Go to the documentation of this file.
45 #define MAX_CHANNELS 6
46 #define DCA_MAX_FRAME_SIZE 16384
47 #define DCA_HEADER_SIZE 13
48 #define DCA_LFE_SAMPLES 8
50 #define DCAENC_SUBBANDS 32
52 #define SUBSUBFRAMES 2
53 #define SUBBAND_SAMPLES (SUBFRAMES * SUBSUBFRAMES * 8)
56 #define COS_T(x) (c->cos_table[(x) & 2047])
116 double f1 =
f / 1000;
118 return -3.64 * pow(f1, -0.8)
119 + 6.8 *
exp(-0.6 * (f1 - 3.4) * (f1 - 3.4))
120 - 6.0 *
exp(-0.15 * (f1 - 8.7) * (f1 - 8.7))
121 - 0.0006 * (f1 * f1) * (f1 * f1);
130 return 20 * log10(
h);
146 c->subband[ch][band] = bufer +
156 if (
c->subband[0][0]) {
159 c->subband[0][0] =
NULL;
167 int i, j, k, min_frame_bits;
173 c->fullband_channels =
c->channels = avctx->
channels;
175 c->band_interpolation =
c->band_interpolation_tab[1];
176 c->band_spectrum =
c->band_spectrum_tab[1];
177 c->worst_quantization_noise = -2047;
178 c->worst_noise_ever = -2047;
179 c->consumed_adpcm_bits = 0;
186 "encoder will guess the layout, but it "
187 "might be incorrect.\n");
201 if (
c->lfe_channel) {
202 c->fullband_channels--;
213 c->bit_allocation_sel[
i] = 6;
217 c->prediction_mode[
i][j] = -1;
222 for (
i = 0;
i < 9;
i++) {
228 c->samplerate_index =
i;
236 c->bitrate_index =
i;
238 min_frame_bits = 132 + (493 + 28 * 32) *
c->fullband_channels +
c->lfe_channel * 72;
242 c->frame_size = (
c->frame_bits + 7) / 8;
250 c->cos_table[0] = 0x7fffffff;
251 c->cos_table[512] = 0;
252 c->cos_table[1024] = -
c->cos_table[0];
253 for (
i = 1;
i < 512;
i++) {
255 c->cos_table[1024-
i] = -
c->cos_table[
i];
256 c->cos_table[1024+
i] = -
c->cos_table[
i];
257 c->cos_table[2048-
i] = +
c->cos_table[
i];
260 for (
i = 0;
i < 2048;
i++)
263 for (k = 0; k < 32; k++) {
264 for (j = 0; j < 8; j++) {
270 for (
i = 0;
i < 512;
i++) {
275 for (
i = 0;
i < 9;
i++) {
276 for (j = 0; j <
AUBANDS; j++) {
277 for (k = 0; k < 256; k++) {
285 for (
i = 0;
i < 256;
i++) {
289 for (j = 0; j < 8; j++) {
291 for (
i = 0;
i < 512;
i++) {
293 accum += reconst * cos(2 *
M_PI * (
i + 0.5 - 256) * (j + 0.5) / 512);
295 c->band_spectrum_tab[0][j] = (
int32_t)(200 * log10(accum));
297 for (j = 0; j < 8; j++) {
299 for (
i = 0;
i < 512;
i++) {
301 accum += reconst * cos(2 *
M_PI * (
i + 0.5 - 256) * (j + 0.5) / 512);
303 c->band_spectrum_tab[1][j] = (
int32_t)(200 * log10(accum));
321 int ch, subs,
i, k, j;
323 for (ch = 0; ch <
c->fullband_channels; ch++) {
327 const int chi =
c->channel_order_tab[ch];
329 memcpy(hist, &
c->history[ch][0], 512 *
sizeof(
int32_t));
337 memset(accum, 0, 64 *
sizeof(
int32_t));
339 for (k = 0,
i = hist_start, j = 0;
340 i < 512; k = (k + 1) & 63,
i++, j++)
341 accum[k] +=
mul32(hist[
i],
c->band_interpolation[j]);
342 for (
i = 0;
i < hist_start; k = (k + 1) & 63,
i++, j++)
343 accum[k] +=
mul32(hist[
i],
c->band_interpolation[j]);
