FFmpeg
cavs.c
Go to the documentation of this file.
1 /*
2  * Chinese AVS video (AVS1-P2, JiZhun profile) decoder.
3  * Copyright (c) 2006 Stefan Gehrer <stefan.gehrer@gmx.de>
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * Chinese AVS video (AVS1-P2, JiZhun profile) decoder
25  * @author Stefan Gehrer <stefan.gehrer@gmx.de>
26  */
27 
28 #include "libavutil/mem.h"
29 #include "avcodec.h"
30 #include "golomb.h"
31 #include "h264chroma.h"
32 #include "idctdsp.h"
33 #include "mathops.h"
34 #include "qpeldsp.h"
35 #include "cavs.h"
36 
37 static const uint8_t alpha_tab[64] = {
38  0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3,
39  4, 4, 5, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 18, 20,
40  22, 24, 26, 28, 30, 33, 33, 35, 35, 36, 37, 37, 39, 39, 42, 44,
41  46, 48, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64
42 };
43 
44 static const uint8_t beta_tab[64] = {
45  0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2,
46  2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6,
47  6, 7, 7, 7, 8, 8, 8, 9, 9, 10, 10, 11, 11, 12, 13, 14,
48  15, 16, 17, 18, 19, 20, 21, 22, 23, 23, 24, 24, 25, 25, 26, 27
49 };
50 
51 static const uint8_t tc_tab[64] = {
52  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
53  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2,
54  2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4,
55  5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9
56 };
57 
58 /** mark block as unavailable, i.e. out of picture
59  * or not yet decoded */
60 static const cavs_vector un_mv = { 0, 0, 1, NOT_AVAIL };
61 
62 static const int8_t left_modifier_l[8] = { 0, -1, 6, -1, -1, 7, 6, 7 };
63 static const int8_t top_modifier_l[8] = { -1, 1, 5, -1, -1, 5, 7, 7 };
64 static const int8_t left_modifier_c[7] = { 5, -1, 2, -1, 6, 5, 6 };
65 static const int8_t top_modifier_c[7] = { 4, 1, -1, -1, 4, 6, 6 };
66 
67 /*****************************************************************************
68  *
69  * in-loop deblocking filter
70  *
71  ****************************************************************************/
72 
73 static inline int get_bs(cavs_vector *mvP, cavs_vector *mvQ, int b)
74 {
75  if ((mvP->ref == REF_INTRA) || (mvQ->ref == REF_INTRA))
76  return 2;
77  if((abs(mvP->x - mvQ->x) >= 4) ||
78  (abs(mvP->y - mvQ->y) >= 4) ||
79  (mvP->ref != mvQ->ref))
80  return 1;
81  if (b) {
82  mvP += MV_BWD_OFFS;
83  mvQ += MV_BWD_OFFS;
84  if((abs(mvP->x - mvQ->x) >= 4) ||
85  (abs(mvP->y - mvQ->y) >= 4) ||
86  (mvP->ref != mvQ->ref))
87  return 1;
88  }
89  return 0;
90 }
91 
92 #define SET_PARAMS \
93  alpha = alpha_tab[av_clip_uintp2(qp_avg + h->alpha_offset, 6)]; \
94  beta = beta_tab[av_clip_uintp2(qp_avg + h->beta_offset, 6)]; \
95  tc = tc_tab[av_clip_uintp2(qp_avg + h->alpha_offset, 6)];
96 
97 /**
98  * in-loop deblocking filter for a single macroblock
99  *
100  * boundary strength (bs) mapping:
101  *
102  * --4---5--
103  * 0 2 |
104  * | 6 | 7 |
105  * 1 3 |
106  * ---------
107  */
108 void ff_cavs_filter(AVSContext *h, enum cavs_mb mb_type)
109 {
110  uint8_t bs[8];
111  int qp_avg, alpha, beta, tc;
112  int i;
113 
114  /* save un-deblocked lines */
115  h->topleft_border_y = h->top_border_y[h->mbx * 16 + 15];
116  h->topleft_border_u = h->top_border_u[h->mbx * 10 + 8];
117  h->topleft_border_v = h->top_border_v[h->mbx * 10 + 8];
118  memcpy(&h->top_border_y[h->mbx * 16], h->cy + 15 * h->l_stride, 16);
119  memcpy(&h->top_border_u[h->mbx * 10 + 1], h->cu + 7 * h->c_stride, 8);
120  memcpy(&h->top_border_v[h->mbx * 10 + 1], h->cv + 7 * h->c_stride, 8);
121  for (i = 0; i < 8; i++) {
122  h->left_border_y[i * 2 + 1] = *(h->cy + 15 + (i * 2 + 0) * h->l_stride);
123  h->left_border_y[i * 2 + 2] = *(h->cy + 15 + (i * 2 + 1) * h->l_stride);
124  h->left_border_u[i + 1] = *(h->cu + 7 + i * h->c_stride);
125  h->left_border_v[i + 1] = *(h->cv + 7 + i * h->c_stride);
126  }
127  if (!h->loop_filter_disable) {
128  /* determine bs */
129  if (mb_type == I_8X8)
130  memset(bs, 2, 8);
131  else {
132  memset(bs, 0, 8);
133  if (ff_cavs_partition_flags[mb_type] & SPLITV) {
134  bs[2] = get_bs(&h->mv[MV_FWD_X0], &h->mv[MV_FWD_X1], mb_type > P_8X8);
135  bs[3] = get_bs(&h->mv[MV_FWD_X2], &h->mv[MV_FWD_X3], mb_type > P_8X8);
136  }
137  if (ff_cavs_partition_flags[mb_type] & SPLITH) {
138  bs[6] = get_bs(&h->mv[MV_FWD_X0], &h->mv[MV_FWD_X2], mb_type > P_8X8);
139  bs[7] = get_bs(&h->mv[MV_FWD_X1], &h->mv[MV_FWD_X3], mb_type > P_8X8);
140  }
141  bs[0] = get_bs(&h->mv[MV_FWD_A1], &h->mv[MV_FWD_X0], mb_type > P_8X8);
142  bs[1] = get_bs(&h->mv[MV_FWD_A3], &h->mv[MV_FWD_X2], mb_type > P_8X8);
143  bs[4] = get_bs(&h->mv[MV_FWD_B2], &h->mv[MV_FWD_X0], mb_type > P_8X8);
144  bs[5] = get_bs(&h->mv[MV_FWD_B3], &h->mv[MV_FWD_X1], mb_type > P_8X8);
145  }
146  if (AV_RN64(bs)) {
147  if (h->flags & A_AVAIL) {
