Go to the documentation of this file.
52 #define MAX_REFERENCE_FRAMES 8
54 #define MAX_FRAMES (MAX_REFERENCE_FRAMES + MAX_DELAY + 1)
56 #define MAX_BLOCKSIZE 32
61 #define DIRAC_REF_MASK_REF1 1
62 #define DIRAC_REF_MASK_REF2 2
63 #define DIRAC_REF_MASK_GLOBAL 4
69 #define DELAYED_PIC_REF 4
71 #define CALC_PADDING(size, depth) \
72 (((size + (1 << depth) - 1) >> depth) << depth)
74 #define DIVRNDUP(a, b) (((a) + (b) - 1) / (b))
80 uint8_t *hpel_base[3][4];
109 typedef struct Plane {
255 return (
int)((x+1
U)*21845 + 10922) >> 16;
261 int i, remove_idx = -1;
263 for (
i = 0; framelist[
i];
i++)
264 if (framelist[
i]->picture_number == picnum) {
265 remove_pic = framelist[
i];
270 for (
i = remove_idx; framelist[
i];
i++)
271 framelist[
i] = framelist[
i+1];
279 for (
i = 0;
i < maxframes;
i++)
290 int sbheight =
DIVRNDUP(
s->seq.height, 4);
291 int i,
w,
h, top_padding;
294 for (
i = 0;
i < 3;
i++) {
297 w =
s->seq.width >> (
i ?
s->chroma_x_shift : 0);
298 h =
s->seq.height >> (
i ?
s->chroma_y_shift : 0);
309 s->plane[
i].idwt.buf_base =
av_calloc(
w + max_xblen,
h * (2 <<
s->pshift));
311 s->plane[
i].idwt.buf =
s->plane[
i].idwt.buf_base + (top_padding*
w)*(2 <<
s->pshift);
312 if (!
s->plane[
i].idwt.buf_base || !
s->plane[
i].idwt.tmp)
320 if (!
s->sbsplit || !
s->blmotion)
327 int w =
s->seq.width;
328 int h =
s->seq.height;
333 if (
s->buffer_stride >=
stride)
335 s->buffer_stride = 0;
338 memset(
s->edge_emu_buffer, 0,
sizeof(
s->edge_emu_buffer));
347 if (!
s->edge_emu_buffer_base || !
s->mctmp || !
s->mcscratch)
359 if (
s->all_frames[
i].avframe->data[0]) {
361 memset(
s->all_frames[
i].interpolated, 0,
sizeof(
s->all_frames[
i].interpolated));
364 for (j = 0; j < 3; j++)
365 for (k = 1; k < 4; k++)
369 memset(
s->ref_frames, 0,
sizeof(
s->ref_frames));
370 memset(
s->delay_frames, 0,
sizeof(
s->delay_frames));
372 for (
i = 0;
i < 3;
i++) {
377 s->buffer_stride = 0;
394 s->frame_number = -1;
396 s->thread_buf =
NULL;
397 s->threads_num_buf = -1;
398 s->thread_buf_size = -1;
406 if (!
s->all_frames[
i].avframe)
420 s->seen_sequence_header = 0;
421 s->frame_number = -1;
446 coeff = sign*((sign *
coeff * qfactor + qoffset) >> 2);
450 #define SIGN_CTX(x) (CTX_SIGN_ZERO + ((x) > 0) - ((x) < 0))
452 #define UNPACK_ARITH(n, type) \
453 static inline void coeff_unpack_arith_##n(DiracArith *c, int qfactor, int qoffset, \
454 SubBand *b, type *buf, int x, int y) \
456 int sign, sign_pred = 0, pred_ctx = CTX_ZPZN_F1; \
458 const int mstride = -(b->stride >> (1+b->pshift)); \
460 const type *pbuf = (type *)b->parent->ibuf; \
461 const int stride = b->parent->stride >> (1+b->parent->pshift); \
462 pred_ctx += !!pbuf[stride * (y>>1) + (x>>1)] << 1; \
464 if (b->orientation == subband_hl) \
465 sign_pred = buf[mstride]; \
467 pred_ctx += !(buf[-1] | buf[mstride] | buf[-1 + mstride]); \
468 if (b->orientation == subband_lh) \
469 sign_pred = buf[-1]; \
471 pred_ctx += !buf[mstride]; \
473 coeff = dirac_get_arith_uint(c, pred_ctx, CTX_COEFF_DATA); \
475 coeff = (coeff * qfactor + qoffset) >> 2; \
476 sign = dirac_get_arith_bit(c, SIGN_CTX(sign_pred)); \
477 coeff = (coeff ^ -sign) + sign; \
