Go to the documentation of this file.
99 enum OCStatus oc_type,
int get_new_frame);
101 #define overread_err "Input buffer exhausted before END element found\n"
106 for (
i = 0;
i < tags;
i++) {
109 sum += (1 + (syn_ele ==
TYPE_CPE)) *
184 for (ch = 0; ch < avctx->
channels; ch++) {
201 uint64_t right,
int pos, uint64_t *
layout)
205 .av_position =
left | right,
207 .elem_id = layout_map[
offset][1],
210 if (e2c_vec[
offset].av_position != UINT64_MAX)
218 .elem_id = layout_map[
offset][1],
222 .av_position = right,
224 .elem_id = layout_map[
offset + 1][1],
227 if (
left != UINT64_MAX)
230 if (right != UINT64_MAX)
240 int num_pos_channels = 0;
244 for (
i = *current;
i < tags;
i++) {
245 if (layout_map[
i][2] !=
pos)
255 num_pos_channels += 2;
266 return num_pos_channels;
269 #define PREFIX_FOR_22POINT2 (AV_CH_LAYOUT_7POINT1_WIDE_BACK|AV_CH_BACK_CENTER|AV_CH_SIDE_LEFT|AV_CH_SIDE_RIGHT|AV_CH_LOW_FREQUENCY_2)
272 int i, n, total_non_cc_elements;
274 int num_front_channels, num_side_channels, num_back_channels;
283 if (num_front_channels < 0)
287 if (num_side_channels < 0)
291 if (num_back_channels < 0)
294 if (num_side_channels == 0 && num_back_channels >= 4) {
295 num_side_channels = 2;
296 num_back_channels -= 2;
300 if (num_front_channels & 1) {
304 .elem_id = layout_map[
i][1],
309 num_front_channels--;
311 if (num_front_channels >= 4) {
316 num_front_channels -= 2;
318 if (num_front_channels >= 2) {
323 num_front_channels -= 2;
325 while (num_front_channels >= 2) {
330 num_front_channels -= 2;
333 if (num_side_channels >= 2) {
338 num_side_channels -= 2;
340 while (num_side_channels >= 2) {
345 num_side_channels -= 2;
348 while (num_back_channels >= 4) {
353 num_back_channels -= 2;
355 if (num_back_channels >= 2) {
360 num_back_channels -= 2;
362 if (num_back_channels) {
366 .elem_id = layout_map[
i][1],
378 .elem_id = layout_map[
i][1],
388 .elem_id = layout_map[
i][1],
398 .elem_id = layout_map[
i][1],
407 for (
int j = 0; j < tags; j++) {
408 if (layout_map[j][0] != reference_layout_map[j][0] ||
409 layout_map[j][2] != reference_layout_map[j][2])
410 goto end_of_layout_definition;
415 .syn_ele = layout_map[
i][0],
416 .elem_id = layout_map[
i][1],
417 .aac_position = layout_map[
i][2]
431 .syn_ele = layout_map[
i][0],
432 .elem_id = layout_map[
i][1],
433 .aac_position = layout_map[
i][2]
442 .syn_ele = layout_map[
i][0],
443 .elem_id = layout_map[
i][1],
444 .aac_position = layout_map[
i][2]
448 .syn_ele = layout_map[
i][0],
449 .elem_id = layout_map[
i][1],
450 .aac_position = layout_map[
i][2]
459 end_of_layout_definition:
461 total_non_cc_elements = n =
i;
479 for (
i = 1;
i < n;
i++)
480 if (e2c_vec[
i - 1].av_position > e2c_vec[
i].av_position) {
489 for (
i = 0;
i < total_non_cc_elements;
i++) {
505 ac->
oc[0] = ac->
oc[1];
518 ac->
oc[1] = ac->
oc[0];
534 enum OCStatus oc_type,
int get_new_frame)
543 memcpy(ac->
oc[1].
layout_map, layout_map, tags *
sizeof(layout_map[0]));
546 for (
i = 0;
i < tags;
i++) {
547 int type = layout_map[
i][0];
548 int id = layout_map[
i][1];
559 for (
i = 0;
i < tags;
i++) {
560 int type = layout_map[
i][0];
561 int id = layout_map[
i][1];
562 int iid = id_map[
type][
id];
563 int position = layout_map[
i][2];
601 for (j = 0; j <= 1; j++) {
620 if (channel_config < 1 || (channel_config > 7 && channel_config < 11) ||
621 channel_config > 13) {
623 "invalid default channel configuration (%d)\n",
629 *tags *
sizeof(*layout_map));
647 " instead of a spec-compliant 7.1(wide) layout, use -strict %d to decode"
672 &layout_map_tags, 2) < 0)
691 &layout_map_tags, 1) < 0)
734 "This stream seems to incorrectly report its last channel as %s[%d], mapping to LFE[0]\n",
756 "This stream seems to incorrectly report its last channel as %s[%d], mapping to SCE[1]\n",
817 layout_map[0][0] = syn_ele;
819 layout_map[0][2] =
type;
825 int reference_position) {
840 int num_front, num_side, num_back, num_lfe, num_assoc_data, num_cc;
850 "Sample rate index in program config element does not "
851 "match the sample rate index configured by the container.\n");
868 if (
get_bits_left(gb) < 5 * (num_front + num_side + num_back + num_cc) + 4 *(num_lfe + num_assoc_data + num_cc)) {
908 int get_bit_alignment,
912 int extension_flag,
ret, ep_config, res_flags;
940 if (channel_config == 0) {
942 tags =
decode_pce(avctx, m4ac, layout_map, gb, get_bit_alignment);
947 &tags, channel_config)))
953 }
else if (m4ac->
sbr == 1 && m4ac->
ps == -1)
959 if (extension_flag) {
972 "AAC data resilience (flags %x)",
988 "epConfig %d", ep_config);
1000 int ret, ep_config, res_flags;
1003 const int ELDEXT_TERM = 0;
1018 "AAC data resilience (flags %x)",
1029 while (
get_bits(gb, 4) != ELDEXT_TERM) {
1033 if (
len == 15 + 255)
1043 &tags, channel_config)))
1052 "epConfig %d", ep_config);
1074 int get_bit_alignment,
1088 "invalid sampling rate index %d\n",
1096 "invalid low delay sampling rate index %d\n",
1122 "Audio object type %s%d",
1123 m4ac->
sbr == 1 ?
