FFmpeg
alacenc.c
Go to the documentation of this file.
1 /*
2  * ALAC audio encoder
3  * Copyright (c) 2008 Jaikrishnan Menon <realityman@gmx.net>
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 #include "libavutil/mem.h"
23 #include "libavutil/opt.h"
24 
25 #include "avcodec.h"
26 #include "codec_internal.h"
27 #include "encode.h"
28 #include "put_bits.h"
29 #include "lpc.h"
30 #include "mathops.h"
31 #include "alac_data.h"
32 
33 #define DEFAULT_FRAME_SIZE 4096
34 #define ALAC_EXTRADATA_SIZE 36
35 #define ALAC_FRAME_HEADER_SIZE 55
36 #define ALAC_FRAME_FOOTER_SIZE 3
37 
38 #define ALAC_ESCAPE_CODE 0x1FF
39 #define ALAC_MAX_LPC_ORDER 30
40 #define DEFAULT_MAX_PRED_ORDER 6
41 #define DEFAULT_MIN_PRED_ORDER 4
42 #define ALAC_MAX_LPC_PRECISION 9
43 #define ALAC_MIN_LPC_SHIFT 0
44 #define ALAC_MAX_LPC_SHIFT 9
45 
46 #define ALAC_CHMODE_LEFT_RIGHT 0
47 #define ALAC_CHMODE_LEFT_SIDE 1
48 #define ALAC_CHMODE_RIGHT_SIDE 2
49 #define ALAC_CHMODE_MID_SIDE 3
50 
51 typedef struct RiceContext {
56 } RiceContext;
57 
58 typedef struct AlacLPCContext {
59  int lpc_order;
61  int lpc_quant;
63 
64 typedef struct AlacEncodeContext {
65  const AVClass *class;
67  int frame_size; /**< current frame size */
68  int verbatim; /**< current frame verbatim mode flag */
84 
85 
87  const uint8_t *samples[2])
88 {
89  int ch, i;
90  int shift = av_get_bytes_per_sample(s->avctx->sample_fmt) * 8 -
91  s->avctx->bits_per_raw_sample;
92 
93 #define COPY_SAMPLES(type) do { \
94  for (ch = 0; ch < channels; ch++) { \
95  int32_t *bptr = s->sample_buf[ch]; \
96  const type *sptr = (const type *)samples[ch]; \
97  for (i = 0; i < s->frame_size; i++) \
98  bptr[i] = sptr[i] >> shift; \
99  } \
100  } while (0)
101 
102  if (s->avctx->sample_fmt == AV_SAMPLE_FMT_S32P)
104  else
105  COPY_SAMPLES(int16_t);
106 }
107 
108 static void encode_scalar(AlacEncodeContext *s, int x,
109  int k, int write_sample_size)
110 {
111  int divisor, q, r;
112 
113  k = FFMIN(k, s->rc.k_modifier);
114  divisor = (1<<k) - 1;
115  q = x / divisor;
116  r = x % divisor;
117 
118  if (q > 8) {
119  // write escape code and sample value directly
120  put_bits(&s->pbctx, 9, ALAC_ESCAPE_CODE);
121  put_bits(&s->pbctx, write_sample_size, x);
122  } else {
123  if (q)
124  put_bits(&s->pbctx, q, (1<<q) - 1);
125  put_bits(&s->pbctx, 1, 0);
126 
127  if (k != 1) {
128  if (r > 0)
129  put_bits(&s->pbctx, k, r+1);
130  else
131  put_bits(&s->pbctx, k-1, 0);
132  }
133  }
134 }
135 
137  enum AlacRawDataBlockType element,
138  int instance)
139 {
140  int encode_fs = 0;
141 
142  if (s->frame_size < DEFAULT_FRAME_SIZE)
143  encode_fs = 1;
144 
145  put_bits(&s->pbctx, 3, element); // element type
146  put_bits(&s->pbctx, 4, instance); // element instance
147  put_bits(&s->pbctx, 12, 0); // unused header bits
148  put_bits(&s->pbctx, 1, encode_fs); // Sample count is in the header
149  put_bits(&s->pbctx, 2, s->extra_bits >> 3); // Extra bytes (for 24-bit)
150  put_bits(&s->pbctx, 1, s->verbatim); // Audio block is verbatim
151  if (encode_fs)
152  put_bits32(&s->pbctx, s->frame_size); // No. of samples in the frame
153 }
154 
156 {
158  int shift[MAX_LPC_ORDER];
159  int opt_order;
160 
161  if (s->compression_level == 1) {
162  s->lpc[ch].lpc_order = 6;
163  s->lpc[ch].lpc_quant = 6;
164  s->lpc[ch].lpc_coeff[0] = 160;
165  s->lpc[ch].lpc_coeff[1] = -190;
166  s->lpc[ch].lpc_coeff[2] = 170;
167  s->lpc[ch].lpc_coeff[3] = -130;
168  s->lpc[ch].lpc_coeff[4] = 80;
169  s->lpc[ch].lpc_coeff[5] = -25;
170  } else {
171  opt_order = ff_lpc_calc_coefs(&s->lpc_ctx, s->sample_buf[ch],
172  s->frame_size,