491 int left,
int right,
int top,
int bottom,
492 int blockcnt_one,
int is_arith)
494 int x, y, zero_block;
495 int qoffset, qfactor;
509 if (
s->codeblock_mode && !(
s->old_delta_quant && blockcnt_one)) {
515 if (
quant > INT_MAX -
b->quant ||
b->quant +
quant < 0) {
535 buf =
b->ibuf + top *
b->stride;
537 for (y = top; y < bottom; y++) {
540 for (x =
left; x < right; x++) {
542 coeff_unpack_arith_10(
c, qfactor, qoffset,
b, (
int32_t*)(buf)+x, x, y);
544 coeff_unpack_arith_8(
c, qfactor, qoffset,
b, (int16_t*)(buf)+x, x, y);
550 for (y = top; y < bottom; y++) {
553 for (x =
left; x < right; x++) {
571 #define INTRA_DC_PRED(n, type) \
572 static inline void intra_dc_prediction_##n(SubBand *b) \
574 type *buf = (type*)b->ibuf; \
577 for (x = 1; x < b->width; x++) \
578 buf[x] += buf[x-1]; \
579 buf += (b->stride >> (1+b->pshift)); \
581 for (y = 1; y < b->height; y++) { \
582 buf[0] += buf[-(b->stride >> (1+b->pshift))]; \
584 for (x = 1; x < b->width; x++) { \
585 int pred = buf[x - 1] + buf[x - (b->stride >> (1+b->pshift))] + buf[x - (b->stride >> (1+b->pshift))-1]; \
586 buf[x] += divide3(pred); \
588 buf += (b->stride >> (1+b->pshift)); \
602 int cb_x, cb_y,
left, right, top, bottom;
607 int blockcnt_one = (cb_width + cb_height) == 2;
619 for (cb_y = 0; cb_y < cb_height; cb_y++) {
620 bottom = (
b->height * (cb_y+1LL)) / cb_height;
622 for (cb_x = 0; cb_x < cb_width; cb_x++) {
623 right = (
b->width * (cb_x+1LL)) / cb_width;
634 intra_dc_prediction_10(
b);
636 intra_dc_prediction_8(
b);
664 int level, num_bands = 0;
667 int damaged_count = 0;
671 for (orientation = !!
level; orientation < 4; orientation++) {
703 for (
i = 0;
i <
s->wavelet_depth * 3 + 1;
i++) {
707 if (damaged_count > (
s->wavelet_depth * 3 + 1) /2)
713 #define PARSE_VALUES(type, x, gb, ebits, buf1, buf2) \
714 type *buf = (type *)buf1; \
715 buf[x] = coeff_unpack_golomb(gb, qfactor, qoffset); \
716 if (get_bits_count(gb) >= ebits) \
719 buf = (type *)buf2; \
720 buf[x] = coeff_unpack_golomb(gb, qfactor, qoffset); \
721 if (get_bits_count(gb) >= ebits) \
726 int slice_x,
int slice_y,
int bits_end,
729 int left =
b1->width * slice_x /
s->num_x;
730 int right =
b1->width *(slice_x+1) /
s->num_x;
731 int top =
b1->height * slice_y /
s->num_y;
732 int bottom =
b1->height *(slice_y+1) /
s->num_y;
734 int qfactor, qoffset;
736 uint8_t *buf1 =
b1->ibuf + top *
b1->stride;
737 uint8_t *buf2 =
b2 ?
b2->ibuf + top *
b2->stride:
NULL;
752 for (y = top; y < bottom; y++) {
753 for (x =
left; x < right; x++) {
762 for (y = top; y < bottom; y++) {
763 for (x =
left; x < right; x++) {
792 for (orientation = !!
level; orientation < 4; orientation++) {
801 chroma_bits = 8*slice->
bytes - 7 - length_bits - luma_bits;
805 for (orientation = !!
level; orientation < 4; orientation++) {
808 &
s->plane[1].band[
level][orientation],
809 &
s->plane[2].band[
level][orientation]);
830 o->
top =
b->height * y /
s->num_y;
831 o->
left =
b->width * x /
s->num_x;
832 o->
tot_h = ((
b->width * (x + 1)) /
s->num_x) - o->
left;
833 o->
tot_v = ((
b->height * (y + 1)) /
s->num_y) - o->
top;
846 int i,
level, orientation, quant_idx;
861 for (orientation = !!