"SBR+" :
"",
1129 "AOT %d chan config %d sampling index %d (%d) SBR %d PS %d\n",
1146 if (bit_size < 0 || bit_size > INT_MAX) {
1151 ff_dlog(avctx,
"audio specific config size %d\n", (
int)bit_size >> 3);
1152 for (
i = 0; i < bit_size >> 3;
i++)
1172 union {
unsigned u;
int s; } v = { previous_val * 1664525
u + 1013904223 };
1185 if (92017 <= rate)
return 0;
1186 else if (75132 <= rate)
return 1;
1187 else if (55426 <= rate)
return 2;
1188 else if (46009 <= rate)
return 3;
1189 else if (37566 <= rate)
return 4;
1190 else if (27713 <= rate)
return 5;
1191 else if (23004 <= rate)
return 6;
1192 else if (18783 <= rate)
return 7;
1193 else if (13856 <= rate)
return 8;
1194 else if (11502 <= rate)
return 9;
1195 else if (9391 <= rate)
return 10;
1211 294 + 306 + 268 + 510 + 366 + 462][2];
1212 for (
unsigned i = 0,
offset = 0;
i < 11;
i++) {
1290 int layout_map_tags;
1381 "Invalid Predictor Reset Group.\n");
1427 "AAC LD is only defined for ONLY_LONG_SEQUENCE but "
1440 for (
i = 0;
i < 7;
i++) {
1497 "Prediction is not allowed in AAC-LC.\n");
1502 "LTP in ER AAC LD not yet implemented.\n");
1514 "Number of scalefactor bands in group (%d) "
1515 "exceeds limit (%d).\n",
1542 while (k < ics->max_sfb) {
1545 int sect_band_type =
get_bits(gb, 4);
1546 if (sect_band_type == 12) {
1552 sect_end += sect_len_incr;
1557 if (sect_end > ics->
max_sfb) {
1559 "Number of bands (%d) exceeds limit (%d).\n",
1563 }
while (sect_len_incr == (1 <<
bits) - 1);
1564 for (; k < sect_end; k++) {
1565 band_type [idx] = sect_band_type;
1566 band_type_run_end[idx++] = sect_end;
1584 unsigned int global_gain,
1587 int band_type_run_end[120])
1595 int run_end = band_type_run_end[idx];
1596 if (band_type[idx] ==
ZERO_BT) {
1597 for (;
i < run_end;
i++, idx++)
1601 for (;
i < run_end;
i++, idx++) {
1604 if (
offset[2] != clipped_offset) {
1606 "If you heard an audible artifact, there may be a bug in the decoder. "
1607 "Clipped intensity stereo position (%d -> %d)",
1608 offset[2], clipped_offset);
1611 sf[idx] = 100 - clipped_offset;
1616 }
else if (band_type[idx] ==
NOISE_BT) {
1617 for (;
i < run_end;
i++, idx++) {
1618 if (noise_flag-- > 0)
1623 if (
offset[1] != clipped_offset) {
1625 "If you heard an audible artifact, there may be a bug in the decoder. "
1626 "Clipped noise gain (%d -> %d)",
1627 offset[1], clipped_offset);
1630 sf[idx] = -(100 + clipped_offset);
1636 for (;
i < run_end;
i++, idx++) {
1640 "Scalefactor (%d) out of range.\n",
offset[0]);
1659 const uint16_t *swb_offset,
int num_swb)
1664 if (pulse_swb >= num_swb)
1666 pulse->
pos[0] = swb_offset[pulse_swb];
1668 if (pulse->
pos[0] >= swb_offset[num_swb])
1673 if (pulse->
pos[
i] >= swb_offset[num_swb])
1688 int w,
filt,
i, coef_len, coef_res, coef_compress;
1701 "TNS filter order %d is greater than maximum %d.\n",
1709 coef_len = coef_res + 3 - coef_compress;
1710 tmp2_idx = 2 * coef_compress + coef_res;
1733 if (ms_present == 1) {
1734 for (idx = 0; idx < max_idx; idx++)
1736 }
else if (ms_present == 2) {
1755 int pulse_present,
const Pulse *pulse,
1759 int i, k,
g, idx = 0;
1772 const unsigned cbt_m1 = band_type[idx] - 1;
1778 for (group = 0; group < (
AAC_SIGNE)g_len; group++, cfo+=128) {
1779 memset(cfo, 0, off_len *
sizeof(*cfo));
1781 }
else if (cbt_m1 ==
NOISE_BT - 1) {
1782 for (group = 0; group < (
AAC_SIGNE)g_len; group++, cfo+=128) {
1785 for (k = 0; k < off_len; k++) {
1790 band_energy = ac->
fdsp->scalarproduct_fixed(cfo, cfo, off_len);
1796 for (k = 0; k < off_len; k++) {
1802 scale = sf[idx] / sqrtf(band_energy);
1813 switch (cbt_m1 >> 1) {
1815 for (group = 0; group < (
AAC_SIGNE)g_len; group++, cfo+=128) {
1829 cf =
VMUL4(cf, vq, cb_idx, sf + idx);
1836 for (group = 0; group < (
AAC_SIGNE)g_len; group++, cfo+=128) {
1849 nnz = cb_idx >> 8 & 15;
1862 for (group = 0; group < (
AAC_SIGNE)g_len; group++, cfo+=128) {
1876 cf =
VMUL2(cf, vq, cb_idx, sf + idx);
1884 for (group = 0; group < (
AAC_SIGNE)g_len; group++, cfo+=128) {
1897 nnz = cb_idx >> 8 & 15;
1898 sign = nnz ?