148  qp_avg = (h->qp + h->left_qp + 1) >> 1;
149  SET_PARAMS;
150  h->cdsp.cavs_filter_lv(h->cy, h->l_stride, alpha, beta, tc, bs[0], bs[1]);
151  qp_avg = (ff_cavs_chroma_qp[h->qp] + ff_cavs_chroma_qp[h->left_qp] + 1) >> 1;
152  SET_PARAMS;
153  h->cdsp.cavs_filter_cv(h->cu, h->c_stride, alpha, beta, tc, bs[0], bs[1]);
154  h->cdsp.cavs_filter_cv(h->cv, h->c_stride, alpha, beta, tc, bs[0], bs[1]);
155  }
156  qp_avg = h->qp;
157  SET_PARAMS;
158  h->cdsp.cavs_filter_lv(h->cy + 8, h->l_stride, alpha, beta, tc, bs[2], bs[3]);
159  h->cdsp.cavs_filter_lh(h->cy + 8 * h->l_stride, h->l_stride, alpha, beta, tc, bs[6], bs[7]);
160 
161  if (h->flags & B_AVAIL) {
162  qp_avg = (h->qp + h->top_qp[h->mbx] + 1) >> 1;
163  SET_PARAMS;
164  h->cdsp.cavs_filter_lh(h->cy, h->l_stride, alpha, beta, tc, bs[4], bs[5]);
165  qp_avg = (ff_cavs_chroma_qp[h->qp] + ff_cavs_chroma_qp[h->top_qp[h->mbx]] + 1) >> 1;
166  SET_PARAMS;
167  h->cdsp.cavs_filter_ch(h->cu, h->c_stride, alpha, beta, tc, bs[4], bs[5]);
168  h->cdsp.cavs_filter_ch(h->cv, h->c_stride, alpha, beta, tc, bs[4], bs[5]);
169  }
170  }
171  }
172  h->left_qp = h->qp;
173  h->top_qp[h->mbx] = h->qp;
174 }
175 
176 #undef SET_PARAMS
177 
178 /*****************************************************************************
179  *
180  * spatial intra prediction
181  *
182  ****************************************************************************/
183 
185  uint8_t **left, int block)
186 {
187  int i;
188 
189  switch (block) {
190  case 0:
191  *left = h->left_border_y;
192  h->left_border_y[0] = h->left_border_y[1];
193  memset(&h->left_border_y[17], h->left_border_y[16], 9);
194  memcpy(&top[1], &h->top_border_y[h->mbx * 16], 16);
195  top[17] = top[16];
196  top[0] = top[1];
197  if ((h->flags & A_AVAIL) && (h->flags & B_AVAIL))
198  h->left_border_y[0] = top[0] = h->topleft_border_y;
199  break;
200  case 1:
201  *left = h->intern_border_y;
202  for (i = 0; i < 8; i++)
203  h->intern_border_y[i + 1] = *(h->cy + 7 + i * h->l_stride);
204  memset(&h->intern_border_y[9], h->intern_border_y[8], 9);
205  h->intern_border_y[0] = h->intern_border_y[1];
206  memcpy(&top[1], &h->top_border_y[h->mbx * 16 + 8], 8);
207  if (h->flags & C_AVAIL)
208  memcpy(&top[9], &h->top_border_y[(h->mbx + 1) * 16], 8);
209  else
210  memset(&top[9], top[8], 9);
211  top[17] = top[16];
212  top[0] = top[1];
213  if (h->flags & B_AVAIL)
214  h->intern_border_y[0] = top[0] = h->top_border_y[h->mbx * 16 + 7];
215  break;
216  case 2:
217  *left = &h->left_border_y[8];
218  memcpy(&top[1], h->cy + 7 * h->l_stride, 16);
219  top[17] = top[16];
220  top[0] = top[1];
221  if (h->flags & A_AVAIL)
222  top[0] = h->left_border_y[8];
223  break;
224  case 3:
225  *left = &h->intern_border_y[8];
226  for (i = 0; i < 8; i++)
227  h->intern_border_y[i + 9] = *(h->cy + 7 + (i + 8) * h->l_stride);
228  memset(&h->intern_border_y[17], h->intern_border_y[16], 9);
229  memcpy(&top[0], h->cy + 7 + 7 * h->l_stride, 9);
230  memset(&top[9], top[8], 9);
231  break;
232  }
233 }
234 
236 {
237  /* extend borders by one pixel */
238  h->left_border_u[9] = h->left_border_u[8];
239  h->left_border_v[9] = h->left_border_v[8];
240  if(h->flags & C_AVAIL) {
241  h->top_border_u[h->mbx*10 + 9] = h->top_border_u[h->mbx*10 + 11];
242  h->top_border_v[h->mbx*10 + 9] = h->top_border_v[h->mbx*10 + 11];
243  } else {
244  h->top_border_u[h->mbx * 10 + 9] = h->top_border_u[h->mbx * 10 + 8];
245  h->top_border_v[h->mbx * 10 + 9] = h->top_border_v[h->mbx * 10 + 8];
246  }
247  if((h->flags & A_AVAIL) && (h->flags & B_AVAIL)) {
248  h->top_border_u[h->mbx * 10] = h->left_border_u[0] = h->topleft_border_u;
249  h->top_border_v[h->mbx * 10] = h->left_border_v[0] = h->topleft_border_v;
250  } else {
251  h->left_border_u[0] = h->left_border_u[1];
252  h->left_border_v[0] = h->left_border_v[1];
253  h->top_border_u[h->mbx * 10] = h->top_border_u[h->mbx * 10 + 1];
254  h->top_border_v[h->mbx * 10] = h->top_border_v[h->mbx * 10 + 1];
255  }
256 }
257 
258 static void intra_pred_vert(uint8_t *d, uint8_t *top, uint8_t *left, ptrdiff_t stride)
259 {
260  int y;
261  uint64_t a = AV_RN64(&top[1]);
262  for (y = 0; y < 8; y++)
263  *((uint64_t *)(d + y * stride)) = a;
264 }
265 
266 static void intra_pred_horiz(uint8_t *d, uint8_t *top, uint8_t *left, ptrdiff_t stride)
267 {
268  int y;
269  uint64_t a;
270  for (y = 0; y < 8; y++) {
271  a = left[y + 1] * 0x0101010101010101ULL;
272  *((uint64_t *)(d + y * stride)) = a;
273  }
274 }
275 
276 static void intra_pred_dc_128(uint8_t *d, uint8_t *top, uint8_t *left, ptrdiff_t stride)
277 {
278  int y;
279  uint64_t a = 0x8080808080808080ULL;
280  for (y = 0; y < 8; y++)
281  *((uint64_t *)(d + y * stride)) = a;
282 }
283 
284 static void intra_pred_plane(uint8_t *d, uint8_t *top, uint8_t *left, ptrdiff_t stride)
