdxl_decode_ham6(CDXLVideoContext *c, AVFrame *frame)
const char * name
Name of the codec implementation.
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
@ AV_PIX_FMT_PAL8
8 bits with AV_PIX_FMT_RGB32 palette
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
#define AV_INPUT_BUFFER_PADDING_SIZE
main external API structure.
int ff_set_dimensions(AVCodecContext *s, int width, int height)
Check that the provided frame dimensions are valid and set them on the codec context.
#define avpriv_request_sample(...)
This structure stores compressed data.
static void cdxl_decode_ham8(CDXLVideoContext *c, AVFrame *frame)
int width
picture width / height.
static av_always_inline void bytestream2_init(GetByteContext *g, const uint8_t *buf, int buf_size)
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_WL16 uint64_t_TMPL AV_WB64 unsigned int_TMPL AV_WB32 unsigned int_TMPL AV_WB24 unsigned int_TMPL AV_RB16