SHOW_UBITS(
re, gb, nnz) << (cb_idx >> 12) : 0;
1903 cf =
VMUL2S(cf, vq, cb_idx, sign, sf + idx);
1910 for (group = 0; group < (
AAC_SIGNE)g_len; group++, cfo+=128) {
1916 uint32_t *icf = (uint32_t *) cf;
1931 if (cb_idx == 0x0000) {
1942 for (j = 0; j < 2; j++) {
1977 unsigned v = ((
const uint32_t*)vq)[cb_idx & 15];
1978 *icf++ = (
bits & 1
U<<31) | v;
1997 if (pulse_present) {
2003 if (band_type[idx] !=
NOISE_BT && sf[idx]) {
2007 ico = co + (co > 0 ? -ico : ico);
2009 coef_base[ pulse->
pos[
i] ] = ico;
2013 ico = co / sqrtf(sqrtf(
fabsf(co))) + (co > 0 ? -ico : ico);
2027 const unsigned cbt_m1 = band_type[idx] - 1;
2033 for (group = 0; group < (
int)g_len; group++, cfo+=128) {
2062 k < sce->ics.swb_offset[sfb + 1];
2079 static const uint8_t gain_mode[4][3] = {
2091 for (bd = 0; bd < max_band; bd++) {
2092 for (wd = 0; wd < gain_mode[
mode][0]; wd++) {
2094 for (ad = 0; ad < adjust_num; ad++) {
2097 : gain_mode[
mode][2]));
2118 int global_gain, eld_syntax, er_syntax, pulse_present = 0;
2134 if (!common_window && !scale_flag) {
2149 if (!eld_syntax && (pulse_present =
get_bits1(gb))) {
2152 "Pulse tool not allowed in eight short sequence.\n");
2158 "Pulse data corrupt or invalid.\n");
2164 if (tns->
present && !er_syntax) {
2178 if (tns->
present && er_syntax) {
2207 int g,
i, group, idx = 0;
2215 for (group = 0; group < ics->
group_len[
g]; group++) {
2216 ac->
fdsp->butterflies_fixed(ch0 + group * 128 +
offsets[
i],
2220 for (group = 0; group < ics->
group_len[
g]; group++) {
2247 int g, group,
i, idx = 0;
2255 for (;
i < bt_run_end;
i++, idx++) {
2259 scale =
c * sce1->
sf[idx];
2260 for (group = 0; group < ics->
group_len[
g]; group++)
2276 idx += bt_run_end -
i;
2292 int i,
ret, common_window, ms_present = 0;
2295 common_window = eld_syntax ||
get_bits1(gb);
2296 if (common_window) {
2307 if (ms_present == 3) {
2310 }
else if (ms_present)
2318 if (common_window) {
2332 1.09050773266525765921,
2333 1.18920711500272106672,
2377 for (
c = 0;
c < num_gain;
c++) {
2385 gain_cache =
GET_GAIN(scale, gain);
2387 if ((
abs(gain_cache)-1024) >> 3 > 30)
2392 coup->
gain[
c][0] = gain_cache;
2395 for (sfb = 0; sfb < sce->
ics.
max_sfb; sfb++, idx++) {
2408 if ((
abs(gain_cache)-1024) >> 3 > 30)
2413 coup->
gain[
c][idx] = gain_cache;
2431 int num_excl_chan = 0;
2434 for (
i = 0;
i < 7;
i++)
2438 return num_excl_chan / 7;
2450 int drc_num_bands = 1;
2471 for (
i = 0;
i < drc_num_bands;
i++) {
2484 for (
i = 0;
i < drc_num_bands;
i++) {
2502 for(
i=0;
i+1<
sizeof(buf) &&
len>=8;
i++,
len-=8)
2509 if (sscanf(buf,
"libfaac %d.%d", &
major, &
minor) == 2){
2546 "SBR with 960 frame length");
2596 int bottom, top, order, start, end,
size, inc;
2618 if ((
size = end - start) <= 0)
2630 for (m = 0; m <
size; m++, start += inc)
2631 for (
i = 1;
i <=
FFMIN(m, order);
i++)
2635 for (m = 0; m <
size; m++, start += inc) {
2636 tmp[0] = coef[start];
2637 for (
i = 1;
i <=
FFMIN(m, order);
i++)
2639 for (
i = order;
i > 0;
i--)
2662 memset(
in, 0, 448 *
sizeof(*
in));
2669 memset(
in + 1024 + 576, 0, 448 *
sizeof(*
in));
2686 int16_t num_samples = 2048;
2688 if (ltp->
lag < 1024)
2689 num_samples = ltp->
lag + 1024;
2690 for (
i = 0;
i < num_samples;
i++)
2692 memset(&predTime[
i], 0, (2048 -
i) *
sizeof(*predTime));
2719 memcpy(saved_ltp, saved, 512 *
sizeof(*saved_ltp));
2720 memset(saved_ltp + 576, 0, 448 *
sizeof(*saved_ltp));
2723 for (
i = 0;
i < 64;
i++)
2726 memcpy(saved_ltp, ac->
buf_mdct + 512, 448 *
sizeof(*saved_ltp));
2727 memset(saved_ltp + 576, 0, 448 *
sizeof(*saved_ltp));
2730 for (
i = 0;
i < 64;
i++)
2735 for (
i = 0;
i < 512;
i++)
2762 for (
i = 0;
i < 1024;
i += 128)
2767 for (
i=0;
i<1024;
i++)
2768 buf[
i] = (buf[
i] + 4LL) >> 3;
2782 memcpy(
out, saved, 448 *
sizeof(*
out));
2790 memcpy(
out + 448 + 4*128,
temp, 64 *
sizeof(*
out));
2793 memcpy(
out + 576, buf + 64, 448 *
sizeof(*
out));
2799 memcpy( saved,
temp + 64, 64 *
sizeof(*saved));
2803 memcpy( saved + 448, buf + 7*128 + 64, 64 *
sizeof(*saved));
2805 memcpy( saved, buf + 512, 448 *
sizeof(*saved));
2806 memcpy( saved + 448, buf + 7*128 + 64, 64 *
sizeof(*saved));
2808 memcpy( saved, buf + 512, 512 *
sizeof(*saved));
2831 for (
i = 0;
i < 8;
i++)
2848 memcpy(
out, saved, 420 *
sizeof(*
out));
2856 memcpy(
out + 420 + 4*120,
temp, 60 *
sizeof(*
out));
2859 memcpy(
out + 540, buf + 60, 420 *
sizeof(*
out));
2865 memcpy( saved,
temp + 60, 60 *
sizeof(*saved));
2869 memcpy( saved + 420, buf + 7*120 + 60, 60 *
sizeof(*saved));
2871 memcpy( saved, buf + 480, 420 *
sizeof(*saved));
2872 memcpy( saved + 420, buf + 7*120 + 60, 60 *
sizeof(*saved));
2874 memcpy( saved, buf + 480, 480 *
sizeof(*saved));
2893 for (
i = 0;
i < 1024;
i++)
2894 buf[
i] = (buf[
i] + 2) >> 2;
2900 memcpy(
out, saved, 192 *
sizeof(*
out));
2902 memcpy(
out + 320, buf + 64, 192 *
sizeof(*
out));
2908 memcpy(saved, buf + 256, 256 *
sizeof(*saved));
2919 const int n2 = n >> 1;
2920 const int n4 = n >> 2;
2929 for (
i = 0;
i < n2;
i+=2) {
2942 for (
i = 0;
i < 1024;
i++)
2943 buf[
i] = (buf[
i] + 1) >> 1;
2946 for (
i = 0;
i < n;
i+=2) {
2956 for (
i = n4;
i < n2;
i ++) {
2962 for (
i = 0;
i < n2;
i ++) {
2968 for (
i = 0;
i < n4;
i ++) {
2975 memmove(saved + n, saved, 2 * n *
sizeof(*saved));
2976 memcpy( saved, buf, n *
sizeof(*saved));
3001 apply_coupling_method(ac, &cc->
ch[0], cce,
index);
3006 apply_coupling_method(ac, &cc->
ch[1], cce,
index++);
3094 int layout_map_tags,
ret;