285 {
286  int x, y, ia;
287  int ih = 0;
288  int iv = 0;
289  const uint8_t *cm = ff_crop_tab + MAX_NEG_CROP;
290 
291  for (x = 0; x < 4; x++) {
292  ih += (x + 1) * (top[5 + x] - top[3 - x]);
293  iv += (x + 1) * (left[5 + x] - left[3 - x]);
294  }
295  ia = (top[8] + left[8]) << 4;
296  ih = (17 * ih + 16) >> 5;
297  iv = (17 * iv + 16) >> 5;
298  for (y = 0; y < 8; y++)
299  for (x = 0; x < 8; x++)
300  d[y * stride + x] = cm[(ia + (x - 3) * ih + (y - 3) * iv + 16) >> 5];
301 }
302 
303 #define LOWPASS(ARRAY, INDEX) \
304  ((ARRAY[(INDEX) - 1] + 2 * ARRAY[(INDEX)] + ARRAY[(INDEX) + 1] + 2) >> 2)
305 
306 static void intra_pred_lp(uint8_t *d, uint8_t *top, uint8_t *left, ptrdiff_t stride)
307 {
308  int x, y;
309  for (y = 0; y < 8; y++)
310  for (x = 0; x < 8; x++)
311  d[y * stride + x] = (LOWPASS(top, x + 1) + LOWPASS(left, y + 1)) >> 1;
312 }
313 
314 static void intra_pred_down_left(uint8_t *d, uint8_t *top, uint8_t *left, ptrdiff_t stride)
315 {
316  int x, y;
317  for (y = 0; y < 8; y++)
318  for (x = 0; x < 8; x++)
319  d[y * stride + x] = (LOWPASS(top, x + y + 2) + LOWPASS(left, x + y + 2)) >> 1;
320 }
321 
322 static void intra_pred_down_right(uint8_t *d, uint8_t *top, uint8_t *left, ptrdiff_t stride)
323 {
324  int x, y;
325  for (y = 0; y < 8; y++)
326  for (x = 0; x < 8; x++)
327  if (x == y)
328  d[y * stride + x] = (left[1] + 2 * top[0] + top[1] + 2) >> 2;
329  else if (x > y)
330  d[y * stride + x] = LOWPASS(top, x - y);
331  else
332  d[y * stride + x] = LOWPASS(left, y - x);
333 }
334 
335 static void intra_pred_lp_left(uint8_t *d, uint8_t *top, uint8_t *left, ptrdiff_t stride)
336 {
337  int x, y;
338  for (y = 0; y < 8; y++)
339  for (x = 0; x < 8; x++)
340  d[y * stride + x] = LOWPASS(left, y + 1);
341 }
342 
343 static void intra_pred_lp_top(uint8_t *d, uint8_t *top, uint8_t *left, ptrdiff_t stride)
344 {
345  int x, y;
346  for (y = 0; y < 8; y++)
347  for (x = 0; x < 8; x++)
348  d[y * stride + x] = LOWPASS(top, x + 1);
349 }
350 
351 #undef LOWPASS
352 
353 static inline void modify_pred(const int8_t *mod_table, int *mode)
354 {
355  *mode = mod_table[*mode];
356  if (*mode < 0) {
357  av_log(NULL, AV_LOG_ERROR, "Illegal intra prediction mode\n");
358  *mode = 0;
359  }
360 }
361 
362 void ff_cavs_modify_mb_i(AVSContext *h, int *pred_mode_uv)
363 {
364  /* save pred modes before they get modified */
365  h->pred_mode_Y[3] = h->pred_mode_Y[5];
366  h->pred_mode_Y[6] = h->pred_mode_Y[8];
367  h->top_pred_Y[h->mbx * 2 + 0] = h->pred_mode_Y[7];
368  h->top_pred_Y[h->mbx * 2 + 1] = h->pred_mode_Y[8];
369 
370  /* modify pred modes according to availability of neighbour samples */
371  if (!(h->flags & A_AVAIL)) {
372  modify_pred(left_modifier_l, &h->pred_mode_Y[4]);
373  modify_pred(left_modifier_l, &h->pred_mode_Y[7]);
374  modify_pred(left_modifier_c, pred_mode_uv);
375  }
376  if (!(h->flags & B_AVAIL)) {
377  modify_pred(top_modifier_l, &h->pred_mode_Y[4]);
378  modify_pred(top_modifier_l, &h->pred_mode_Y[5]);
379  modify_pred(top_modifier_c, pred_mode_uv);
380  }
381 }
382 
383 /*****************************************************************************
384  *
385  * motion compensation
386  *
387  ****************************************************************************/
388 
389 static inline void mc_dir_part(AVSContext *h, AVFrame *pic, int chroma_height,
390  int delta, int list, uint8_t *dest_y,
391  uint8_t *dest_cb, uint8_t *dest_cr,
392  int src_x_offset, int src_y_offset,
393  qpel_mc_func *qpix_op,
394  h264_chroma_mc_func chroma_op, cavs_vector *mv)
395 {
396  const int mx = mv->x + src_x_offset * 8;
397  const int my = mv->y + src_y_offset * 8;
398  const int luma_xy = (mx & 3) + ((my & 3) << 2);
399  uint8_t *src_y = pic->data[0] + (mx >> 2) + (my >> 2) * h->l_stride;
400  uint8_t *src_cb = pic->data[1] + (mx >> 3) + (my >> 3) * h->c_stride;
401  uint8_t *src_cr = pic->data[2] + (mx >> 3) + (my >> 3) * h->c_stride;
402  int extra_width = 0;
403  int extra_height = extra_width;
404  const int full_mx = mx >> 2;
405  const int full_my = my >> 2;
406  const int pic_width = 16 * h->mb_width;
407  const int pic_height = 16 * h->mb_height;
408  int emu = 0;
409 
410  if (!pic->data[0])
411  return;
412  if (mx & 7)
413  extra_width -= 3;
414  if (my & 7)
415  extra_height -= 3;
416 
417  if (full_mx < 0 - extra_width ||
418  full_my < 0 - extra_height ||
419  full_mx + 16 /* FIXME */ > pic_width + extra_width ||
420  full_my + 16 /* FIXME */ > pic_height + extra_height) {
421  h->vdsp.emulated_edge_mc(h->edge_emu_buffer,
422  src_y - 2 - 2 * h->l_stride,
423  h->l_stride, h->l_stride,
424  16 + 5, 16 + 5 /* FIXME */,
425  full_mx - 2, full_my - 2,
426  pic_width, pic_height);
427  src_y = h->edge_emu_buffer + 2 + 2 * h->l_stride;
428  emu = 1;
429  }
430 
431  // FIXME try variable height perhaps?