345 for (k = 16; k < 32; k++)
346 accum[k] = accum[k] - accum[31 - k];
347 for (k = 32; k < 48; k++)
348 accum[k] = accum[k] + accum[95 - k];
350 for (band = 0; band < 32; band++) {
352 for (
i = 16;
i < 48;
i++) {
353 int s = (2 * band + 1) * (2 * (
i + 16) + 1);
357 c->subband[ch][band][subs] = ((band + 1) & 2) ? -resp : resp;
361 for (
i = 0;
i < 32;
i++)
362 hist[
i + hist_start] =
input[(subs * 32 +
i) *
c->channels + chi];
364 hist_start = (hist_start + 32) & 511;
372 const int lfech =
lfe_index[
c->channel_config];
378 memcpy(hist, &
c->history[
c->channels - 1][0], 512 *
sizeof(
int32_t));
384 for (
i = hist_start, j = 0;
i < 512;
i++, j++)
385 accum +=
mul32(hist[
i],
c->lfe_fir_64i[j]);
386 for (
i = 0;
i < hist_start;
i++, j++)
387 accum +=
mul32(hist[
i],
c->lfe_fir_64i[j]);
389 c->downsampled_lfe[lfes] = accum;
392 for (
i = 0;
i < 64;
i++)
393 hist[
i + hist_start] =
input[(lfes * 64 +
i) *
c->channels + lfech];
395 hist_start = (hist_start + 64) & 511;
404 for (
i = 1024;
i > 0;
i >>= 1) {
405 if (
c->cb_to_level[
i + res] >= in)
418 return a +
c->cb_to_add[
a -
b];
428 for (
i = 0;
i < 512;
i++)
432 for (
i = 0;
i < 256;
i++) {
446 const int samplerate_index =
c->samplerate_index;
451 for (j = 0; j < 256; j++)
452 out_cb_unnorm[j] = -2047;
456 for (j = 0; j < 256; j++)
457 denom =
add_cb(
c, denom,
power[j] +
c->auf[samplerate_index][
i][j]);
458 for (j = 0; j < 256; j++)
459 out_cb_unnorm[j] =
add_cb(
c, out_cb_unnorm[j],
460 -denom +
c->auf[samplerate_index][
i][j]);
463 for (j = 0; j < 256; j++)
464 out_cb[j] =
add_cb(
c, out_cb[j], -out_cb_unnorm[j] - ca_cb - cs_cb);
477 for (
f = 0;
f < 4;
f++)
480 for (
f = 0;
f < 8;
f++)
481 walk(
c, band, band - 1, 8 * band - 4 +
f,
492 for (
f = 0;
f < 4;
f++)
495 for (
f = 0;
f < 8;
f++)
496 walk(
c, band, band + 1, 8 * band + 4 +
f,
507 if (value < c->band_masking_cb[band1])
508 c->band_masking_cb[band1] =
value;
513 int i, k, band, ch, ssf;
516 for (
i = 0;
i < 256;
i++)
518 c->masking_curve_cb[ssf][
i] = -2047;
521 for (ch = 0; ch <
c->fullband_channels; ch++) {
522 const int chi =
c->channel_order_tab[ch];
524 for (
i = 0, k = 128 + 256 * ssf; k < 512;
i++, k++)
525 data[
i] =
c->history[ch][k];
526 for (k -= 512;
i < 512;
i++, k++)
530 for (
i = 0;
i < 256;
i++) {
534 if (
c->masking_curve_cb[ssf][
i] < m)
535 m =
c->masking_curve_cb[ssf][
i];
536 c->eff_masking_curve_cb[
i] = m;
539 for (band = 0; band < 32; band++) {
540 c->band_masking_cb[band] = 2048;
562 for (ch = 0; ch <
c->fullband_channels; ch++) {
563 for (band = 0; band < 32; band++)
564 c->peak_cb[ch][band] =
find_peak(
c,
c->subband[ch][band],
579 c->consumed_adpcm_bits = 0;
580 for (ch = 0; ch <
c->fullband_channels; ch++) {
581 for (band = 0; band < 32; band++) {
585 if (pred_vq_id >= 0) {