3102 "More than one AAC RDB per ADTS frame");
3125 layout_map_tags = 2;
3126 layout_map[0][0] = layout_map[1][0] =
TYPE_SCE;
3128 layout_map[0][1] = 0;
3129 layout_map[1][1] = 1;
3176 if (chan_config < 0 || (chan_config >= 8 && chan_config < 11) || chan_config >= 13) {
3184 if (!(che=
get_che(ac, elem_type, elem_id))) {
3186 "channel element %d.%d is not allocated\n",
3187 elem_type, elem_id);
3193 switch (elem_type) {
3231 int samples = 0, multiplier, audio_found = 0, pce_found = 0;
3232 int is_dmono, sce_count = 0;
3233 int payload_alignment;
3272 if (che_presence[elem_type][elem_id]) {
3273 int error = che_presence[elem_type][elem_id] > 1;
3275 elem_type, elem_id);
3281 che_presence[elem_type][elem_id]++;
3283 if (!(che=
get_che(ac, elem_type, elem_id))) {
3285 elem_type, elem_id);
3293 switch (elem_type) {
3324 if (pce_found && !pushed) {
3337 "Not evaluating a further program_config_element as this construct is dubious at best.\n");
3357 while (elem_id > 0) {
3374 che_prev_type = elem_type;
3397 if (ac->
oc[1].
status && audio_found) {
3420 is_dmono = ac->
dmono_mode && sce_count == 2 &&
3436 int *got_frame_ptr,
AVPacket *avpkt)
3440 int buf_size = avpkt->
size;
3448 &new_extradata_size);
3454 if (new_extradata) {
3459 new_extradata_size * 8LL, 1);
3466 if (jp_dualmono && jp_dualmono_size > 0)
3471 if (INT_MAX / 8 <= buf_size)
3491 for (buf_offset = buf_consumed; buf_offset < buf_size; buf_offset++)
3492 if (buf[buf_offset])
3495 return buf_size > buf_offset ? buf_consumed : buf_size;
3544 #define AACDEC_FLAGS AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM
3546 {
"dual_mono_mode",
"Select the channel to decode for dual mono",
static void error(const char *err)
enum RawDataBlockType type[8]
Type of channel element to be coupled - SCE or CPE.
static void vector_pow43(int *coefs, int len)
int frame_size
Number of samples per channel in an audio frame.
CouplingPoint
The point during decoding at which channel coupling is applied.
@ AV_SAMPLE_FMT_FLTP
float, planar
static void skip_bits_long(GetBitContext *s, int n)
Skips the specified number of bits.
#define AV_LOG_WARNING
Something somehow does not look correct.
static av_always_inline int lcg_random(unsigned previous_val)
linear congruential pseudorandom number generator
const uint8_t ff_tns_max_bands_128[]
static void apply_mid_side_stereo(AACContext *ac, ChannelElement *cpe)
Mid/Side stereo decoding; reference: 4.6.8.1.3.
static int decode_eld_specific_config(AACContext *ac, AVCodecContext *avctx, GetBitContext *gb, MPEG4AudioConfig *m4ac, int channel_config)
static void update_ltp(AACContext *ac, SingleChannelElement *sce)
Update the LTP buffer for next frame.
static int get_bits_left(GetBitContext *gb)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
#define AV_CH_TOP_SIDE_LEFT
uint8_t * av_packet_get_side_data(const AVPacket *pkt, enum AVPacketSideDataType type, buffer_size_t *size)
uint64_t channel_layout
Audio channel layout.
static void imdct_and_windowing(AACContext *ac, SingleChannelElement *sce)
Conduct IMDCT and windowing.
#define AV_CH_TOP_FRONT_CENTER
int sample_rate
samples per second
#define FFSWAP(type, a, b)
#define AV_CH_LOW_FREQUENCY_2
#define u(width, name, range_min, range_max)
const uint16_t ff_aac_spectral_sizes[11]
static int aac_decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr, AVPacket *avpkt)
const float *const ff_aac_codebook_vector_vals[]
static int decode_fill(AACContext *ac, GetBitContext *gb, int len)
static av_cold int aac_decode_init(AVCodecContext *avctx)
static INTFLOAT aac_kbd_short_120[120]
#define INIT_VLC_STATIC(vlc, bits, a, b, c, d, e, f, g, static_size)
int skip_samples
Number of audio samples to skip at the start of the next decoded frame.
int err_recognition
Error recognition; may misdetect some more or less valid parts as errors.
#define GET_VLC(code, name, gb, table, bits, max_depth)
If the vlc code is invalid and max_depth=1, then no bits will be removed.
static int decode_prediction(AACContext *ac, IndividualChannelStream *ics, GetBitContext *gb)
void ff_cbrt_tableinit(void)
void(* vector_fmul_reverse)(float *dst, const float *src0, const float *src1, int len)
Calculate the entry wise product of two vectors of floats, and store the result in a vector of floats...
static int get_bits_count(const GetBitContext *s)
void(* subband_scale)(int *dst, int *src, int scale, int offset, int len, void *log_context)
#define AV_CH_TOP_FRONT_RIGHT
const uint16_t *const ff_aac_codebook_vector_idx[]
void(* mdct_calc)(struct FFTContext *s, FFTSample *output, const FFTSample *input)
This structure describes decoded (raw) audio or video data.
static int skip_data_stream_element(AACContext *ac, GetBitContext *gb)
Skip data_stream_element; reference: table 4.10.
static void apply_dependent_coupling(AACContext *ac, SingleChannelElement *target, ChannelElement *cce, int index)
Apply dependent channel coupling (applied before IMDCT).
static int AAC_RENAME() compute_lpc_coefs(const LPC_TYPE *autoc, int max_order, LPC_TYPE *lpc, int lpc_stride, int fail, int normalize)
Levinson-Durbin recursion.
const uint8_t ff_aac_num_swb_960[]
static void decode_mid_side_stereo(ChannelElement *cpe, GetBitContext *gb, int ms_present)
Decode Mid/Side data; reference: table 4.54.
static int count_paired_channels(uint8_t(*layout_map)[3], int tags, int pos, int *current)
@ AOT_ER_AAC_LTP
N Error Resilient Long Term Prediction.