432  qpix_op[luma_xy](dest_y, src_y, h->l_stride);
433 
434  if (emu) {
435  h->vdsp.emulated_edge_mc(h->edge_emu_buffer, src_cb,
436  h->c_stride, h->c_stride,
437  9, 9 /* FIXME */,
438  mx >> 3, my >> 3,
439  pic_width >> 1, pic_height >> 1);
440  src_cb = h->edge_emu_buffer;
441  }
442  chroma_op(dest_cb, src_cb, h->c_stride, chroma_height, mx & 7, my & 7);
443 
444  if (emu) {
445  h->vdsp.emulated_edge_mc(h->edge_emu_buffer, src_cr,
446  h->c_stride, h->c_stride,
447  9, 9 /* FIXME */,
448  mx >> 3, my >> 3,
449  pic_width >> 1, pic_height >> 1);
450  src_cr = h->edge_emu_buffer;
451  }
452  chroma_op(dest_cr, src_cr, h->c_stride, chroma_height, mx & 7, my & 7);
453 }
454 
455 static inline void mc_part_std(AVSContext *h, int chroma_height, int delta,
456  uint8_t *dest_y,
457  uint8_t *dest_cb,
458  uint8_t *dest_cr,
459  int x_offset, int y_offset,
460  qpel_mc_func *qpix_put,
461  h264_chroma_mc_func chroma_put,
462  qpel_mc_func *qpix_avg,
463  h264_chroma_mc_func chroma_avg,
464  cavs_vector *mv)
465 {
466  qpel_mc_func *qpix_op = qpix_put;
467  h264_chroma_mc_func chroma_op = chroma_put;
468 
469  dest_y += x_offset * 2 + y_offset * h->l_stride * 2;
470  dest_cb += x_offset + y_offset * h->c_stride;
471  dest_cr += x_offset + y_offset * h->c_stride;
472  x_offset += 8 * h->mbx;
473  y_offset += 8 * h->mby;
474 
475  if (mv->ref >= 0) {
476  AVFrame *ref = h->DPB[mv->ref].f;
477  mc_dir_part(h, ref, chroma_height, delta, 0,
478  dest_y, dest_cb, dest_cr, x_offset, y_offset,
479  qpix_op, chroma_op, mv);
480 
481  qpix_op = qpix_avg;
482  chroma_op = chroma_avg;
483  }
484 
485  if ((mv + MV_BWD_OFFS)->ref >= 0) {
486  AVFrame *ref = h->DPB[0].f;
487  mc_dir_part(h, ref, chroma_height, delta, 1,
488  dest_y, dest_cb, dest_cr, x_offset, y_offset,
489  qpix_op, chroma_op, mv + MV_BWD_OFFS);
490  }
491 }
492 
493 void ff_cavs_inter(AVSContext *h, enum cavs_mb mb_type)
494 {
495  if (ff_cavs_partition_flags[mb_type] == 0) { // 16x16
496  mc_part_std(h, 8, 0, h->cy, h->cu, h->cv, 0, 0,
497  h->cdsp.put_cavs_qpel_pixels_tab[0],
498  h->h264chroma.put_h264_chroma_pixels_tab[0],
499  h->cdsp.avg_cavs_qpel_pixels_tab[0],
500  h->h264chroma.avg_h264_chroma_pixels_tab[0],
501  &h->mv[MV_FWD_X0]);
502  } else {
503  mc_part_std(h, 4, 0, h->cy, h->cu, h->cv, 0, 0,
504  h->cdsp.put_cavs_qpel_pixels_tab[1],
505  h->h264chroma.put_h264_chroma_pixels_tab[1],
506  h->cdsp.avg_cavs_qpel_pixels_tab[1],
507  h->h264chroma.avg_h264_chroma_pixels_tab[1],
508  &h->mv[MV_FWD_X0]);
509  mc_part_std(h, 4, 0, h->cy, h->cu, h->cv, 4, 0,
510  h->cdsp.put_cavs_qpel_pixels_tab[1],
511  h->h264chroma.put_h264_chroma_pixels_tab[1],
512  h->cdsp.avg_cavs_qpel_pixels_tab[1],
513  h->h264chroma.avg_h264_chroma_pixels_tab[1],
514  &h->mv[MV_FWD_X1]);
515  mc_part_std(h, 4, 0, h->cy, h->cu, h->cv, 0, 4,
516  h->cdsp.put_cavs_qpel_pixels_tab[1],
517  h->h264chroma.put_h264_chroma_pixels_tab[1],
518  h->cdsp.avg_cavs_qpel_pixels_tab[1],
519  h->h264chroma.avg_h264_chroma_pixels_tab[1],
520  &h->mv[MV_FWD_X2]);
521  mc_part_std(h, 4, 0, h->cy, h->cu, h->cv, 4, 4,
522  h->cdsp.put_cavs_qpel_pixels_tab[1],
523  h->h264chroma.put_h264_chroma_pixels_tab[1],
524  h->cdsp.avg_cavs_qpel_pixels_tab[1],
525  h->h264chroma.avg_h264_chroma_pixels_tab[1],
526  &h->mv[MV_FWD_X3]);
527  }
528 }
529 
530 /*****************************************************************************
531  *
532  * motion vector prediction
533  *
534  ****************************************************************************/
535 
536 static inline void scale_mv(AVSContext *h, int *d_x, int *d_y,
537  cavs_vector *src, int distp)
538 {
539  int64_t den = h->scale_den[FFMAX(src->ref, 0)];
540  *d_x = (src->x * distp * den + 256 + FF_SIGNBIT(src->x)) >> 9;
541  *d_y = (src->y * distp * den + 256 + FF_SIGNBIT(src->y)) >> 9;
542 }
543 
544 static inline void mv_pred_median(AVSContext *h,
545  cavs_vector *mvP,
546  cavs_vector *mvA,
547  cavs_vector *mvB,
548  cavs_vector *mvC)
549 {
550  int ax, ay, bx, by, cx, cy;
551  int len_ab, len_bc, len_ca, len_mid;
552 
553  /* scale candidates according to their temporal span */
554  scale_mv(h, &ax, &ay, mvA, mvP->dist);
555  scale_mv(h, &bx, &by, mvB, mvP->dist);
556  scale_mv(h, &cx, &cy, mvC, mvP->dist);
557  /* find the geometrical median of the three candidates */
558  len_ab = abs(ax - bx) + abs(ay - by);
559  len_bc = abs(bx - cx) + abs(by - cy);
560  len_ca = abs(cx - ax) + abs(cy - ay);
561  len_mid = mid_pred(len_ab, len_bc, len_ca);
562  if (len_mid == len_ab) {
563  mvP->x = cx;
564  mvP->y = cy;
565  } else if (len_mid == len_bc) {
566  mvP->x = ax;
567  mvP->y = ay;
568  } else {
569  mvP->x = bx;
570  mvP->y = by;
571  }
572 }
573 
575  enum cavs_mv_pred mode, enum cavs_block size, int ref)
576 {
577  cavs_vector *mvP = &h->mv[nP];
578  cavs_vector *mvA = &h->mv[nP-1];
579  cavs_vector *mvB = &h->mv[nP-4];
580  cavs_vector *mvC = &h->mv[nC];
581  const cavs_vector *mvP2 = NULL;
582 
583  mvP->ref = ref;
584  mvP->dist = h->dist[mvP->ref];
585  if (mvC->ref == NOT_AVAIL || (nP == MV_FWD_X3) || (nP == MV_BWD_X3 ))
586  mvC = &h->mv[nP - 5]; // set to top-left (mvD)
587  if (mode == MV_PRED_PSKIP &&