173  s->min_prediction_order,
174  s->max_prediction_order,
178  ALAC_MAX_LPC_SHIFT, 1);
179 
180  s->lpc[ch].lpc_order = opt_order;
181  s->lpc[ch].lpc_quant = shift[opt_order-1];
182  memcpy(s->lpc[ch].lpc_coeff, coefs[opt_order-1], opt_order*sizeof(int));
183  }
184 }
185 
186 static int estimate_stereo_mode(int32_t *left_ch, int32_t *right_ch, int n)
187 {
188  int i, best;
189  int32_t lt, rt;
190  uint64_t sum[4];
191  uint64_t score[4];
192 
193  /* calculate sum of 2nd order residual for each channel */
194  sum[0] = sum[1] = sum[2] = sum[3] = 0;
195  for (i = 2; i < n; i++) {
196  lt = left_ch[i] - 2 * left_ch[i - 1] + left_ch[i - 2];
197  rt = right_ch[i] - 2 * right_ch[i - 1] + right_ch[i - 2];
198  sum[2] += FFABS((lt + rt) >> 1);
199  sum[3] += FFABS(lt - rt);
200  sum[0] += FFABS(lt);
201  sum[1] += FFABS(rt);
202  }
203 
204  /* calculate score for each mode */
205  score[0] = sum[0] + sum[1];
206  score[1] = sum[0] + sum[3];
207  score[2] = sum[1] + sum[3];
208  score[3] = sum[2] + sum[3];
209 
210  /* return mode with lowest score */
211  best = 0;
212  for (i = 1; i < 4; i++) {
213  if (score[i] < score[best])
214  best = i;
215  }
216  return best;
217 }
218 
220 {
221  int32_t *left = s->sample_buf[0], *right = s->sample_buf[1];
222  int i, mode, n = s->frame_size;
223  int32_t tmp;
224 
225  mode = estimate_stereo_mode(left, right, n);
226 
227  switch (mode) {
229  s->interlacing_leftweight = 0;
230  s->interlacing_shift = 0;
231  break;
233  for (i = 0; i < n; i++)
234  right[i] = left[i] - right[i];
235  s->interlacing_leftweight = 1;
236  s->interlacing_shift = 0;
237  break;
239  for (i = 0; i < n; i++) {
240  tmp = right[i];
241  right[i] = left[i] - right[i];
242  left[i] = tmp + (right[i] >> 31);
243  }
244  s->interlacing_leftweight = 1;
245  s->interlacing_shift = 31;
246  break;
247  default:
248  for (i = 0; i < n; i++) {
249  tmp = left[i];
250  left[i] = (tmp + right[i]) >> 1;
251  right[i] = tmp - right[i];
252  }
253  s->interlacing_leftweight = 1;
254  s->interlacing_shift = 1;
255  break;
256  }
257 }
258 
260 {
261  int i;
262  AlacLPCContext lpc = s->lpc[ch];
263  int32_t *residual = s->predictor_buf[ch];
264 
265  if (lpc.lpc_order == 31) {
266  residual[0] = s->sample_buf[ch][0];
267 
268  for (i = 1; i < s->frame_size; i++) {
269  residual[i] = s->sample_buf[ch][i ] -
270  s->sample_buf[ch][i - 1];
271  }
272 
273  return;
274  }
275 
276  // generalised linear predictor
277 
278  if (lpc.lpc_order > 0) {
279  int32_t *samples = s->sample_buf[ch];
280 
281  // generate warm-up samples
282  residual[0] = samples[0];
283  for (i = 1; i <= lpc.lpc_order; i++)
284  residual[i] = sign_extend(samples[i] - samples[i-1], s->write_sample_size);
285 
286  // perform lpc on remaining samples
287  for (i = lpc.lpc_order + 1; i < s->frame_size; i++) {
288  int sum = 1 << (lpc.lpc_quant - 1), res_val, j;
289 
290  for (j = 0; j < lpc.lpc_order; j++) {
291  sum += (samples[lpc.lpc_order-j] - samples[0]) *
292  lpc.lpc_coeff[j];
293  }
294 
295  sum >>= lpc.lpc_quant;
296  sum += samples[0];
297  residual[i] = sign_extend(samples[lpc.lpc_order+1] - sum,
298  s->write_sample_size);
299  res_val = residual[i];
300 
301  if (res_val) {
302  int index = lpc.lpc_order - 1;
303  int neg = (res_val < 0);
304 
305  while (index >= 0 && (neg ? (res_val < 0) : (res_val > 0))) {
306  int val = samples[0] - samples[lpc.lpc_order - index];
307  int sign = (val ? FFSIGN(val) : 0);
308 
309  if (neg)
310  sign *= -1;
311 
312  lpc.lpc_coeff[index] -= sign;
313  val *= sign;
314  res_val -= (val >> lpc.lpc_quant) * (lpc.lpc_order - index);