@ AV_SAMPLE_FMT_S32P
signed 32 bits, planar
ChannelElement * tag_che_map[4][MAX_ELEM_ID]
const uint8_t ff_aac_num_swb_120[]
static av_always_inline int get_vlc2(GetBitContext *s, VLC_TYPE(*table)[2], int bits, int max_depth)
Parse a vlc code.
#define AV_LOG_VERBOSE
Detailed information.
av_cold int ff_mdct15_init(MDCT15Context **ps, int inverse, int N, double scale)
#define AV_CH_TOP_FRONT_LEFT
int8_t used[MAX_LTP_LONG_SFB]
static int decode_band_types(AACContext *ac, enum BandType band_type[120], int band_type_run_end[120], GetBitContext *gb, IndividualChannelStream *ics)
Decode band types (section_data payload); reference: table 4.46.
static int * DEC_SQUAD(int *dst, unsigned idx)
static AVOnce aac_table_init
static void apply_prediction(AACContext *ac, SingleChannelElement *sce)
Apply AAC-Main style frequency domain prediction.
#define UPDATE_CACHE(name, gb)
const uint8_t ff_aac_num_swb_480[]
static void pop_output_configuration(AACContext *ac)
Restore the previous output configuration if and only if the current configuration is unlocked.
INTFLOAT * ret
PCM output.
#define AVERROR_UNKNOWN
Unknown error, typically from an external library.
static int decode_spectrum_and_dequant(AACContext *ac, INTFLOAT coef[1024], GetBitContext *gb, const INTFLOAT sf[120], int pulse_present, const Pulse *pulse, const IndividualChannelStream *ics, enum BandType band_type[120])
Decode spectral data; reference: table 4.50.
uint64_t request_channel_layout
Request decoder to use this channel layout if it can (0 for default)
const uint16_t *const ff_swb_offset_128[]
static int init_get_bits(GetBitContext *s, const uint8_t *buffer, int bit_size)
Initialize GetBitContext.
static int decode_pce(AVCodecContext *avctx, MPEG4AudioConfig *m4ac, uint8_t(*layout_map)[3], GetBitContext *gb, int byte_align_ref)
Decode program configuration element; reference: table 4.2.
#define FF_DEBUG_PICT_INFO
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
const uint8_t ff_tns_max_bands_1024[]
#define AV_CH_BOTTOM_FRONT_LEFT
#define AV_CH_TOP_BACK_LEFT
void(* butterflies_float)(float *av_restrict v1, float *av_restrict v2, int len)
Calculate the sum and difference of two vectors of floats.
static void reset_all_predictors(PredictorState *ps)
#define GET_CACHE(name, gb)
static int set_default_channel_config(AACContext *ac, AVCodecContext *avctx, uint8_t(*layout_map)[3], int *tags, int channel_config)
Set up channel positions based on a default channel configuration as specified in table 1....
static void skip_bits(GetBitContext *s, int n)
Dynamic Range Control - decoded from the bitstream but not processed further.
int num_swb
number of scalefactor window bands
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
#define AV_CH_TOP_BACK_CENTER
enum CouplingPoint coupling_point
The point during decoding at which coupling is applied.
static SDL_Window * window
const uint8_t ff_aac_num_swb_512[]
@ OC_LOCKED
Output configuration locked in place.
void(* apply_ltp)(AACContext *ac, SingleChannelElement *sce)
INTFLOAT saved[1536]
overlap
static const INTFLOAT ltp_coef[8]
INTFLOAT ret_buf[2048]
PCM output buffer.
int id_select[8]
element id
static int decode_drc_channel_exclusions(DynamicRangeControl *che_drc, GetBitContext *gb)
Parse whether channels are to be excluded from Dynamic Range Compression; reference: table 4....
int flags
AV_CODEC_FLAG_*.
#define POW_SF2_ZERO
ff_aac_pow2sf_tab index corresponding to pow(2, 0);
static void decode_gain_control(SingleChannelElement *sce, GetBitContext *gb)
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf type
static float * VMUL2(float *dst, const float *v, unsigned idx, const float *scale)
static void decode_ltp(LongTermPrediction *ltp, GetBitContext *gb, uint8_t max_sfb)
Decode Long Term Prediction data; reference: table 4.xx.
AVFixedDSPContext * avpriv_alloc_fixed_dsp(int bit_exact)
Allocate and initialize a fixed DSP context.
static __device__ float fabsf(float a)
uint8_t prediction_used[41]
IndividualChannelStream ics
static void spectral_to_sample(AACContext *ac, int samples)
Convert spectral data to samples, applying all supported tools as appropriate.
#define AV_EF_BITSTREAM
detect bitstream specification deviations
@ AOT_ER_AAC_LC
N Error Resilient Low Complexity.
static int ff_thread_once(char *control, void(*routine)(void))
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
@ ZERO_BT
Scalefactors and spectral data are all zero.
#define FF_ARRAY_ELEMS(a)
#define FF_PROFILE_AAC_HE_V2
static av_cold int che_configure(AACContext *ac, enum ChannelPosition che_pos, int type, int id, int *channels)
Check for the channel element in the current channel position configuration.
static int decode_cpe(AACContext *ac, GetBitContext *gb, ChannelElement *cpe)
Decode a channel_pair_element; reference: table 4.4.
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
int exclude_mask[MAX_CHANNELS]
Channels to be excluded from DRC processing.
void(* vector_pow43)(int *coefs, int len)
#define AV_CH_LOW_FREQUENCY
#define AV_CH_LAYOUT_22POINT2
#define CLOSE_READER(name, gb)
static void decode(AVCodecContext *dec_ctx, AVPacket *pkt, AVFrame *frame, FILE *outfile)
@ NOISE_BT
Spectral data are scaled white noise not coded in the bitstream.
float(* scalarproduct_float)(const float *v1, const float *v2, int len)
Calculate the scalar product of two vectors of floats.