588  (mvA->ref == NOT_AVAIL ||
589  mvB->ref == NOT_AVAIL ||
590  (mvA->x | mvA->y | mvA->ref) == 0 ||
591  (mvB->x | mvB->y | mvB->ref) == 0)) {
592  mvP2 = &un_mv;
593  /* if there is only one suitable candidate, take it */
594  } else if (mvA->ref >= 0 && mvB->ref < 0 && mvC->ref < 0) {
595  mvP2 = mvA;
596  } else if (mvA->ref < 0 && mvB->ref >= 0 && mvC->ref < 0) {
597  mvP2 = mvB;
598  } else if (mvA->ref < 0 && mvB->ref < 0 && mvC->ref >= 0) {
599  mvP2 = mvC;
600  } else if (mode == MV_PRED_LEFT && mvA->ref == ref) {
601  mvP2 = mvA;
602  } else if (mode == MV_PRED_TOP && mvB->ref == ref) {
603  mvP2 = mvB;
604  } else if (mode == MV_PRED_TOPRIGHT && mvC->ref == ref) {
605  mvP2 = mvC;
606  }
607  if (mvP2) {
608  mvP->x = mvP2->x;
609  mvP->y = mvP2->y;
610  } else
611  mv_pred_median(h, mvP, mvA, mvB, mvC);
612 
613  if (mode < MV_PRED_PSKIP) {
614  int mx = get_se_golomb(&h->gb) + (unsigned)mvP->x;
615  int my = get_se_golomb(&h->gb) + (unsigned)mvP->y;
616 
617  if (mx != (int16_t)mx || my != (int16_t)my) {
618  av_log(h->avctx, AV_LOG_ERROR, "MV %d %d out of supported range\n", mx, my);
619  } else {
620  mvP->x = mx;
621  mvP->y = my;
622  }
623  }
624  set_mvs(mvP, size);
625 }
626 
627 /*****************************************************************************
628  *
629  * macroblock level
630  *
631  ****************************************************************************/
632 
633 /**
634  * initialise predictors for motion vectors and intra prediction
635  */
637 {
638  int i;
639 
640  /* copy predictors from top line (MB B and C) into cache */
641  for (i = 0; i < 3; i++) {
642  h->mv[MV_FWD_B2 + i] = h->top_mv[0][h->mbx * 2 + i];
643  h->mv[MV_BWD_B2 + i] = h->top_mv[1][h->mbx * 2 + i];
644  }
645  h->pred_mode_Y[1] = h->top_pred_Y[h->mbx * 2 + 0];
646  h->pred_mode_Y[2] = h->top_pred_Y[h->mbx * 2 + 1];
647  /* clear top predictors if MB B is not available */
648  if (!(h->flags & B_AVAIL)) {
649  h->mv[MV_FWD_B2] = un_mv;
650  h->mv[MV_FWD_B3] = un_mv;
651  h->mv[MV_BWD_B2] = un_mv;
652  h->mv[MV_BWD_B3] = un_mv;
653  h->pred_mode_Y[1] = h->pred_mode_Y[2] = NOT_AVAIL;
654  h->flags &= ~(C_AVAIL | D_AVAIL);
655  } else if (h->mbx) {
656  h->flags |= D_AVAIL;
657  }
658  if (h->mbx == h->mb_width - 1) // MB C not available
659  h->flags &= ~C_AVAIL;
660  /* clear top-right predictors if MB C is not available */
661  if (!(h->flags & C_AVAIL)) {
662  h->mv[MV_FWD_C2] = un_mv;
663  h->mv[MV_BWD_C2] = un_mv;
664  }
665  /* clear top-left predictors if MB D is not available */
666  if (!(h->flags & D_AVAIL)) {
667  h->mv[MV_FWD_D3] = un_mv;
668  h->mv[MV_BWD_D3] = un_mv;
669  }
670 }
671 
672 /**
673  * save predictors for later macroblocks and increase
674  * macroblock address
675  * @return 0 if end of frame is reached, 1 otherwise
676  */
678 {
679  int i;
680 
681  h->flags |= A_AVAIL;
682  h->cy += 16;
683  h->cu += 8;
684  h->cv += 8;
685  /* copy mvs as predictors to the left */
686  for (i = 0; i <= 20; i += 4)
687  h->mv[i] = h->mv[i + 2];
688  /* copy bottom mvs from cache to top line */
689  h->top_mv[0][h->mbx * 2 + 0] = h->mv[MV_FWD_X2];
690  h->top_mv[0][h->mbx * 2 + 1] = h->mv[MV_FWD_X3];
691  h->top_mv[1][h->mbx * 2 + 0] = h->mv[MV_BWD_X2];
692  h->top_mv[1][h->mbx * 2 + 1] = h->mv[MV_BWD_X3];
693  /* next MB address */
694  h->mbidx++;
695  h->mbx++;
696  if (h->mbx == h->mb_width) { // New mb line
697  h->flags = B_AVAIL | C_AVAIL;
698  /* clear left pred_modes */
699  h->pred_mode_Y[3] = h->pred_mode_Y[6] = NOT_AVAIL;
700  /* clear left mv predictors */
701  for (i = 0; i <= 20; i += 4)
702  h->mv[i] = un_mv;
703  h->mbx = 0;
704  h->mby++;
705  /* re-calculate sample pointers */
706  h->cy = h->cur.f->data[0] + h->mby * 16 * h->l_stride;
707  h->cu = h->cur.f->data[1] + h->mby * 8 * h->c_stride;
708  h->cv = h->cur.f->data[2] + h->mby * 8 * h->c_stride;
709  if (h->mby == h->mb_height) { // Frame end
710  return 0;
711  }
712  }
713  return 1;
714 }
715 
716 /*****************************************************************************
717  *
718  * frame level
719  *
720  ****************************************************************************/
721 
723 {
724  int i;
725 
726  /* clear some predictors */
727  for (i = 0; i <= 20; i += 4)
728  h->mv[i] = un_mv;
729  h->mv[MV_BWD_X0] = ff_cavs_dir_mv;
730  set_mvs(&h->mv[MV_BWD_X0], BLK_16X16);
731  h->mv[MV_FWD_X0] = ff_cavs_dir_mv;
732  set_mvs(&h->mv[MV_FWD_X0], BLK_16X16);
733  h->pred_mode_Y[3] = h->pred_mode_Y[6] = NOT_AVAIL;
734  h->cy = h->cur.f->data[0];
735  h->cu = h->cur.f->data[1];
736  h->cv = h->cur.f->data[2];
737  h->l_stride = h->cur.f->linesize[0];
738  h->c_stride = h->cur.f->linesize[1];
739  h->luma_scan[2] = 8 * h->l_stride;
740  h->luma_scan[3] = 8 * h->l_stride + 8;
741  h->mbx = h->mby = h->mbidx = 0;
742  h->flags = 0;
743 
744  return 0;
745 }
746 
747 /*****************************************************************************
748  *
749  * headers and interface
750  *
751  ****************************************************************************/
752 
753 /**
754  * some predictions require data from the top-neighbouring macroblock.