315  index--;
316  }
317  }
318  samples++;
319  }
320  }
321 }
322 
324 {
325  unsigned int history = s->rc.initial_history;
326  int sign_modifier = 0, i, k;
327  int32_t *samples = s->predictor_buf[ch];
328 
329  for (i = 0; i < s->frame_size;) {
330  int x;
331 
332  k = av_log2((history >> 9) + 3);
333 
334  x = -2 * (*samples) -1;
335  x ^= x >> 31;
336 
337  samples++;
338  i++;
339 
340  encode_scalar(s, x - sign_modifier, k, s->write_sample_size);
341 
342  history += x * s->rc.history_mult -
343  ((history * s->rc.history_mult) >> 9);
344 
345  sign_modifier = 0;
346  if (x > 0xFFFF)
347  history = 0xFFFF;
348 
349  if (history < 128 && i < s->frame_size) {
350  unsigned int block_size = 0;
351 
352  k = 7 - av_log2(history) + ((history + 16) >> 6);
353 
354  while (*samples == 0 && i < s->frame_size) {
355  samples++;
356  i++;
357  block_size++;
358  }
359  encode_scalar(s, block_size, k, 16);
360  sign_modifier = (block_size <= 0xFFFF);
361  history = 0;
362  }
363 
364  }
365 }
366 
368  enum AlacRawDataBlockType element, int instance,
369  const uint8_t *samples0, const uint8_t *samples1)
370 {
371  const uint8_t *samples[2] = { samples0, samples1 };
372  int i, j, channels;
373  int prediction_type = 0;
374  PutBitContext *pb = &s->pbctx;
375 
376  channels = element == TYPE_CPE ? 2 : 1;
377 
378  if (s->verbatim) {
379  write_element_header(s, element, instance);
380  /* samples are channel-interleaved in verbatim mode */
381  if (s->avctx->sample_fmt == AV_SAMPLE_FMT_S32P) {
382  int shift = 32 - s->avctx->bits_per_raw_sample;
383  const int32_t *samples_s32[2] = { (const int32_t *)samples0,
384  (const int32_t *)samples1 };
385  for (i = 0; i < s->frame_size; i++)
386  for (j = 0; j < channels; j++)
387  put_sbits(pb, s->avctx->bits_per_raw_sample,
388  samples_s32[j][i] >> shift);
389  } else {
390  const int16_t *samples_s16[2] = { (const int16_t *)samples0,
391  (const int16_t *)samples1 };
392  for (i = 0; i < s->frame_size; i++)
393  for (j = 0; j < channels; j++)
394  put_sbits(pb, s->avctx->bits_per_raw_sample,
395  samples_s16[j][i]);
396  }
397  } else {
398  s->write_sample_size = s->avctx->bits_per_raw_sample - s->extra_bits +
399  channels - 1;
400 
402  write_element_header(s, element, instance);
403 
404  // extract extra bits if needed
405  if (s->extra_bits) {
406  uint32_t mask = (1 << s->extra_bits) - 1;
407  for (j = 0; j < channels; j++) {
408  int32_t *extra = s->predictor_buf[j];
409  int32_t *smp = s->sample_buf[j];
410  for (i = 0; i < s->frame_size; i++) {
411  extra[i] = smp[i] & mask;
412  smp[i] >>= s->extra_bits;
413  }
414  }
415  }
416 
417  if (channels == 2)
419  else
420  s->interlacing_shift = s->interlacing_leftweight = 0;
421  put_bits(pb, 8, s->interlacing_shift);
422  put_bits(pb, 8, s->interlacing_leftweight);
423 
424  for (i = 0; i < channels; i++) {
426 
427  put_bits(pb, 4, prediction_type);
428  put_bits(pb, 4, s->lpc[i].lpc_quant);
429 
430  put_bits(pb, 3, s->rc.rice_modifier);
431  put_bits(pb, 5, s->lpc[i].lpc_order);
432  // predictor coeff. table
433  for (j = 0; j < s->lpc[i].lpc_order; j++)
434  put_sbits(pb, 16, s->lpc[i].lpc_coeff[j]);
435  }
436 
437  // write extra bits if needed
438  if (s->extra_bits) {
439  for (i = 0; i < s->frame_size; i++) {
440  for (j = 0; j < channels; j++) {
441  put_bits(pb, s->extra_bits, s->predictor_buf[j][i]);
442  }
443  }
444  }
445 
446  // apply lpc and entropy coding to audio samples
447  for (i = 0; i < channels; i++) {
449 
450  // TODO: determine when this will actually help. for now it's not used.