@ AOT_ER_AAC_LD
N Error Resilient Low Delay.
static const AVClass aac_decoder_class
@ OC_TRIAL_FRAME
Output configuration under trial specified by a frame header.
INTFLOAT coeffs[1024]
coefficients for IMDCT, maybe processed
static void windowing_and_mdct_ltp(AACContext *ac, INTFLOAT *out, INTFLOAT *in, IndividualChannelStream *ics)
Apply windowing and MDCT to obtain the spectral coefficient from the predicted sample by LTP.
const uint16_t *const ff_swb_offset_960[]
static int sample_rate_idx(int rate)
static av_always_inline void reset_predict_state(PredictorState *ps)
static const int offsets[]
int num_coupled
number of target elements
static int decode_dynamic_range(DynamicRangeControl *che_drc, GetBitContext *gb)
Decode dynamic range information; reference: table 4.52.
@ OC_NONE
Output unconfigured.
@ INTENSITY_BT2
Scalefactor data are intensity stereo positions (out of phase).
static void apply_intensity_stereo(AACContext *ac, ChannelElement *cpe, int ms_present)
intensity stereo decoding; reference: 4.6.8.2.3
#define av_assert0(cond)
assert() equivalent, that is always enabled.
static void imdct_and_windowing_eld(AACContext *ac, SingleChannelElement *sce)
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
#define AV_CH_TOP_SIDE_RIGHT
#define SKIP_BITS(name, gb, num)
static int aac_decode_er_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr, GetBitContext *gb)
static int decode_scalefactors(AACContext *ac, INTFLOAT sf[120], GetBitContext *gb, unsigned int global_gain, IndividualChannelStream *ics, enum BandType band_type[120], int band_type_run_end[120])
Decode scalefactors; reference: table 4.47.
int force_dmono_mode
0->not dmono, 1->use first channel, 2->use second channel
static int parse_adts_frame_header(AACContext *ac, GetBitContext *gb)
Individual Channel Stream.
#define SCALE_DIFF_ZERO
codebook index corresponding to zero scalefactor indices difference
INTFLOAT coef[8][4][TNS_MAX_ORDER]
#define NOISE_PRE
preamble for NOISE_BT, put in bitstream with the first noise band
const uint16_t * swb_offset
table of offsets to the lowest spectral coefficient of a scalefactor band, sfb, for a particular wind...
void ff_aac_tableinit(void)
static int decode_ga_specific_config(AACContext *ac, AVCodecContext *avctx, GetBitContext *gb, int get_bit_alignment, MPEG4AudioConfig *m4ac, int channel_config)
Decode GA "General Audio" specific configuration; reference: table 4.1.
int warned_num_aac_frames
@ INTENSITY_BT
Scalefactor data are intensity stereo positions (in phase).
#define LIBAVUTIL_VERSION_INT
Describe the class of an AVClass context structure.
static int decode_pulses(Pulse *pulse, GetBitContext *gb, const uint16_t *swb_offset, int num_swb)
Decode pulse data; reference: table 4.7.
static void flush(AVCodecContext *avctx)
const uint8_t ff_mpeg4audio_channels[14]
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
void(* vector_fmul_scalar)(float *dst, const float *src, float mul, int len)
Multiply a vector of floats by a scalar float.
const float ff_aac_eld_window_480[1800]
static void imdct_and_windowing_960(AACContext *ac, SingleChannelElement *sce)
Conduct IMDCT and windowing.
const uint8_t ff_aac_num_swb_128[]
static void decode_channel_map(uint8_t layout_map[][3], enum ChannelPosition type, GetBitContext *gb, int n)
Decode an array of 4 bit element IDs, optionally interleaved with a stereo/mono switching bit.
struct AVCodecInternal * internal
Private context used for internal data.
const char * av_default_item_name(void *ptr)
Return the context name.
static unsigned int get_bits1(GetBitContext *s)
static av_cold int aac_decode_close(AVCodecContext *avctx)
#define LAST_SKIP_BITS(name, gb, num)
int band_top[17]
Indicates the top of the i-th DRC band in units of 4 spectral lines.
ChannelElement * che[4][MAX_ELEM_ID]
static void apply_ltp(AACContext *ac, SingleChannelElement *sce)
Apply the long term prediction.
int ff_init_vlc_sparse(VLC *vlc_arg, int nb_bits, int nb_codes, const void *bits, int bits_wrap, int bits_size, const void *codes, int codes_wrap, int codes_size, const void *symbols, int symbols_wrap, int symbols_size, int flags)
int skip_samples_multiplier
const uint16_t *const ff_swb_offset_480[]
#define AV_CH_FRONT_CENTER
#define AV_EF_EXPLODE
abort decoding on minor error detection
PredictorState predictor_state[MAX_PREDICTORS]
#define AV_CH_FRONT_LEFT_OF_CENTER
static int decode_audio_specific_config(AACContext *ac, AVCodecContext *avctx, MPEG4AudioConfig *m4ac, const uint8_t *data, int64_t bit_size, int sync_extension)
static int decode_cce(AACContext *ac, GetBitContext *gb, ChannelElement *che)
Decode coupling_channel_element; reference: table 4.8.
static void apply_channel_coupling(AACContext *ac, ChannelElement *cc, enum RawDataBlockType type, int elem_id, enum CouplingPoint coupling_point, void(*apply_coupling_method)(AACContext *ac, SingleChannelElement *target, ChannelElement *cce, int index))
channel coupling transformation interface
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
int band_type_run_end[120]
band type run end points
#define AV_CH_BOTTOM_FRONT_CENTER
const uint8_t ff_tns_max_bands_512[]
static float * VMUL2S(float *dst, const float *v, unsigned idx, unsigned sign, const float *scale)
void(* imdct_half)(struct FFTContext *s, FFTSample *output, const FFTSample *input)
uint8_t layout_map[MAX_ELEM_ID *4][3]
void(* apply_tns)(INTFLOAT coef[1024], TemporalNoiseShaping *tns, IndividualChannelStream *ics, int decode)
const uint8_t ff_aac_scalefactor_bits[121]
static float * VMUL4(float *dst, const float *v, unsigned idx, const float *scale)
static float * VMUL4S(float *dst, const float *v, unsigned idx, unsigned sign, const float *scale)
const uint8_t ff_aac_pred_sfb_max[]
static int decode_audio_specific_config_gb(AACContext *ac, AVCodecContext *avctx, MPEG4AudioConfig *m4ac, GetBitContext *gb, int get_bit_alignment, int sync_extension)
Decode audio specific configuration; reference: table 1.13.