755  * this data has to be stored for one complete row of macroblocks
756  * and this storage space is allocated here
757  */
759 {
760  /* alloc top line of predictors */
761  h->top_qp = av_mallocz(h->mb_width);
762  h->top_mv[0] = av_calloc(h->mb_width * 2 + 1, sizeof(cavs_vector));
763  h->top_mv[1] = av_calloc(h->mb_width * 2 + 1, sizeof(cavs_vector));
764  h->top_pred_Y = av_calloc(h->mb_width * 2, sizeof(*h->top_pred_Y));
765  h->top_border_y = av_calloc(h->mb_width + 1, 16);
766  h->top_border_u = av_calloc(h->mb_width, 10);
767  h->top_border_v = av_calloc(h->mb_width, 10);
768 
769  /* alloc space for co-located MVs and types */
770  h->col_mv = av_calloc(h->mb_width * h->mb_height,
771  4 * sizeof(*h->col_mv));
772  h->col_type_base = av_mallocz(h->mb_width * h->mb_height);
773  h->block = av_mallocz(64 * sizeof(int16_t));
774 
775  if (!h->top_qp || !h->top_mv[0] || !h->top_mv[1] || !h->top_pred_Y ||
776  !h->top_border_y || !h->top_border_u || !h->top_border_v ||
777  !h->col_mv || !h->col_type_base || !h->block) {
778  av_freep(&h->top_qp);
779  av_freep(&h->top_mv[0]);
780  av_freep(&h->top_mv[1]);
781  av_freep(&h->top_pred_Y);
782  av_freep(&h->top_border_y);
783  av_freep(&h->top_border_u);
784  av_freep(&h->top_border_v);
785  av_freep(&h->col_mv);
786  av_freep(&h->col_type_base);
787  av_freep(&h->block);
788  return AVERROR(ENOMEM);
789  }
790  return 0;
791 }
792 
794 {
795  AVSContext *h = avctx->priv_data;
796  uint8_t permutation[64];
797 
798  ff_blockdsp_init(&h->bdsp);
799  ff_h264chroma_init(&h->h264chroma, 8);
800  ff_videodsp_init(&h->vdsp, 8);
801  ff_cavsdsp_init(&h->cdsp);
802  ff_init_scantable_permutation(permutation, h->cdsp.idct_perm);
803  ff_permute_scantable(h->permutated_scantable, ff_zigzag_direct, permutation);
804 
805  h->avctx = avctx;
806  avctx->pix_fmt = AV_PIX_FMT_YUV420P;
807 
808  h->cur.f = av_frame_alloc();
809  h->DPB[0].f = av_frame_alloc();
810  h->DPB[1].f = av_frame_alloc();
811  if (!h->cur.f || !h->DPB[0].f || !h->DPB[1].f)
812  return AVERROR(ENOMEM);
813 
814  h->luma_scan[0] = 0;
815  h->luma_scan[1] = 8;
816  h->intra_pred_l[INTRA_L_VERT] = intra_pred_vert;
817  h->intra_pred_l[INTRA_L_HORIZ] = intra_pred_horiz;
818  h->intra_pred_l[INTRA_L_LP] = intra_pred_lp;
819  h->intra_pred_l[INTRA_L_DOWN_LEFT] = intra_pred_down_left;
820  h->intra_pred_l[INTRA_L_DOWN_RIGHT] = intra_pred_down_right;
821  h->intra_pred_l[INTRA_L_LP_LEFT] = intra_pred_lp_left;
822  h->intra_pred_l[INTRA_L_LP_TOP] = intra_pred_lp_top;
823  h->intra_pred_l[INTRA_L_DC_128] = intra_pred_dc_128;
824  h->intra_pred_c[INTRA_C_LP] = intra_pred_lp;
825  h->intra_pred_c[INTRA_C_HORIZ] = intra_pred_horiz;
826  h->intra_pred_c[INTRA_C_VERT] = intra_pred_vert;
827  h->intra_pred_c[INTRA_C_PLANE] = intra_pred_plane;
828  h->intra_pred_c[INTRA_C_LP_LEFT] = intra_pred_lp_left;
829  h->intra_pred_c[INTRA_C_LP_TOP] = intra_pred_lp_top;
830  h->intra_pred_c[INTRA_C_DC_128] = intra_pred_dc_128;
831  h->mv[7] = un_mv;
832  h->mv[19] = un_mv;
833  return 0;
834 }
835 
837 {
838  AVSContext *h = avctx->priv_data;
839 
840  av_frame_free(&h->cur.f);
841  av_frame_free(&h->DPB[0].f);
842  av_frame_free(&h->DPB[1].f);
843 
844  av_freep(&h->top_qp);
845  av_freep(&h->top_mv[0]);
846  av_freep(&h->top_mv[1]);
847  av_freep(&h->top_pred_Y);
848  av_freep(&h->top_border_y);
849  av_freep(&h->top_border_u);
850  av_freep(&h->top_border_v);
851  av_freep(&h->col_mv);
852  av_freep(&h->col_type_base);
853  av_freep(&h->block);
854  av_freep(&h->edge_emu_buffer);
855  return 0;
856 }
BLK_16X16
@ BLK_16X16
Definition: cavs.h:120
left_modifier_l
static const int8_t left_modifier_l[8]
Definition: cavs.c:62
cavs_mb
cavs_mb
Definition: cavs.h:67
h264_chroma_mc_func
void(* h264_chroma_mc_func)(uint8_t *dst, const uint8_t *src, ptrdiff_t srcStride, int h, int x, int y)
Definition: h264chroma.h:25
MV_PRED_PSKIP
@ MV_PRED_PSKIP
Definition: cavs.h:115
ff_cavs_partition_flags
const uint8_t ff_cavs_partition_flags[30]
Definition: cavsdata.c:24
AVERROR
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
ff_cavs_chroma_qp
const uint8_t ff_cavs_chroma_qp[64]
Definition: cavsdata.c:57
MV_FWD_D3
@ MV_FWD_D3
Definition: cavs.h:127
MV_BWD_C2
@ MV_BWD_C2
Definition: cavs.h:140
MV_BWD_D3
@ MV_BWD_D3
Definition: cavs.h:137
MV_BWD_X0
@ MV_BWD_X0
Definition: cavs.h:142
mv
static const int8_t mv[256][2]
Definition: 4xm.c:81
INTRA_C_VERT
@ INTRA_C_VERT
Definition: cavs.h:103
av_frame_free
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
Definition: frame.c:160
MV_FWD_X0
@ MV_FWD_X0
Definition: cavs.h:132
un_mv
static const cavs_vector un_mv
mark block as unavailable, i.e.
Definition: cavs.c:60
AV_RN64
#define AV_RN64(p)
Definition: intreadwrite.h:366
AVFrame
This structure describes decoded (raw) audio or video data.