586 c->prediction_mode[ch][band] = pred_vq_id;
587 c->consumed_adpcm_bits += 12;
588 c->diff_peak_cb[ch][band] =
find_peak(
c, estimated_diff, 16);
590 c->prediction_mode[ch][band] = -1;
597 #define USED_1ABITS 1
598 #define USED_26ABITS 4
604 if (
c->bitrate_index == 3)
616 int our_nscale, try_remove;
623 peak =
c->cb_to_level[-peak_cb];
625 for (try_remove = 64; try_remove > 0; try_remove >>= 1) {
632 our_nscale -= try_remove;
635 if (our_nscale >= 125)
648 int32_t diff_peak_cb =
c->diff_peak_cb[ch][band];
651 &
c->quant[ch][band]);
657 step_size,
c->adpcm_history[ch][band],
c->subband[ch][band],
658 c->adpcm_history[ch][band] + 4,
c->quantized[ch][band],
666 for (ch = 0; ch <
c->fullband_channels; ch++)
667 for (band = 0; band < 32; band++)
668 if (
c->prediction_mode[ch][band] >= 0)
676 for (ch = 0; ch <
c->fullband_channels; ch++) {
677 for (band = 0; band < 32; band++) {
678 if (
c->prediction_mode[ch][band] == -1) {
692 uint8_t sel,
id = abits - 1;
705 uint32_t t,
bits = 0;
710 if (vlc_bits[
i][0] == 0) {
717 best_sel_bits[
i] = vlc_bits[
i][0];
720 if (best_sel_bits[
i] > vlc_bits[
i][sel] && vlc_bits[
i][sel]) {
721 best_sel_bits[
i] = vlc_bits[
i][sel];
722 best_sel_id[
i] = sel;
727 t = best_sel_bits[
i] + 2;
728 if (t < clc_bits[
i]) {
729 res[
i] = best_sel_id[
i];
749 if (abits[
i] > 12 || abits[
i] == 0) {
772 uint32_t bits_counter = 0;
774 c->consumed_bits = 132 + 333 *
c->fullband_channels;
775 c->consumed_bits +=
c->consumed_adpcm_bits;
777 c->consumed_bits += 72;
780 for (ch = 0; ch <
c->fullband_channels; ch++) {
781 for (band = 0; band < 32; band++) {
782 int snr_cb =
c->peak_cb[ch][band] -
c->band_masking_cb[band] -
noise;
784 if (snr_cb >= 1312) {
785 c->abits[ch][band] = 26;
787 }
else if (snr_cb >= 222) {
788 c->abits[ch][band] = 8 +
mul32(snr_cb - 222, 69000000);
790 }
else if (snr_cb >= 0) {
791 c->abits[ch][band] = 2 +
mul32(snr_cb, 106000000);
793 }
else if (forbid_zero || snr_cb >= -140) {
794 c->abits[ch][band] = 1;
797 c->abits[ch][band] = 0;
802 &
c->bit_allocation_sel[ch]);
808 for (ch = 0; ch <
c->fullband_channels; ch++) {
809 for (band = 0; band < 32; band++) {
810 if (
c->prediction_mode[ch][band] == -1) {
813 &
c->quant[ch][band]);
822 for (ch = 0; ch <
c->fullband_channels; ch++) {
823 for (band = 0; band < 32; band++) {
826 c->quantized[ch][band],
827 huff_bit_count_accum[ch][
c->abits[ch][band] - 1]);
828 clc_bit_count_accum[ch][
c->abits[ch][band] - 1] +=
bit_consumption[
c->abits[ch][band]];
835 for (ch = 0; ch <
c->fullband_channels; ch++) {
837 clc_bit_count_accum[ch],
838 c->quant_index_sel[ch]);
841 c->consumed_bits += bits_counter;
854 low = high =
c->worst_quantization_noise;
855 if (
c->consumed_bits >
c->frame_bits) {
856 while (
c->consumed_bits >
c->frame_bits) {
866 while (
c->consumed_bits <=
c->frame_bits) {