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame.
@ AOT_ER_AAC_SCALABLE
N Error Resilient Scalable.
SingleChannelElement ch[2]
const uint16_t *const ff_swb_offset_1024[]
static void relative_align_get_bits(GetBitContext *gb, int reference_position)
@ AOT_AAC_SCALABLE
N Scalable.
void(* vector_fmul)(float *dst, const float *src0, const float *src1, int len)
Calculate the entry wise product of two vectors of floats and store the result in a vector of floats.
void ff_aac_float_common_init(void)
static INTFLOAT sine_120[120]
int warned_remapping_once
static int decode_ics(AACContext *ac, SingleChannelElement *sce, GetBitContext *gb, int common_window, int scale_flag)
Decode an individual_channel_stream payload; reference: table 4.44.
int sample_rate
Sample rate of the audio data.
static const int8_t tags_per_config[16]
static void noise_scale(int *coefs, int scale, int band_energy, int len)
#define FF_COMPLIANCE_STRICT
Strictly conform to all the things in the spec no matter what consequences.
static INTFLOAT sine_960[960]
enum AVSampleFormat sample_fmt
audio sample format
uint32_t ff_cbrt_tab[1<< 13]
int prog_ref_level
A reference level for the long-term program audio level for all channels combined.
void avpriv_report_missing_feature(void *avc, const char *msg,...) av_printf_format(2
Log a generic warning message about a missing feature.
const uint16_t *const ff_aac_spectral_codes[11]
OCStatus
Output configuration status.
int ff_mpeg4audio_get_config_gb(MPEG4AudioConfig *c, GetBitContext *gb, int sync_extension, void *logctx)
Parse MPEG-4 systems extradata from a potentially unaligned GetBitContext to retrieve audio configura...
static int push_output_configuration(AACContext *ac)
Save current output configuration if and only if it has been locked.
const uint8_t ff_tns_max_bands_480[]
#define OPEN_READER(name, gb)
static int assign_pair(struct elem_to_channel e2c_vec[MAX_ELEM_ID], uint8_t(*layout_map)[3], int offset, uint64_t left, uint64_t right, int pos, uint64_t *layout)
const uint16_t *const ff_swb_offset_512[]
void AAC_RENAME() ff_sbr_apply(AACContext *ac, SpectralBandReplication *sbr, int id_aac, INTFLOAT *L, INTFLOAT *R)
Apply one SBR element to one AAC element.
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf offset
#define AV_CH_TOP_BACK_RIGHT
static void skip_bits1(GetBitContext *s)
#define AV_CH_FRONT_RIGHT_OF_CENTER
static int output_configure(AACContext *ac, uint8_t layout_map[MAX_ELEM_ID *4][3], int tags, enum OCStatus oc_type, int get_new_frame)
Configure output channel order based on the current program configuration element.
uint8_t ms_mask[128]
Set if mid/side stereo is used for each scalefactor window band.
int dyn_rng_ctl[17]
DRC magnitude information.
#define AV_LOG_INFO
Standard information.
void ff_sine_window_init(float *window, int n)
Generate a sine window.
@ OC_GLOBAL_HDR
Output configuration set in a global header but not yet locked.
@ AOT_AAC_SSR
N (code in SoC repo) Scalable Sample Rate.
int channels
number of audio channels
static INTFLOAT aac_kbd_long_960[960]
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel layout
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) #define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac) { } void ff_audio_convert_free(AudioConvert **ac) { if(! *ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);} AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map) { AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method !=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2) { ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc) { av_free(ac);return NULL;} return ac;} in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar) { ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar ? ac->channels :1;} else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;} int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in) { int use_generic=1;int len=in->nb_samples;int p;if(ac->dc) { av_log(ac->avr, AV_LOG_TRACE, "%d samples - audio_convert: %s to %s (dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> in
@ AV_PKT_DATA_JP_DUALMONO
An AV_PKT_DATA_JP_DUALMONO side data packet indicates that the packet may contain "dual mono" audio s...
static av_cold void aac_static_table_init(void)
int nb_samples
number of audio samples (per channel) described by this frame
static void aacdec_init(AACContext *ac)
Single Channel Element - used for both SCE and LFE elements.
static av_cold void init_sine_windows_fixed(void)
and forward the test the status of outputs and forward it to the corresponding return FFERROR_NOT_READY If the filters stores internally one or a few frame for some it can consider them to be part of the FIFO and delay acknowledging a status change accordingly Example code
static const AVOption options[]
SpectralBandReplication sbr
uint8_t * extradata
some codecs need / can use extradata like Huffman tables.
static unsigned int show_bits(GetBitContext *s, int n)
Show 1-25 bits.
const float ff_aac_eld_window_512[1920]
uint8_t ** extended_data
pointers to the data planes/channels.
channel element - generic struct for SCE/CPE/CCE/LFE
@ AOT_ER_AAC_ELD
N Error Resilient Enhanced Low Delay.
static void apply_independent_coupling(AACContext *ac, SingleChannelElement *target, ChannelElement *cce, int index)
Apply independent channel coupling (applied after IMDCT).
static av_always_inline void predict(PredictorState *ps, float *coef, int output_enable)
#define AV_CH_LAYOUT_NATIVE
Channel mask value used for AVCodecContext.request_channel_layout to indicate that the user requests ...
#define NOISE_PRE_BITS
length of preamble
#define AV_CH_BACK_CENTER
#define FF_DEBUG_STARTCODE
static VLC vlc_spectral[11]
static av_always_inline float cbrtf(float x)
static int decode_ics_info(AACContext *ac, IndividualChannelStream *ics, GetBitContext *gb)
Decode Individual Channel Stream info; reference: table 4.6.
void av_frame_unref(AVFrame *frame)
Unreference all the buffers referenced by frame and reset the frame fields.