Definition: frame.h:375
b
#define b
Definition: input.c:41
intra_pred_down_right
static void intra_pred_down_right(uint8_t *d, uint8_t *top, uint8_t *left, ptrdiff_t stride)
Definition: cavs.c:322
LOWPASS
#define LOWPASS(ARRAY, INDEX)
Definition: cavs.c:303
ff_cavs_init
av_cold int ff_cavs_init(AVCodecContext *avctx)
Definition: cavs.c:793
ff_cavs_dir_mv
const cavs_vector ff_cavs_dir_mv
mark block as "no prediction from this direction" e.g.
Definition: cavsdata.c:66
cavs_block
cavs_block
Definition: cavs.h:119
scale_mv
static void scale_mv(AVSContext *h, int *d_x, int *d_y, cavs_vector *src, int distp)
Definition: cavs.c:536
INTRA_C_HORIZ
@ INTRA_C_HORIZ
Definition: cavs.h:102
FFMAX
#define FFMAX(a, b)
Definition: macros.h:47
ff_cavs_modify_mb_i
void ff_cavs_modify_mb_i(AVSContext *h, int *pred_mode_uv)
Definition: cavs.c:362
ff_cavs_load_intra_pred_chroma
void ff_cavs_load_intra_pred_chroma(AVSContext *h)
Definition: cavs.c:235
ff_crop_tab
#define ff_crop_tab
Definition: motionpixels_tablegen.c:26
AVFrame::data
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:396
MV_BWD_X3
@ MV_BWD_X3
Definition: cavs.h:146
ff_cavs_init_pic
int ff_cavs_init_pic(AVSContext *h)
Definition: cavs.c:722
golomb.h
exp golomb vlc stuff
ff_permute_scantable
av_cold void ff_permute_scantable(uint8_t dst[64], const uint8_t src[64], const uint8_t permutation[64])
Definition: idctdsp.c:30
set_mvs
static void set_mvs(cavs_vector *mv, enum cavs_block size)
Definition: cavs.h:255
MV_FWD_A3
@ MV_FWD_A3
Definition: cavs.h:134
INTRA_C_PLANE
@ INTRA_C_PLANE
Definition: cavs.h:104
cavs_vector::x
int16_t x
Definition: cavs.h:150
modify_pred
static void modify_pred(const int8_t *mod_table, int *mode)
Definition: cavs.c:353
tc_tab
static const uint8_t tc_tab[64]
Definition: cavs.c:51
ff_videodsp_init
av_cold void ff_videodsp_init(VideoDSPContext *ctx, int bpc)
Definition: videodsp.c:39
SPLITV
#define SPLITV
Definition: cavs.h:62
cavs_vector::dist
int16_t dist
Definition: cavs.h:152
av_frame_alloc
AVFrame * av_frame_alloc(void)
Allocate an AVFrame and set its fields to default values.
Definition: frame.c:148
B_AVAIL
#define B_AVAIL
Definition: cavs.h:46
AV_LOG_ERROR
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:180
av_cold
#define av_cold
Definition: attributes.h:90
I_8X8
@ I_8X8
Definition: cavs.h:68
ff_blockdsp_init
av_cold void ff_blockdsp_init(BlockDSPContext *c)
Definition: blockdsp.c:58
MV_BWD_X2
@ MV_BWD_X2
Definition: cavs.h:145
ff_cavs_init_top_lines
int ff_cavs_init_top_lines(AVSContext *h)
some predictions require data from the top-neighbouring macroblock.
Definition: cavs.c:758
left_modifier_c
static const int8_t left_modifier_c[7]
Definition: cavs.c:64
INTRA_L_DOWN_RIGHT
@ INTRA_L_DOWN_RIGHT
Definition: cavs.h:94
mc_dir_part
static void mc_dir_part(AVSContext *h, AVFrame *pic, int chroma_height, int delta, int list, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr, int src_x_offset, int src_y_offset, qpel_mc_func *qpix_op, h264_chroma_mc_func chroma_op, cavs_vector *mv)
Definition: cavs.c:389
ff_cavsdsp_init
av_cold void ff_cavsdsp_init(CAVSDSPContext *c)
Definition: cavsdsp.c:550
MV_PRED_TOPRIGHT
@ MV_PRED_TOPRIGHT
Definition: cavs.h:114
MV_FWD_B3
@ MV_FWD_B3
Definition: cavs.h:129
AV_PIX_FMT_YUV420P
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
Definition: pixfmt.h:73
MV_BWD_OFFS
#define MV_BWD_OFFS
Definition: cavs.h:64
get_se_golomb
static int get_se_golomb(GetBitContext *gb)
read signed exp golomb code.
Definition: golomb.h:239
MV_BWD_B2
@ MV_BWD_B2
Definition: cavs.h:138
if
if(ret)
Definition: filter_design.txt:179
INTRA_L_LP
@ INTRA_L_LP
Definition: cavs.h:92
NULL
#define NULL
Definition: coverity.c:32
top_modifier_l
static const int8_t top_modifier_l[8]
Definition: cavs.c:63
INTRA_C_DC_128
@ INTRA_C_DC_128
Definition: cavs.h:107
INTRA_L_DC_128
@ INTRA_L_DC_128
Definition: cavs.h:97
mathops.h
list
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining list
Definition: filter_design.txt:25
A_AVAIL
#define A_AVAIL
Definition: cavs.h:45
qpeldsp.h
abs
#define abs(x)
Definition: cuda_runtime.h:35
cavs_mv_loc
cavs_mv_loc
Definition: cavs.h:126
INTRA_C_LP
@ INTRA_C_LP
Definition: cavs.h:101
INTRA_L_VERT
@ INTRA_L_VERT
Definition: cavs.h:90
qpel_mc_func
void(* qpel_mc_func)(uint8_t *dst, const uint8_t *src, ptrdiff_t stride)
Definition: qpeldsp.h:65
FF_SIGNBIT
#define FF_SIGNBIT(x)
Definition: mathops.h:130
ff_cavs_mv
void ff_cavs_mv(AVSContext *h, enum cavs_mv_loc nP, enum cavs_mv_loc nC, enum cavs_mv_pred mode, enum cavs_block size, int ref)
Definition: cavs.c:574
D_AVAIL
#define D_AVAIL
Definition: cavs.h:48
intra_pred_down_left
static void intra_pred_down_left(uint8_t *d, uint8_t *top, uint8_t *left, ptrdiff_t stride)
Definition: cavs.c:314
SET_PARAMS
#define SET_PARAMS
Definition: cavs.c:92
MV_FWD_A1
@ MV_FWD_A1
Definition: cavs.h:131
INTRA_L_HORIZ
@ INTRA_L_HORIZ
Definition: cavs.h:91
size
int size
Definition: twinvq_data.h:10344
h264chroma.h
intra_pred_dc_128
static void intra_pred_dc_128(uint8_t *d, uint8_t *top, uint8_t *left, ptrdiff_t stride)
Definition: cavs.c:276
ff_cavs_end
av_cold int ff_cavs_end(AVCodecContext *avctx)
Definition: cavs.c:836
MV_FWD_B2
@ MV_FWD_B2