level; orientation < 4; orientation++) {
862 const int quant =
FFMAX(quant_idx -
s->lowdelay.quant[
level][orientation], 0);
869 for (
i = 0;
i < 3;
i++) {
870 int coef_num, coef_par, off = 0;
889 if (coef_num > coef_par) {
890 const int start_b = coef_par * (1 << (
s->pshift + 1));
891 const int end_b = coef_num * (1 << (
s->pshift + 1));
892 memset(&tmp_buf[start_b], 0, end_b - start_b);
897 for (orientation = !!
level; orientation < 4; orientation++) {
899 uint8_t *buf =
b1->ibuf +
c->top *
b1->stride + (
c->left << (
s->pshift + 1));
902 const int qfunc =
s->pshift + 2*(
c->tot_h <= 2);
903 s->diracdsp.dequant_subband[qfunc](&tmp_buf[off], buf,
b1->stride,
904 qfactor[
level][orientation],
905 qoffset[
level][orientation],
908 off +=
c->tot << (
s->pshift + 1);
923 uint8_t *thread_buf = &
s->thread_buf[
s->thread_buf_size*threadnr];
924 for (
i = 0;
i <
s->num_x;
i++)
936 int slice_x, slice_y, bufsize;
937 int64_t coef_buf_size, bytes = 0;
943 if (
s->slice_params_num_buf != (
s->num_x *
s->num_y)) {
945 if (!
s->slice_params_buf) {
947 s->slice_params_num_buf = 0;
950 s->slice_params_num_buf =
s->num_x *
s->num_y;
952 slices =
s->slice_params_buf;
957 coef_buf_size = (coef_buf_size << (1 +
s->pshift)) + 512;
960 s->thread_buf_size != coef_buf_size) {
962 s->thread_buf_size = coef_buf_size;
964 if (!
s->thread_buf) {
978 for (slice_y = 0; bufsize > 0 && slice_y <
s->num_y; slice_y++) {
979 for (slice_x = 0; bufsize > 0 && slice_x <
s->num_x; slice_x++) {
980 bytes =
s->highquality.prefix_bytes + 1;
981 for (
i = 0;
i < 3;
i++) {
982 if (bytes <= bufsize/8)
983 bytes += buf[bytes] *
s->highquality.size_scaler + 1;
985 if (bytes >= INT_MAX || bytes*8 > bufsize) {
990 slices[slice_num].
bytes = bytes;
991 slices[slice_num].
slice_x = slice_x;
992 slices[slice_num].
slice_y = slice_y;
997 if (bufsize/8 >= bytes)
1004 if (
s->num_x*
s->num_y != slice_num) {
1011 for (slice_y = 0; bufsize > 0 && slice_y <
s->num_y; slice_y++) {
1012 for (slice_x = 0; bufsize > 0 && slice_x <
s->num_x; slice_x++) {
1013 bytes = (slice_num+1) * (
int64_t)
s->lowdelay.bytes.num /
s->lowdelay.bytes.den
1014 - slice_num * (
int64_t)
s->lowdelay.bytes.num /
s->lowdelay.bytes.den;
1015 if (bytes >= INT_MAX || bytes*8 > bufsize) {
1019 slices[slice_num].
bytes = bytes;
1020 slices[slice_num].
slice_x = slice_x;
1021 slices[slice_num].
slice_y = slice_y;
1026 if (bufsize/8 >= bytes)
1036 if (
s->dc_prediction) {
1038 intra_dc_prediction_10(&
s->plane[0].band[0][0]);
1039 intra_dc_prediction_10(&
s->plane[1].band[0][0]);
1040 intra_dc_prediction_10(&
s->plane[2].band[0][0]);
1042 intra_dc_prediction_8(&
s->plane[0].band[0][0]);
1043 intra_dc_prediction_8(&
s->plane[1].band[0][0]);
1044 intra_dc_prediction_8(&
s->plane[2].band[0][0]);
1055 for (
i = 0;
i < 3;
i++) {
1058 p->
width =
s->seq.width >> (
i ?
s->chroma_x_shift : 0);
1059 p->
height =
s->seq.height >> (
i ?
s->chroma_y_shift : 0);
1067 for (orientation = !!