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
av_cold void ff_mdct15_uninit(MDCT15Context **ps)
OutputConfiguration oc[2]
static const int8_t filt[NUMTAPS *2]
static void apply_tns(INTFLOAT coef_param[1024], TemporalNoiseShaping *tns, IndividualChannelStream *ics, int decode)
Decode Temporal Noise Shaping filter coefficients and apply all-pole filters; reference: 4....
static void reset_predictor_group(PredictorState *ps, int group_num)
@ OC_TRIAL_PCE
Output configuration under trial specified by an inband PCE.
static void subband_scale(int *dst, int *src, int scale, int offset, int len, void *log_context)
DynamicRangeControl che_drc
const uint16_t *const ff_swb_offset_120[]
#define FF_PROFILE_AAC_HE
@ AOT_ER_BSAC
N Error Resilient Bit-Sliced Arithmetic Coding.
int pce_instance_tag
Indicates with which program the DRC info is associated.
#define INIT_VLC_STATIC_OVERLONG
const uint8_t ff_aac_num_swb_1024[]
const char * class_name
The name of the class; usually it is the same name as the context structure type to which the AVClass...
INTFLOAT sf[120]
scalefactors
const uint8_t *const ff_aac_spectral_bits[11]
int strict_std_compliance
strictly follow the standard (MPEG-4, ...).
SingleChannelElement * output_element[MAX_CHANNELS]
Points to each SingleChannelElement.
#define AACDEC_FLAGS
AVOptions for Japanese DTV specific extensions (ADTS only)
static const uint8_t * align_get_bits(GetBitContext *s)
void(* update_ltp)(AACContext *ac, SingleChannelElement *sce)
int ch_select[8]
[0] shared list of gains; [1] list of gains for right channel; [2] list of gains for left channel; [3...
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled left
static ChannelElement * get_che(AACContext *ac, int type, int elem_id)
static void imdct_and_window(TwinVQContext *tctx, enum TwinVQFrameType ftype, int wtype, float *in, float *prev, int ch)
static VLC_TYPE vlc_buf[16716][2]
void(* imdct_half)(struct MDCT15Context *s, float *dst, const float *src, ptrdiff_t stride)
main external API structure.
int AAC_RENAME() ff_decode_sbr_extension(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb, int crc, int cnt, int id_aac)
Decode one SBR element.
static VLC vlc_scalefactors
#define SHOW_UBITS(name, gb, num)
int ps
-1 implicit, 1 presence
float ff_aac_pow2sf_tab[428]
void ff_aacdec_init_mips(AACContext *c)
#define NOISE_OFFSET
subtracted from global gain, used as offset for the preamble
#define AV_CH_BOTTOM_FRONT_RIGHT
@ AV_PKT_DATA_NEW_EXTRADATA
The AV_PKT_DATA_NEW_EXTRADATA is used to notify the codec or the format that the extradata buffer was...
static int decode_tns(AACContext *ac, TemporalNoiseShaping *tns, GetBitContext *gb, const IndividualChannelStream *ics)
Decode Temporal Noise Shaping data; reference: table 4.48.
enum WindowSequence window_sequence[2]
void ff_init_ff_sine_windows(int index)
initialize the specified entry of ff_sine_windows
av_cold void ff_kbd_window_init(float *window, float alpha, int n)
Generate a Kaiser-Bessel Derived Window.
void AAC_RENAME() ff_aac_sbr_ctx_close(SpectralBandReplication *sbr)
Close one SBR context.
int sbr
-1 implicit, 1 presence
Filter the word “frame” indicates either a video frame or a group of audio samples
int band_incr
Number of DRC bands greater than 1 having DRC info.
#define AV_CH_FRONT_RIGHT
static int * DEC_UQUAD(int *dst, unsigned idx, unsigned sign)
void(* windowing_and_mdct_ltp)(AACContext *ac, INTFLOAT *out, INTFLOAT *in, IndividualChannelStream *ics)
#define AV_CODEC_FLAG_BITEXACT
Use only bitexact stuff (except (I)DCT).
static int frame_configure_elements(AVCodecContext *avctx)
static int decode_extension_payload(AACContext *ac, GetBitContext *gb, int cnt, ChannelElement *che, enum RawDataBlockType elem_type)
Decode extension data (incomplete); reference: table 4.51.
#define avpriv_request_sample(...)
void(* vector_fmul_window)(float *dst, const float *src0, const float *src1, const float *win, int len)
Overlap/add with window function.
static int count_channels(uint8_t(*layout)[3], int tags)
int dyn_rng_sgn[17]
DRC sign information; 0 - positive, 1 - negative.
This structure stores compressed data.
static void imdct_and_windowing_ld(AACContext *ac, SingleChannelElement *sce)
av_cold AVFloatDSPContext * avpriv_float_dsp_alloc(int bit_exact)
Allocate a float DSP context.
#define AVERROR_BUG
Internal bug, also see AVERROR_BUG2.
uint8_t max_sfb
number of scalefactor bands per group
INTFLOAT ltp_state[3072]
time signal for LTP
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
int interpolation_scheme
Indicates the interpolation scheme used in the SBR QMF domain.
static av_always_inline int fixed_sqrt(int x, int bits)
Calculate the square root.
static int aac_decode_frame_int(AVCodecContext *avctx, void *data, int *got_frame_ptr, GetBitContext *gb, const AVPacket *avpkt)
void AAC_RENAME() ff_aac_sbr_init(void)
Initialize SBR.
#define PREFIX_FOR_22POINT2
void AAC_RENAME() ff_aac_sbr_ctx_init(AACContext *ac, SpectralBandReplication *sbr, int id_aac)
Initialize one SBR context.
static int * DEC_UPAIR(int *dst, unsigned idx, unsigned sign)
static int * DEC_SPAIR(int *dst, unsigned idx)
static const INTFLOAT *const tns_tmp2_map[4]
void(* imdct_and_windowing)(AACContext *ac, SingleChannelElement *sce)
enum BandType band_type[128]
band types
uint8_t use_kb_window[2]
If set, use Kaiser-Bessel window, otherwise use a sine window.
VLC_TYPE(* table)[2]
code, bits
@ AOT_AAC_LC
Y Low Complexity.
@ AOT_AAC_LTP
Y Long Term Prediction.
static const float cce_scale[]
int dmono_mode
0->not dmono, 1->use first channel, 2->use second channel
int predictor_reset_group
const uint32_t ff_aac_scalefactor_code[121]
static uint64_t sniff_channel_order(uint8_t(*layout_map)[3], int tags)
static const uint8_t aac_channel_layout_map[16][16][3]
int predictor_initialized