Go to the documentation of this file.
56 #ifndef AVCODEC_MIPS_AACPSY_MIPS_H
57 #define AVCODEC_MIPS_AACPSY_MIPS_H
61 #if HAVE_INLINE_ASM && HAVE_MIPSFPU && ( PSY_LAME_FIR_LEN == 21 )
62 #if !HAVE_MIPS32R6 && !HAVE_MIPS64R6
63 static void calc_thr_3gpp_mips(
const FFPsyWindowInfo *wi,
const int num_bands,
65 const float *coefs,
const int cutoff)
68 int start = 0, wstart = 0;
71 for (
g = 0;
g < num_bands;
g++) {
74 float form_factor = 0.0f;
77 if (wstart < cutoff) {
78 for (
i = 0;
i < band_sizes[
g];
i+=4) {
81 float *cf = (
float *)&coefs[start+
i];
84 "lwc1 %[a], 0(%[cf]) \n\t"
85 "lwc1 %[b], 4(%[cf]) \n\t"
86 "lwc1 %[c], 8(%[cf]) \n\t"
87 "lwc1 %[d], 12(%[cf]) \n\t"
88 "abs.s %[a], %[a] \n\t"
89 "abs.s %[b], %[b] \n\t"
90 "abs.s %[c], %[c] \n\t"
91 "abs.s %[d], %[d] \n\t"
92 "sqrt.s %[ax], %[a] \n\t"
93 "sqrt.s %[bx], %[b] \n\t"
94 "sqrt.s %[cx], %[c] \n\t"
95 "sqrt.s %[dx], %[d] \n\t"
96 "madd.s %[e], %[e], %[a], %[a] \n\t"
97 "madd.s %[e], %[e], %[b], %[b] \n\t"
98 "madd.s %[e], %[e], %[c], %[c] \n\t"
99 "madd.s %[e], %[e], %[d], %[d] \n\t"
100 "add.s %[f], %[f], %[ax] \n\t"
101 "add.s %[f], %[f], %[bx] \n\t"
102 "add.s %[f], %[f], %[cx] \n\t"
103 "add.s %[f], %[f], %[dx] \n\t"
105 : [
a]
"=&f"(
a), [
b]
"=&f"(
b),
106 [
c]
"=&f"(
c), [d]
"=&f"(d),
107 [e]
"+f"(band->
energy), [
f]
"+f"(form_factor),
108 [ax]
"=&f"(ax), [bx]
"=&f"(bx),
109 [cx]
"=&f"(cx), [dx]
"=&f"(dx)
116 Temp = sqrtf((
float)band_sizes[
g] / band->
energy);
118 band->
nz_lines = form_factor * sqrtf(Temp);
119 start += band_sizes[
g];
120 wstart += band_sizes[
g];
125 static void psy_hp_filter_mips(
const float *firbuf,
float *hpfsmpl,
const float *
psy_fir_coeffs)
127 float sum1, sum2, sum3, sum4;
128 float *
fb = (
float*)firbuf;
140 ".set noreorder \n\t"
142 "li.s $f12, 32768 \n\t"
144 "lwc1 $f0, 40(%[fb]) \n\t"
145 "lwc1 $f1, 4(%[fb]) \n\t"
146 "lwc1 $f2, 80(%[fb]) \n\t"
147 "lwc1 $f3, 44(%[fb]) \n\t"
148 "lwc1 $f4, 8(%[fb]) \n\t"
149 "madd.s %[sum1], $f0, $f1, %[coeff0] \n\t"
150 "lwc1 $f5, 84(%[fb]) \n\t"
151 "lwc1 $f6, 48(%[fb]) \n\t"
152 "madd.s %[sum2], $f3, $f4, %[coeff0] \n\t"
153 "lwc1 $f7, 12(%[fb]) \n\t"
154 "madd.s %[sum1], %[sum1], $f2, %[coeff0] \n\t"
155 "lwc1 $f8, 88(%[fb]) \n\t"
156 "lwc1 $f9, 52(%[fb]) \n\t"
157 "madd.s %[sum2], %[sum2], $f5, %[coeff0] \n\t"
158 "madd.s %[sum3], $f6, $f7, %[coeff0] \n\t"
159 "lwc1 $f10, 16(%[fb]) \n\t"
160 "lwc1 $f11, 92(%[fb]) \n\t"
161 "madd.s %[sum1], %[sum1], $f7, %[coeff1] \n\t"
162 "lwc1 $f1, 72(%[fb]) \n\t"
163 "madd.s %[sum3], %[sum3], $f8, %[coeff0] \n\t"
164 "madd.s %[sum4], $f9, $f10, %[coeff0] \n\t"
165 "madd.s %[sum2], %[sum2], $f10, %[coeff1] \n\t"
166 "madd.s %[sum1], %[sum1], $f1, %[coeff1] \n\t"
167 "lwc1 $f4, 76(%[fb]) \n\t"
168 "lwc1 $f8, 20(%[fb]) \n\t"
169 "madd.s %[sum4], %[sum4], $f11, %[coeff0] \n\t"
170 "lwc1 $f11, 24(%[fb]) \n\t"
171 "madd.s %[sum2], %[sum2], $f4, %[coeff1] \n\t"
172 "madd.s %[sum1], %[sum1], $f8, %[coeff2] \n\t"
173 "madd.s %[sum3], %[sum3], $f8, %[coeff1] \n\t"