451  if (prediction_type == 15) {
452  // 2nd pass 1st order filter
453  int32_t *residual = s->predictor_buf[i];
454  for (j = s->frame_size - 1; j > 0; j--)
455  residual[j] -= residual[j - 1];
456  }
458  }
459  }
460 }
461 
463  uint8_t * const *samples)
464 {
465  PutBitContext *pb = &s->pbctx;
466  int channels = s->avctx->ch_layout.nb_channels;
467  const enum AlacRawDataBlockType *ch_elements = ff_alac_channel_elements[channels - 1];
468  const uint8_t *ch_map = ff_alac_channel_layout_offsets[channels - 1];
469  int ch, element, sce, cpe;
470 
471  init_put_bits(pb, avpkt->data, avpkt->size);
472 
473  ch = element = sce = cpe = 0;
474  while (ch < channels) {
475  if (ch_elements[element] == TYPE_CPE) {
476  write_element(s, TYPE_CPE, cpe, samples[ch_map[ch]],
477  samples[ch_map[ch + 1]]);
478  cpe++;
479  ch += 2;
480  } else {
481  write_element(s, TYPE_SCE, sce, samples[ch_map[ch]], NULL);
482  sce++;
483  ch++;
484  }
485  element++;
486  }
487 
488  put_bits(pb, 3, TYPE_END);
489  flush_put_bits(pb);
490 
491  return put_bytes_output(pb);
492 }
493 
494 static av_always_inline int get_max_frame_size(int frame_size, int ch, int bps)
495 {
496  int header_bits = 23 + 32 * (frame_size < DEFAULT_FRAME_SIZE);
497  return FFALIGN(header_bits + bps * ch * frame_size + 3, 8) / 8;
498 }
499 
501 {
502  AlacEncodeContext *s = avctx->priv_data;
503  ff_lpc_end(&s->lpc_ctx);
504  return 0;
505 }
506 
508 {
509  AlacEncodeContext *s = avctx->priv_data;
510  int ret;
511  uint8_t *alac_extradata;
512 
513  avctx->frame_size = s->frame_size = DEFAULT_FRAME_SIZE;
514 
515  if (avctx->sample_fmt == AV_SAMPLE_FMT_S32P) {
516  if (avctx->bits_per_raw_sample != 24)
517  av_log(avctx, AV_LOG_WARNING, "encoding as 24 bits-per-sample\n");
518  avctx->bits_per_raw_sample = 24;
519  } else {
520  avctx->bits_per_raw_sample = 16;
521  s->extra_bits = 0;
522  }
523 
524  // Set default compression level
526  s->compression_level = 2;
527  else
528  s->compression_level = av_clip(avctx->compression_level, 0, 2);
529 
530  // Initialize default Rice parameters
531  s->rc.history_mult = 40;
532  s->rc.initial_history = 10;
533  s->rc.k_modifier = 14;
534  s->rc.rice_modifier = 4;
535 
536  s->max_coded_frame_size = get_max_frame_size(avctx->frame_size,
537  avctx->ch_layout.nb_channels,
538  avctx->bits_per_raw_sample);
539 
541  if (!avctx->extradata)
542  return AVERROR(ENOMEM);
544 
545  alac_extradata = avctx->extradata;
546  AV_WB32(alac_extradata, ALAC_EXTRADATA_SIZE);
547  AV_WB32(alac_extradata+4, MKBETAG('a','l','a','c'));
548  AV_WB32(alac_extradata+12, avctx->frame_size);
549  AV_WB8 (alac_extradata+17, avctx->bits_per_raw_sample);
550  AV_WB8 (alac_extradata+21, avctx->ch_layout.nb_channels);
551  AV_WB32(alac_extradata+24, s->max_coded_frame_size);
552  AV_WB32(alac_extradata+28,
553  avctx->sample_rate * avctx->ch_layout.nb_channels * avctx->bits_per_raw_sample); // average bitrate
554  AV_WB32(alac_extradata+32, avctx->sample_rate);
555 
556  // Set relevant extradata fields
557  if (s->compression_level > 0) {
558  AV_WB8(alac_extradata+18, s->rc.history_mult);
559  AV_WB8(alac_extradata+19, s->rc.initial_history);
560  AV_WB8(alac_extradata+20, s->rc.k_modifier);
561  }
562 
563  if (s->max_prediction_order < s->min_prediction_order) {
564  av_log(avctx, AV_LOG_ERROR,
565  "invalid prediction orders: min=%d max=%d\n",
566  s->min_prediction_order, s->max_prediction_order);
567  return AVERROR(EINVAL);
568  }
569 
570  s->avctx = avctx;
571 
572  if ((ret = ff_lpc_init(&s->lpc_ctx, avctx->frame_size,
573  s->max_prediction_order,
574  FF_LPC_TYPE_LEVINSON)) < 0) {
575  return ret;
576  }
577 
578  return 0;
579 }
580 
581 static int alac_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
582  const AVFrame *frame, int *got_packet_ptr)
583 {
584  AlacEncodeContext *s = avctx->priv_data;
585  int out_bytes, max_frame_size, ret;
586 