876 for (down =
snr_fudge >> 1; down; down >>= 1) {
878 if (
c->consumed_bits <=
c->frame_bits)
883 c->worst_quantization_noise = high;
884 if (high >
c->worst_noise_ever)
885 c->worst_noise_ever = high;
892 for (k = 0; k < 512; k++)
893 for (ch = 0; ch <
c->channels; ch++) {
894 const int chi =
c->channel_order_tab[ch];
896 c->history[ch][k] =
input[k *
c->channels + chi];
908 for (ch = 0; ch <
c->channels; ch++) {
909 for (band = 0; band < 32; band++) {
911 if (
c->prediction_mode[ch][band] == -1) {
915 c->quantized[ch][band]+12, step_size,
918 AV_COPY128U(
c->adpcm_history[ch][band],
c->adpcm_history[ch][band]+4);
928 samples[0] =
c->adpcm_history[ch][band][0] * (1 << 7);
929 samples[1] =
c->adpcm_history[ch][band][1] * (1 << 7);
930 samples[2] =
c->adpcm_history[ch][band][2] * (1 << 7);
931 samples[3] =
c->adpcm_history[ch][band][3] * (1 << 7);
1032 put_bits(&
c->pb, 3,
c->fullband_channels - 1);
1035 for (ch = 0; ch <
c->fullband_channels; ch++)
1039 for (ch = 0; ch <
c->fullband_channels; ch++)
1043 for (ch = 0; ch <
c->fullband_channels; ch++)
1047 for (ch = 0; ch <
c->fullband_channels; ch++)
1051 for (ch = 0; ch <
c->fullband_channels; ch++)
1055 for (ch = 0; ch <
c->fullband_channels; ch++)
1056 put_bits(&
c->pb, 3,
c->bit_allocation_sel[ch]);
1060 for (ch = 0; ch <
c->fullband_channels; ch++)
1065 for (ch = 0; ch <
c->fullband_channels; ch++)
1074 int i, j, sum,
bits, sel;
1077 sel =
c->quant_index_sel[ch][
c->abits[ch][band] - 1];
1081 sel,
c->abits[ch][band] - 1);
1086 if (
c->abits[ch][band] <= 7) {
1087 for (
i = 0;
i < 8;
i += 4) {
1089 for (j = 3; j >= 0; j--) {
1091 sum +=
c->quantized[ch][band][
ss * 8 +
i + j];
1100 for (
i = 0;
i < 8;
i++) {
1108 int i, band,
ss, ch;
1117 for (ch = 0; ch <
c->fullband_channels; ch++)
1119 put_bits(&
c->pb, 1, !(
c->prediction_mode[ch][band] == -1));
1122 for (ch = 0; ch <
c->fullband_channels; ch++)
1124 if (
c->prediction_mode[ch][band] >= 0)
1125 put_bits(&
c->pb, 12,
c->prediction_mode[ch][band]);
1128 for (ch = 0; ch <
c->fullband_channels; ch++) {
1129 if (
c->bit_allocation_sel[ch] == 6) {
1135 c->bit_allocation_sel[ch]);
1141 for (ch = 0; ch <
c->fullband_channels; ch++)
1143 if (
c->abits[ch][band])
1148 for (ch = 0; ch <
c->fullband_channels; ch++)
1150 if (
c->abits[ch][band])
1151 put_bits(&
c->pb, 7,
c->scale_factor[ch][band]);
1161 if (
c->lfe_channel) {
1169 for (ch = 0; ch <
c->fullband_channels; ch++)
1171 if (
c->abits[ch][band])
1195 if (
c->options.adpcm_mode)
1214 *got_packet_ptr = 1;
1218 #define DCAENC_FLAGS AV_OPT_FLAG_ENCODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM
1226 .
class_name =
"DCA (DTS Coherent Acoustics)",
static void lfe_downsample(DCAEncContext *c, const int32_t *input)
int frame_size
Number of samples per channel in an audio frame.