174 "madd.s %[sum4], %[sum4], $f11, %[coeff1] \n\t"
175 "lwc1 $f7, 64(%[fb]) \n\t"
176 "madd.s %[sum2], %[sum2], $f11, %[coeff2] \n\t"
177 "lwc1 $f10, 68(%[fb]) \n\t"
178 "madd.s %[sum3], %[sum3], $f2, %[coeff1] \n\t"
179 "madd.s %[sum4], %[sum4], $f5, %[coeff1] \n\t"
180 "madd.s %[sum1], %[sum1], $f7, %[coeff2] \n\t"
181 "madd.s %[sum2], %[sum2], $f10, %[coeff2] \n\t"
182 "lwc1 $f2, 28(%[fb]) \n\t"
183 "lwc1 $f5, 32(%[fb]) \n\t"
184 "lwc1 $f8, 56(%[fb]) \n\t"
185 "lwc1 $f11, 60(%[fb]) \n\t"
186 "madd.s %[sum3], %[sum3], $f2, %[coeff2] \n\t"
187 "madd.s %[sum4], %[sum4], $f5, %[coeff2] \n\t"
188 "madd.s %[sum1], %[sum1], $f2, %[coeff3] \n\t"
189 "madd.s %[sum2], %[sum2], $f5, %[coeff3] \n\t"
190 "madd.s %[sum3], %[sum3], $f1, %[coeff2] \n\t"
191 "madd.s %[sum4], %[sum4], $f4, %[coeff2] \n\t"
192 "madd.s %[sum1], %[sum1], $f8, %[coeff3] \n\t"
193 "madd.s %[sum2], %[sum2], $f11, %[coeff3] \n\t"
194 "lwc1 $f1, 36(%[fb]) \n\t"
196 "madd.s %[sum4], %[sum4], $f0, %[coeff3] \n\t"
197 "madd.s %[sum3], %[sum3], $f1, %[coeff3] \n\t"
198 "madd.s %[sum1], %[sum1], $f1, %[coeff4] \n\t"
199 "madd.s %[sum2], %[sum2], $f0, %[coeff4] \n\t"
200 "madd.s %[sum4], %[sum4], $f10, %[coeff3] \n\t"
201 "madd.s %[sum3], %[sum3], $f7, %[coeff3] \n\t"
202 "madd.s %[sum1], %[sum1], $f6, %[coeff4] \n\t"
203 "madd.s %[sum2], %[sum2], $f9, %[coeff4] \n\t"
204 "madd.s %[sum4], %[sum4], $f6, %[coeff4] \n\t"
205 "madd.s %[sum3], %[sum3], $f3, %[coeff4] \n\t"
206 "mul.s %[sum1], %[sum1], $f12 \n\t"
207 "mul.s %[sum2], %[sum2], $f12 \n\t"
208 "madd.s %[sum4], %[sum4], $f11, %[coeff4] \n\t"
209 "madd.s %[sum3], %[sum3], $f8, %[coeff4] \n\t"
210 "swc1 %[sum1], 0(%[hp]) \n\t"
211 "swc1 %[sum2], 4(%[hp]) \n\t"
212 "mul.s %[sum4], %[sum4], $f12 \n\t"
213 "mul.s %[sum3], %[sum3], $f12 \n\t"
214 "swc1 %[sum4], 12(%[hp]) \n\t"
215 "swc1 %[sum3], 8(%[hp]) \n\t"
216 "bne %[fb], %[fb_end], 1b \n\t"
221 : [sum1]
"=&f"(sum1), [sum2]
"=&f"(sum2),
222 [sum3]
"=&f"(sum3), [sum4]
"=&f"(sum4),
223 [
fb]
"+r"(
fb), [hp]
"+r"(hp)
224 : [coeff0]
"f"(coeff0), [coeff1]
"f"(coeff1),
225 [coeff2]
"f"(coeff2), [coeff3]
"f"(coeff3),
226 [coeff4]
"f"(coeff4), [fb_end]
"r"(fb_end)
227 :
"$f0",
"$f1",
"$f2",
"$f3",
"$f4",
"$f5",
"$f6",
228 "$f7",
"$f8",
"$f9",
"$f10",
"$f11",
"$f12",
233 #define calc_thr_3gpp calc_thr_3gpp_mips
234 #define psy_hp_filter psy_hp_filter_mips
float thr
energy threshold
float nz_lines
number of non-zero spectral lines
windowing related information
information for single band used by 3GPP TS26.403-inspired psychoacoustic model
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
#define AAC_BLOCK_SIZE_LONG
long block size
AacPsyBand band[128]
bands information
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
static const float psy_fir_coeffs[]
LAME psy model FIR coefficient table.
#define i(width, name, range_min, range_max)
single/pair channel context for psychoacoustic model
int num_windows
number of windows in a frame