587  s->frame_size = frame->nb_samples;
588 
589  if (frame->nb_samples < DEFAULT_FRAME_SIZE)
590  max_frame_size = get_max_frame_size(s->frame_size, avctx->ch_layout.nb_channels,
591  avctx->bits_per_raw_sample);
592  else
593  max_frame_size = s->max_coded_frame_size;
594 
595  if ((ret = ff_alloc_packet(avctx, avpkt, 4 * max_frame_size)) < 0)
596  return ret;
597 
598  /* use verbatim mode for compression_level 0 */
599  if (s->compression_level) {
600  s->verbatim = 0;
601  s->extra_bits = avctx->bits_per_raw_sample - 16;
602  } else {
603  s->verbatim = 1;
604  s->extra_bits = 0;
605  }
606 
607  out_bytes = write_frame(s, avpkt, frame->extended_data);
608 
609  if (out_bytes > max_frame_size) {
610  /* frame too large. use verbatim mode */
611  s->verbatim = 1;
612  s->extra_bits = 0;
613  out_bytes = write_frame(s, avpkt, frame->extended_data);
614  }
615 
616  avpkt->size = out_bytes;
617  *got_packet_ptr = 1;
618  return 0;
619 }
620 
621 #define OFFSET(x) offsetof(AlacEncodeContext, x)
622 #define AE AV_OPT_FLAG_AUDIO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
623 static const AVOption options[] = {
624  { "min_prediction_order", NULL, OFFSET(min_prediction_order), AV_OPT_TYPE_INT, { .i64 = DEFAULT_MIN_PRED_ORDER }, MIN_LPC_ORDER, ALAC_MAX_LPC_ORDER, AE },
625  { "max_prediction_order", NULL, OFFSET(max_prediction_order), AV_OPT_TYPE_INT, { .i64 = DEFAULT_MAX_PRED_ORDER }, MIN_LPC_ORDER, ALAC_MAX_LPC_ORDER, AE },
626 
627  { NULL },
628 };
629 
630 static const AVClass alacenc_class = {
631  .class_name = "alacenc",
632  .item_name = av_default_item_name,
633  .option = options,
634  .version = LIBAVUTIL_VERSION_INT,
635 };
636 
638  .p.name = "alac",
639  CODEC_LONG_NAME("ALAC (Apple Lossless Audio Codec)"),
640  .p.type = AVMEDIA_TYPE_AUDIO,
641  .p.id = AV_CODEC_ID_ALAC,
642  .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_SMALL_LAST_FRAME |
644  .priv_data_size = sizeof(AlacEncodeContext),
645  .p.priv_class = &alacenc_class,
646  .init = alac_encode_init,
648  .close = alac_encode_close,
649  .p.ch_layouts = ff_alac_ch_layouts,
650  .p.sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S32P,
653 };
DEFAULT_FRAME_SIZE
#define DEFAULT_FRAME_SIZE
Definition: alacenc.c:33
AVCodecContext::frame_size
int frame_size
Number of samples per channel in an audio frame.
Definition: avcodec.h:1083
AV_LOG_WARNING
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:215
alac_stereo_decorrelation
static void alac_stereo_decorrelation(AlacEncodeContext *s)
Definition: alacenc.c:219
OFFSET
#define OFFSET(x)
Definition: alacenc.c:621
ALAC_ESCAPE_CODE
#define ALAC_ESCAPE_CODE
Definition: alacenc.c:38
av_clip
#define av_clip
Definition: common.h:100
r
const char * r
Definition: vf_curves.c:127
AVERROR
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
opt.h
AlacEncodeContext::compression_level
int compression_level
Definition: alacenc.c:69
put_bits32
static void av_unused put_bits32(PutBitContext *s, uint32_t value)
Write exactly 32 bits into a bitstream.
Definition: put_bits.h:291
AlacEncodeContext::verbatim
int verbatim
current frame verbatim mode flag
Definition: alacenc.c:68
alac_data.h
put_bytes_output
static int put_bytes_output(const PutBitContext *s)
Definition: put_bits.h:89
AVCodecContext::sample_rate
int sample_rate
samples per second
Definition: avcodec.h:1056
DEFAULT_MIN_PRED_ORDER
#define DEFAULT_MIN_PRED_ORDER
Definition: alacenc.c:41
AlacEncodeContext::predictor_buf
int32_t predictor_buf[2][DEFAULT_FRAME_SIZE]
Definition: alacenc.c:76
AlacLPCContext::lpc_quant
int lpc_quant
Definition: alacenc.c:61
ff_lpc_calc_coefs
int ff_lpc_calc_coefs(LPCContext *s, const int32_t *samples, int blocksize, int min_order, int max_order, int precision, int32_t coefs[][MAX_LPC_ORDER], int *shift, enum FFLPCType lpc_type, int lpc_passes, int omethod, int min_shift, int max_shift, int zero_shift)
Calculate LPC coefficients for multiple orders.