#define AV_LOG_WARNING
Something somehow does not look correct.
#define FF_CODEC_CAP_INIT_THREADSAFE
The codec does not modify any global variables in the init function, allowing to call the init functi...
static av_always_inline double ff_exp10(double x)
Compute 10^x for floating point values.
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
uint64_t channel_layout
Audio channel layout.
int ff_dcaadpcm_do_real(int pred_vq_index, softfloat quant, int32_t scale_factor, int32_t step_size, const int32_t *prev_hist, const int32_t *in, int32_t *next_hist, int32_t *out, int len, int32_t peak)
int32_t * subband[MAX_CHANNELS][DCAENC_SUBBANDS]
int sample_rate
samples per second
static double cb(void *priv, double x, double y)
static const AVOption options[]
static enum AVSampleFormat sample_fmts[]
static void walk_band_low(DCAEncContext *c, int band, int channel, walk_band_t walk, int32_t *arg)
const uint32_t ff_dca_bit_rates[32]
#define AV_CH_LAYOUT_MONO
av_cold void ff_dcaadpcm_free(DCAADPCMEncContext *s)
static const softfloat scalefactor_inv[128]
static void put_sbits(PutBitContext *pb, int n, int32_t value)
static void init_put_bits(PutBitContext *s, uint8_t *buffer, int buffer_size)
Initialize the PutBitContext s.
static const uint16_t erb[]
static const uint8_t lfe_index[7]
static void put_subframe(DCAEncContext *c, int subframe)
This structure describes decoded (raw) audio or video data.
static void put_bits(Jpeg2000EncoderContext *s, int val, int n)
put n times val bit
CompressionOptions options
static int32_t get_step_size(DCAEncContext *c, int ch, int band)
const uint32_t ff_dca_lossy_quant[32]
static void calc_lfe_scales(DCAEncContext *c)
int32_t adpcm_history[MAX_CHANNELS][DCAENC_SUBBANDS][DCA_ADPCM_COEFFS *2]
#define fc(width, name, range_min, range_max)
int64_t duration
Duration of this packet in AVStream->time_base units, 0 if unknown.
static void update_band_masking(DCAEncContext *c, int band1, int band2, int f, int32_t spectrum1, int32_t spectrum2, int channel, int32_t *arg)
static int calc_one_scale(DCAEncContext *c, int32_t peak_cb, int abits, softfloat *quant)
static int32_t quantize_value(int32_t value, softfloat quant)
const int32_t * band_interpolation
static int encode_frame(AVCodecContext *avctx, AVPacket *avpkt, const AVFrame *frame, int *got_packet_ptr)
static void put_frame_header(DCAEncContext *c)
DCAADPCMEncContext adpcm_ctx
uint32_t ff_dca_vlc_calc_alloc_bits(int *values, uint8_t n, uint8_t sel)
int32_t history[MAX_CHANNELS][512]
static void calc_masking(DCAEncContext *c, const int32_t *input)
const AVCodec ff_dca_encoder
static void adpcm_analysis(DCAEncContext *c)
const float ff_dca_fir_32bands_nonperfect[512]
const uint8_t ff_dca_quant_index_group_size[DCA_CODE_BOOKS]
static void accumulate_huff_bit_consumption(int abits, int32_t *quantized, uint32_t *result)
static int init_quantization_noise(DCAEncContext *c, int noise, int forbid_zero)
static double val(void *priv, double ch)
const uint32_t ff_dca_quant_levels[32]
#define ss(width, name, subs,...)