Definition: cavs.h:128
REF_INTRA
#define REF_INTRA
Definition: cavs.h:50
C_AVAIL
#define C_AVAIL
Definition: cavs.h:47
a
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
Definition: undefined.txt:41
P_8X8
@ P_8X8
Definition: cavs.h:73
intra_pred_lp_left
static void intra_pred_lp_left(uint8_t *d, uint8_t *top, uint8_t *left, ptrdiff_t stride)
Definition: cavs.c:335
MV_FWD_X3
@ MV_FWD_X3
Definition: cavs.h:136
ff_cavs_load_intra_pred_luma
void ff_cavs_load_intra_pred_luma(AVSContext *h, uint8_t *top, uint8_t **left, int block)
Definition: cavs.c:184
i
#define i(width, name, range_min, range_max)
Definition: cbs_h2645.c:256
delta
float delta
Definition: vorbis_enc_data.h:430
get_bs
static int get_bs(cavs_vector *mvP, cavs_vector *mvQ, int b)
Definition: cavs.c:73
MV_PRED_TOP
@ MV_PRED_TOP
Definition: cavs.h:113
cavs_vector::y
int16_t y
Definition: cavs.h:151
av_mallocz
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
Definition: mem.c:256
beta_tab
static const uint8_t beta_tab[64]
Definition: cavs.c:44
MV_FWD_X2
@ MV_FWD_X2
Definition: cavs.h:135
AVCodecContext::pix_fmt
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
Definition: avcodec.h:657
av_calloc
void * av_calloc(size_t nmemb, size_t size)
Definition: mem.c:264
mc_part_std
static void mc_part_std(AVSContext *h, int chroma_height, int delta, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr, int x_offset, int y_offset, qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put, qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg, cavs_vector *mv)
Definition: cavs.c:455
MV_FWD_C2
@ MV_FWD_C2
Definition: cavs.h:130
INTRA_L_DOWN_LEFT
@ INTRA_L_DOWN_LEFT
Definition: cavs.h:93
idctdsp.h
avcodec.h
stride
#define stride
Definition: h264pred_template.c:537
ff_cavs_init_mb
void ff_cavs_init_mb(AVSContext *h)
initialise predictors for motion vectors and intra prediction
Definition: cavs.c:636
ff_zigzag_direct
const uint8_t ff_zigzag_direct[64]
Definition: mathtables.c:98
mv_pred_median
static void mv_pred_median(AVSContext *h, cavs_vector *mvP, cavs_vector *mvA, cavs_vector *mvB, cavs_vector *mvC)
Definition: cavs.c:544
mid_pred
#define mid_pred
Definition: mathops.h:98
cavs_mv_pred
cavs_mv_pred
Definition: cavs.h:110
INTRA_L_LP_LEFT
@ INTRA_L_LP_LEFT
Definition: cavs.h:95
left
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled left
Definition: snow.txt:386
ff_cavs_inter
void ff_cavs_inter(AVSContext *h, enum cavs_mb mb_type)
Definition: cavs.c:493
INTRA_C_LP_TOP
@ INTRA_C_LP_TOP
Definition: cavs.h:106
AVCodecContext
main external API structure.
Definition: avcodec.h:445
mode
mode
Definition: ebur128.h:83
cm
#define cm
Definition: dvbsubdec.c:40
ref
static int ref[MAX_W *MAX_W]
Definition: jpeg2000dwt.c:112
intra_pred_vert
static void intra_pred_vert(uint8_t *d, uint8_t *top, uint8_t *left, ptrdiff_t stride)
Definition: cavs.c:258
ff_h264chroma_init
av_cold void ff_h264chroma_init(H264ChromaContext *c, int bit_depth)
Definition: h264chroma.c:41
AVSContext
Definition: cavs.h:169
cavs_vector
Definition: cavs.h:149
tc
#define tc
Definition: regdef.h:69
cavs_vector::ref
int16_t ref
Definition: cavs.h:153
mem.h
ff_init_scantable_permutation
av_cold void ff_init_scantable_permutation(uint8_t *idct_permutation, enum idct_permutation_type perm_type)
Definition: idctdsp.c:39
ff_cavs_next_mb
int ff_cavs_next_mb(AVSContext *h)
save predictors for later macroblocks and increase macroblock address
Definition: cavs.c:677
MV_BWD_B3
@ MV_BWD_B3
Definition: cavs.h:139
alpha
static const int16_t alpha[]
Definition: ilbcdata.h:55
AVCodecContext::priv_data
void * priv_data
Definition: avcodec.h:472
av_freep
#define av_freep(p)
Definition: tableprint_vlc.h:34
src
INIT_CLIP pixel * src
Definition: h264pred_template.c:418
MV_PRED_LEFT
@ MV_PRED_LEFT
Definition: cavs.h:112
d
d
Definition: ffmpeg_filter.c:424
alpha_tab
static const uint8_t alpha_tab[64]
Definition: cavs.c:37
intra_pred_lp
static void intra_pred_lp(uint8_t *d, uint8_t *top, uint8_t *left, ptrdiff_t stride)
Definition: cavs.c:306
cavs.h
block
The exact code depends on how similar the blocks are and how related they are to the block
Definition: filter_design.txt:207
av_log
#define av_log(a,...)
Definition: tableprint_vlc.h:27
ff_cavs_filter
void ff_cavs_filter(AVSContext *h, enum cavs_mb mb_type)
in-loop deblocking filter for a single macroblock
Definition: cavs.c:108
MV_FWD_X1
@ MV_FWD_X1
Definition: cavs.h:133
intra_pred_horiz
static void intra_pred_horiz(uint8_t *d, uint8_t *top, uint8_t *left, ptrdiff_t stride)
Definition: cavs.c:266
h
h
Definition: vp9dsp_template.c:2038
MAX_NEG_CROP
#define MAX_NEG_CROP
Definition: mathops.h:31
INTRA_C_LP_LEFT
@ INTRA_C_LP_LEFT
Definition: cavs.h:105
intra_pred_plane
static void intra_pred_plane(uint8_t *d, uint8_t *top, uint8_t *left, ptrdiff_t stride)
Definition: cavs.c:284
intra_pred_lp_top
static void intra_pred_lp_top(uint8_t *d, uint8_t *top, uint8_t *left, ptrdiff_t stride)
Definition: cavs.c:343
top_modifier_c
static const int8_t top_modifier_c[7]
Definition: cavs.c:65
NOT_AVAIL
#define NOT_AVAIL
Definition: cavs.h:49
INTRA_L_LP_TOP
@ INTRA_L_LP_TOP
Definition: cavs.h:96
SPLITH
#define SPLITH
Definition: cavs.h:61