Definition: lpc.c:238
put_sbits
static void put_sbits(PutBitContext *pb, int n, int32_t value)
Definition: put_bits.h:281
init_put_bits
static void init_put_bits(PutBitContext *s, uint8_t *buffer, int buffer_size)
Initialize the PutBitContext s.
Definition: put_bits.h:62
ff_lpc_init
av_cold int ff_lpc_init(LPCContext *s, int blocksize, int max_order, enum FFLPCType lpc_type)
Initialize LPCContext.
Definition: lpc.c:340
RiceContext
Definition: alacenc.c:51
mask
int mask
Definition: mediacodecdec_common.c:154
write_element_header
static void write_element_header(AlacEncodeContext *s, enum AlacRawDataBlockType element, int instance)
Definition: alacenc.c:136
AVFrame
This structure describes decoded (raw) audio or video data.
Definition: frame.h:389
tmp
static uint8_t tmp[11]
Definition: aes_ctr.c:28
put_bits
static void put_bits(Jpeg2000EncoderContext *s, int val, int n)
put n times val bit
Definition: j2kenc.c:223
alac_encode_init
static av_cold int alac_encode_init(AVCodecContext *avctx)
Definition: alacenc.c:507
AlacEncodeContext::avctx
AVCodecContext * avctx
Definition: alacenc.c:66
AVPacket::data
uint8_t * data
Definition: packet.h:539
AVOption
AVOption.
Definition: opt.h:429
encode.h
AV_SAMPLE_FMT_S32P
@ AV_SAMPLE_FMT_S32P
signed 32 bits, planar
Definition: samplefmt.h:65
AV_CODEC_ID_ALAC
@ AV_CODEC_ID_ALAC
Definition: codec_id.h:461
FFCodec
Definition: codec_internal.h:127
AlacLPCContext::lpc_order
int lpc_order
Definition: alacenc.c:59
lpc.h
AVChannelLayout::nb_channels
int nb_channels
Number of channels in this layout.
Definition: channel_layout.h:321
FF_COMPRESSION_DEFAULT
#define FF_COMPRESSION_DEFAULT
Definition: avcodec.h:1256
alac_linear_predictor
static void alac_linear_predictor(AlacEncodeContext *s, int ch)
Definition: alacenc.c:259
COPY_SAMPLES
#define COPY_SAMPLES(type)
LPCContext
Definition: lpc.h:51
AlacEncodeContext::lpc
AlacLPCContext lpc[2]
Definition: alacenc.c:81
DEFAULT_MAX_PRED_ORDER
#define DEFAULT_MAX_PRED_ORDER
Definition: alacenc.c:40
FFCodec::p
AVCodec p
The public AVCodec.
Definition: codec_internal.h:131
AVCodecContext::ch_layout
AVChannelLayout ch_layout
Audio channel layout.
Definition: avcodec.h:1071
FFSIGN
#define FFSIGN(a)
Definition: common.h:75
TYPE_CPE
@ TYPE_CPE
Definition: aac.h:41
AlacEncodeContext::write_sample_size
int write_sample_size
Definition: alacenc.c:73
write_element
static void write_element(AlacEncodeContext *s, enum AlacRawDataBlockType element, int instance, const uint8_t *samples0, const uint8_t *samples1)
Definition: alacenc.c:367
val
static double val(void *priv, double ch)
Definition: aeval.c:77
alacenc_class
static const AVClass alacenc_class
Definition: alacenc.c:630
FF_CODEC_ENCODE_CB
#define FF_CODEC_ENCODE_CB(func)
Definition: codec_internal.h:320
AlacEncodeContext::extra_bits
int extra_bits
Definition: alacenc.c:74
AV_LOG_ERROR
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:209
av_cold
#define av_cold
Definition: attributes.h:90
calc_predictor_params
static void calc_predictor_params(AlacEncodeContext *s, int ch)
Definition: alacenc.c:155
AVCodecContext::extradata_size
int extradata_size
Definition: avcodec.h:530
alac_encode_frame
static int alac_encode_frame(AVCodecContext *avctx, AVPacket *avpkt, const AVFrame *frame, int *got_packet_ptr)
Definition: alacenc.c:581
s
#define s(width, name)
Definition: cbs_vp9.c:198
frame_size
int frame_size
Definition: mxfenc.c:2424
AVMEDIA_TYPE_AUDIO
@ AVMEDIA_TYPE_AUDIO
Definition: avutil.h:202
AV_CODEC_CAP_ENCODER_REORDERED_OPAQUE
#define AV_CODEC_CAP_ENCODER_REORDERED_OPAQUE
This encoder can reorder user opaque values from input AVFrames and return them with corresponding ou...
Definition: codec.h:159
AVCodecContext::bits_per_raw_sample
int bits_per_raw_sample
Bits per sample/pixel of internal libavcodec pixel/sample format.