int32_t auf[9][AUBANDS][256]
#define AV_CH_LAYOUT_STEREO
static int quant(float coef, const float Q, const float rounding)
Quantize one coefficient.
static int put_bytes_left(const PutBitContext *s, int round_up)
static const int bit_consumption[27]
static void walk_band_high(DCAEncContext *c, int band, int channel, walk_band_t walk, int32_t *arg)
static void quantize_adpcm_subband(DCAEncContext *c, int ch, int band)
int32_t quantized[MAX_CHANNELS][DCAENC_SUBBANDS][SUBBAND_SAMPLES]
static av_always_inline int64_t ff_samples_to_time_base(AVCodecContext *avctx, int64_t samples)
Rescale from sample rate to AVCodecContext.time_base.
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
#define AV_CODEC_CAP_EXPERIMENTAL
Codec is experimental and is thus avoided in favor of non experimental encoders.
static void quantize_adpcm(DCAEncContext *c)
int abits[MAX_CHANNELS][DCAENC_SUBBANDS]
int32_t peak_cb[MAX_CHANNELS][DCAENC_SUBBANDS]
const int32_t * band_spectrum
static double hom(double f)
int32_t eff_masking_curve_cb[256]
int32_t downsampled_lfe[DCA_LFE_SAMPLES]
static uint32_t set_best_abits_code(int abits[DCAENC_SUBBANDS], int bands, int32_t *res)
#define av_assert0(cond)
assert() equivalent, that is always enabled.
static const float bands[]
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
#define LIBAVUTIL_VERSION_INT
Describe the class of an AVClass context structure.
and forward the result(frame or status change) to the corresponding input. If nothing is possible
static void adjust_jnd(DCAEncContext *c, const int32_t in[512], int32_t out_cb[256])
#define LOCAL_ALIGNED_32(t, v,...)
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
const uint32_t ff_dca_lossless_quant[32]
static int32_t mul32(int32_t a, int32_t b)
const float ff_dca_lfe_fir_64[256]
#define AV_COPY128U(d, s)
int64_t bit_rate
the average bitrate
const char * av_default_item_name(void *ptr)
Return the context name.
uint32_t ff_dca_vlc_calc_quant_bits(int *values, uint8_t n, uint8_t sel, uint8_t table)
static const softfloat stepsize_inv[27]
#define AV_CH_LAYOUT_5POINT1
int32_t band_masking_cb[32]
int ff_dcaadpcm_subband_analysis(const DCAADPCMEncContext *s, const int32_t *in, int len, int *diff)
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
static av_cold int encode_close(AVCodecContext *avctx)
int32_t worst_quantization_noise
int32_t band_interpolation_tab[2][512]
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() or get_encode_buffer() for allocating buffers and supports custom allocators.
const uint32_t ff_dca_scale_factor_quant7[128]
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
static void subband_bufer_free(DCAEncContext *c)
softfloat quant[MAX_CHANNELS][DCAENC_SUBBANDS]
void(* walk_band_t)(DCAEncContext *c, int band1, int band2, int f, int32_t spectrum1, int32_t spectrum2, int channel, int32_t *arg)
static int32_t add_cb(DCAEncContext *c, int32_t a, int32_t b)
#define DCA_BITALLOC_12_COUNT
static int encode_init(AVCodecContext *avctx)
static void fill_in_adpcm_bufer(DCAEncContext *c)
#define DCA_MAX_FRAME_SIZE
static void quantize_pcm(DCAEncContext *c)
int32_t masking_curve_cb[SUBSUBFRAMES][256]
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
and forward the test the status of outputs and forward it to the corresponding return FFERROR_NOT_READY If the filters stores internally one or a few frame for some input
static void put_primary_audio_header(DCAEncContext *c)
int32_t quant_index_sel[MAX_CHANNELS][DCA_CODE_BOOKS]
int channels
number of audio channels
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel layout
#define AV_CH_LAYOUT_5POINT0
static void find_peaks(DCAEncContext *c)
const uint8_t ff_dca_quant_index_sel_nbits[DCA_CODE_BOOKS]
void ff_dca_vlc_enc_quant(PutBitContext *pb, int *values, uint8_t n, uint8_t sel, uint8_t table)
#define i(width, name, range_min, range_max)
int64_t pts
Presentation timestamp in AVStream->time_base units; the time at which the decompressed packet will b...