Definition: avcodec.h:1585
RiceContext::rice_modifier
int rice_modifier
Definition: alacenc.c:55
RiceContext::k_modifier
int k_modifier
Definition: alacenc.c:54
channels
channels
Definition: aptx.h:31
alac_entropy_coder
static void alac_entropy_coder(AlacEncodeContext *s, int ch)
Definition: alacenc.c:323
PutBitContext
Definition: put_bits.h:50
CODEC_LONG_NAME
#define CODEC_LONG_NAME(str)
Definition: codec_internal.h:296
FFABS
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Definition: common.h:74
LIBAVUTIL_VERSION_INT
#define LIBAVUTIL_VERSION_INT
Definition: version.h:85
AVClass
Describe the class of an AVClass context structure.
Definition: log.h:75
NULL
#define NULL
Definition: coverity.c:32
ALAC_MAX_LPC_PRECISION
#define ALAC_MAX_LPC_PRECISION
Definition: alacenc.c:42
AlacEncodeContext::pbctx
PutBitContext pbctx
Definition: alacenc.c:79
av_default_item_name
const char * av_default_item_name(void *ptr)
Return the context name.
Definition: log.c:237
ff_lpc_end
av_cold void ff_lpc_end(LPCContext *s)
Uninitialize LPCContext.
Definition: lpc.c:365
mathops.h
AE
#define AE
Definition: alacenc.c:622
AlacEncodeContext::interlacing_shift
int interlacing_shift
Definition: alacenc.c:77
ff_alac_channel_elements
enum AlacRawDataBlockType ff_alac_channel_elements[ALAC_MAX_CHANNELS][5]
Definition: alac_data.c:47
index
int index
Definition: gxfenc.c:90
AlacLPCContext
Definition: alacenc.c:58
AV_WB32
#define AV_WB32(p, v)
Definition: intreadwrite.h:415
options
static const AVOption options[]
Definition: alacenc.c:623
ch_map
static const int ch_map[SC_NB]
Definition: af_surround.c:37
AlacEncodeContext::max_coded_frame_size
int max_coded_frame_size
Definition: alacenc.c:72
AV_CODEC_CAP_DR1
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() or get_encode_buffer() for allocating buffers and supports custom allocators.
Definition: codec.h:52
AVPacket::size
int size
Definition: packet.h:540
codec_internal.h
TYPE_END
@ TYPE_END
Definition: aac.h:47
shift
static int shift(int a, int b)
Definition: bonk.c:261
MAX_LPC_ORDER
#define MAX_LPC_ORDER
Definition: lpc.h:37
AlacEncodeContext::rc
RiceContext rc
Definition: alacenc.c:80
bps
unsigned bps
Definition: movenc.c:1877
AVCodecContext::sample_fmt
enum AVSampleFormat sample_fmt
audio sample format
Definition: avcodec.h:1063
AV_SAMPLE_FMT_NONE
@ AV_SAMPLE_FMT_NONE
Definition: samplefmt.h:56
MKBETAG
#define MKBETAG(a, b, c, d)
Definition: macros.h:56
ALAC_MAX_LPC_SHIFT
#define ALAC_MAX_LPC_SHIFT
Definition: alacenc.c:44
MIN_LPC_ORDER
#define MIN_LPC_ORDER
Definition: lpc.h:36
get_max_frame_size
static av_always_inline int get_max_frame_size(int frame_size, int ch, int bps)
Definition: alacenc.c:494
AlacEncodeContext::max_prediction_order
int max_prediction_order
Definition: alacenc.c:71
RiceContext::history_mult
int history_mult
Definition: alacenc.c:52
ORDER_METHOD_EST
#define ORDER_METHOD_EST
Definition: lpc.h:29
ff_alac_encoder
const FFCodec ff_alac_encoder
Definition: alacenc.c:637
ALAC_CHMODE_LEFT_SIDE
#define ALAC_CHMODE_LEFT_SIDE
Definition: alacenc.c:47
AV_SAMPLE_FMT_S16P
@ AV_SAMPLE_FMT_S16P
signed 16 bits, planar
Definition: samplefmt.h:64
ALAC_MAX_LPC_ORDER
#define ALAC_MAX_LPC_ORDER
Definition: alacenc.c:39
ALAC_MIN_LPC_SHIFT
#define ALAC_MIN_LPC_SHIFT
Definition: alacenc.c:43
AlacEncodeContext::frame_size
int frame_size
current frame size
Definition: alacenc.c:67
AlacEncodeContext::min_prediction_order
int min_prediction_order
Definition: alacenc.c:70
i
#define i(width, name, range_min, range_max)
Definition: cbs_h2645.c:256
ff_alac_channel_layout_offsets
const uint8_t ff_alac_channel_layout_offsets[ALAC_MAX_CHANNELS][ALAC_MAX_CHANNELS]
Definition: alac_data.c:24
av_get_bytes_per_sample
int av_get_bytes_per_sample(enum AVSampleFormat sample_fmt)
Return number of bytes per sample.
Definition: samplefmt.c:108
AVCodecContext::extradata
uint8_t * extradata
some codecs need / can use extradata like Huffman tables.
Definition: avcodec.h:529
ff_alac_ch_layouts
const AVChannelLayout ff_alac_ch_layouts[ALAC_MAX_CHANNELS+1]
Definition: alac_data.c:35
AVSampleFormat
AVSampleFormat
Audio sample formats.
Definition: samplefmt.h:55
init_sample_buffers
static void init_sample_buffers(AlacEncodeContext *s, int channels, const uint8_t *samples[2])
Definition: alacenc.c:86
av_always_inline
#define av_always_inline
Definition: attributes.h:49
FFMIN
#define FFMIN(a, b)
Definition: macros.h:49
av_mallocz
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
Definition: mem.c:256
AVCodec::name
const char * name
Name of the codec implementation.
Definition: codec.h:194
TYPE_SCE
@ TYPE_SCE
Definition: aac.h:40
avcodec.h
AV_WB8
#define AV_WB8(p, d)
Definition: intreadwrite.h:392
ret
ret
Definition: filter_design.txt:187
AVClass::class_name
const char * class_name
The name of the class; usually it is the same name as the context structure type to which the AVClass...
Definition: log.h:80
frame
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
Definition: filter_design.txt:264
ALAC_CHMODE_LEFT_RIGHT
#define ALAC_CHMODE_LEFT_RIGHT
Definition: alacenc.c:46
AV_INPUT_BUFFER_PADDING_SIZE
#define AV_INPUT_BUFFER_PADDING_SIZE
Definition: defs.h:40
left
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled left
Definition: snow.txt:386
write_frame
static int write_frame(AlacEncodeContext *s, AVPacket *avpkt, uint8_t *const *samples)
Definition: alacenc.c:462
AVCodecContext
main external API structure.
Definition: avcodec.h:451
mode
mode
Definition: ebur128.h:83
AV_OPT_TYPE_INT
@ AV_OPT_TYPE_INT
Underlying C type is int.
Definition: opt.h:259
estimate_stereo_mode
static int estimate_stereo_mode(int32_t *left_ch, int32_t *right_ch, int n)
Definition: alacenc.c:186
sign_extend
static av_const int sign_extend(int val, unsigned bits)
Definition: mathops.h:131
AlacLPCContext::lpc_coeff
int lpc_coeff[ALAC_MAX_LPC_ORDER+1]
Definition: alacenc.c:60
samples
Filter the word “frame” indicates either a video frame or a group of audio samples
Definition: filter_design.txt:8
AlacEncodeContext::sample_buf
int32_t sample_buf[2][DEFAULT_FRAME_SIZE]
Definition: alacenc.c:75
AlacRawDataBlockType
AlacRawDataBlockType
Definition: alac_data.h:28
AlacEncodeContext::lpc_ctx
LPCContext lpc_ctx
Definition: alacenc.c:82
ALAC_CHMODE_RIGHT_SIDE
#define ALAC_CHMODE_RIGHT_SIDE
Definition: alacenc.c:48
mem.h
alac_encode_close
static av_cold int alac_encode_close(AVCodecContext *avctx)
Definition: alacenc.c:500
flush_put_bits
static void flush_put_bits(PutBitContext *s)
Pad the end of the output stream with zeros.
Definition: put_bits.h:143
FFALIGN
#define FFALIGN(x, a)
Definition: macros.h:78
ALAC_EXTRADATA_SIZE
#define ALAC_EXTRADATA_SIZE
Definition: alacenc.c:34
AVCodecContext::priv_data
void * priv_data
Definition: avcodec.h:478
AVPacket
This structure stores compressed data.
Definition: packet.h:516
AlacEncodeContext
Definition: alacenc.c:64
int32_t
int32_t
Definition: audioconvert.c:56
AlacEncodeContext::interlacing_leftweight
int interlacing_leftweight
Definition: alacenc.c:78
av_log
#define av_log(a,...)
Definition: tableprint_vlc.h:27
encode_scalar
static void encode_scalar(AlacEncodeContext *s, int x, int k, int write_sample_size)
Definition: alacenc.c:108
RiceContext::initial_history
int initial_history
Definition: alacenc.c:53
AV_CODEC_CAP_SMALL_LAST_FRAME
#define AV_CODEC_CAP_SMALL_LAST_FRAME
Codec can be fed a final frame with a smaller size.
Definition: codec.h:81
put_bits.h
av_log2
int av_log2(unsigned v)
Definition: intmath.c:26
ff_alloc_packet
int ff_alloc_packet(AVCodecContext *avctx, AVPacket *avpkt, int64_t size)
Check AVPacket size and allocate data.
Definition: encode.c:62
FF_LPC_TYPE_LEVINSON
@ FF_LPC_TYPE_LEVINSON
Levinson-Durbin recursion.
Definition: lpc.h:46
AVCodecContext::compression_level
int compression_level
Definition: avcodec.h:1255