#define FF_CODEC_CAP_INIT_CLEANUP
The codec allows calling the close function for deallocation even if the init function returned a fai...
AVSampleFormat
Audio sample formats.
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf default value
const char * name
Name of the codec implementation.
static int32_t norm__(int64_t a, int bits)
void * av_calloc(size_t nmemb, size_t size)
static const int8_t channel_reorder_nolfe[7][5]
static const int snr_fudge
#define FFSWAP(type, a, b)
const char * class_name
The name of the class; usually it is the same name as the context structure type to which the AVClass...
static void subband_transform(DCAEncContext *c, const int32_t *input)
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
int consumed_adpcm_bits
Number of bits to transmit ADPCM related info.
static const int8_t channel_reorder_lfe[7][5]
static void ff_dca_core_dequantize(int32_t *output, const int32_t *input, int32_t step_size, int32_t scale, int residual, int len)
av_cold int ff_dcaadpcm_init(DCAADPCMEncContext *s)
main external API structure.
static float power(float r, float g, float b, float max)
static uint8_t * put_bits_ptr(PutBitContext *s)
Return the pointer to the byte where the bitstream writer will put the next bit.
static int noise(AVBSFContext *ctx, AVPacket *pkt)
int ff_get_encode_buffer(AVCodecContext *avctx, AVPacket *avpkt, int64_t size, int flags)
Get a buffer for a packet.
Filter the word “frame” indicates either a video frame or a group of audio samples
static int subband_bufer_alloc(DCAEncContext *c)
static void assign_bits(DCAEncContext *c)
static int32_t get_cb(DCAEncContext *c, int32_t in)
static const uint8_t bitstream_sfreq[]
static float add(float src0, float src1)
static int32_t find_peak(DCAEncContext *c, const int32_t *in, int len)
int64_t av_get_default_channel_layout(int nb_channels)
Return default channel layout for a given number of channels.
static void flush_put_bits(PutBitContext *s)
Pad the end of the output stream with zeros.
This structure stores compressed data.
const float ff_dca_fir_32bands_perfect[512]
static const AVCodecDefault defaults[]
static void shift_history(DCAEncContext *c, const int32_t *input)
static uint32_t set_best_code(uint32_t vlc_bits[DCA_CODE_BOOKS][7], uint32_t clc_bits[DCA_CODE_BOOKS], int32_t res[DCA_CODE_BOOKS])
int32_t prediction_mode[MAX_CHANNELS][DCAENC_SUBBANDS]
void ff_dca_vlc_enc_alloc(PutBitContext *pb, int *values, uint8_t n, uint8_t sel)
static const double coeff[2][5]
int32_t cb_to_level[2048]
static void put_subframe_samples(DCAEncContext *c, int ss, int band, int ch)
int32_t bit_allocation_sel[MAX_CHANNELS]
int32_t band_spectrum_tab[2][8]
static void calc_power(DCAEncContext *c, const int32_t in[2 *256], int32_t power[256])
@ AV_SAMPLE_FMT_S32
signed 32 bits
int32_t diff_peak_cb[MAX_CHANNELS][DCAENC_SUBBANDS]
expected peak of residual signal
static const AVClass dcaenc_class
int scale_factor[MAX_CHANNELS][DCAENC_SUBBANDS]
static double gammafilter(int i, double f)
const int8_t * channel_order_tab
channel reordering table, lfe and non lfe