level; orientation < 4; orientation++) {
1070 b->pshift =
s->pshift;
1076 b->orientation = orientation;
1078 if (orientation & 1)
1079 b->ibuf +=
w << (1+
b->pshift);
1080 if (orientation > 1)
1081 b->ibuf += (
b->stride>>1);
1089 p->
xblen =
s->plane[0].xblen >>
s->chroma_x_shift;
1090 p->
yblen =
s->plane[0].yblen >>
s->chroma_y_shift;
1091 p->
xbsep =
s->plane[0].xbsep >>
s->chroma_x_shift;
1092 p->
ybsep =
s->plane[0].ybsep >>
s->chroma_y_shift;
1107 static const uint8_t default_blen[] = { 4, 12, 16, 24 };
1129 s->plane[0].xblen = default_blen[idx-1];
1130 s->plane[0].yblen = default_blen[idx-1];
1131 s->plane[0].xbsep = 4 * idx;
1132 s->plane[0].ybsep = 4 * idx;
1137 if (
s->plane[0].xblen % (1 <<
s->chroma_x_shift) != 0 ||
1138 s->plane[0].yblen % (1 <<
s->chroma_y_shift) != 0 ||
1139 !
s->plane[0].xblen || !
s->plane[0].yblen) {
1141 "invalid x/y block length (%d/%d) for x/y chroma shift (%d/%d)\n",
1142 s->plane[0].xblen,
s->plane[0].yblen,
s->chroma_x_shift,
s->chroma_y_shift);
1145 if (!
s->plane[0].xbsep || !
s->plane[0].ybsep ||
s->plane[0].xbsep <
s->plane[0].xblen/2 ||
s->plane[0].ybsep <
s->plane[0].yblen/2) {
1149 if (
s->plane[0].xbsep >
s->plane[0].xblen ||
s->plane[0].ybsep >
s->plane[0].yblen) {
1161 if (
s->mv_precision > 3) {
1169 if (
s->globalmc_flag) {
1170 memset(
s->globalmc, 0,
sizeof(
s->globalmc));
1186 s->globalmc[
ref].zrs[0][0] = 1;
1187 s->globalmc[
ref].zrs[1][1] = 1;
1195 if (
s->globalmc[
ref].perspective_exp + (uint64_t)
s->globalmc[
ref].zrs_exp > 30) {
1211 s->weight_log2denom = 1;
1217 if (
s->weight_log2denom < 1 ||
s->weight_log2denom > 8) {
1219 s->weight_log2denom = 1;
1223 if (
s->num_refs == 2)
1239 #define CHECKEDREAD(dst, cond, errmsg) \
1240 tmp = get_interleaved_ue_golomb(gb); \
1242 av_log(s->avctx, AV_LOG_ERROR, errmsg); \
1243 return AVERROR_INVALIDDATA; \
1258 if (!
s->low_delay) {
1261 for (
i = 0;
i <=
s->wavelet_depth;
i++) {
1262 CHECKEDREAD(
s->codeblock[
i].width , tmp < 1 || tmp > (
s->avctx->width >>
s->wavelet_depth-
i),
"codeblock width invalid\n")
1263 CHECKEDREAD(
s->codeblock[
i].height, tmp < 1 || tmp > (
s->avctx->height>>
s->wavelet_depth-
i),
"codeblock height invalid\n")
1269 for (
i = 0;
i <=
s->wavelet_depth;
i++)
1270 s->codeblock[
i].width =
s->codeblock[
i].height = 1;
1276 if (
s->num_x *
s->num_y == 0 ||
s->num_x * (uint64_t)
s->num_y > INT_MAX ||
1277 s->num_x * (uint64_t)
s->avctx->width > INT_MAX ||
1278 s->num_y * (uint64_t)
s->avctx->height > INT_MAX ||
1279 s->num_x >
s->avctx->width ||
1280 s->num_y >
s->avctx->height
1283 s->num_x =
s->num_y = 0;
1286 if (
s->ld_picture) {
1289 if (
s->lowdelay.bytes.den <= 0) {
1293 }
else if (
s->hq_picture) {
1296 if (
s->highquality.prefix_bytes >= INT_MAX / 8) {
1312 if (
s->wavelet_depth > 4) {
1313 av_log(
s->avctx,
AV_LOG_ERROR,
"Mandatory custom low delay matrix missing for depth %d\n",
s->wavelet_depth);
1318 for (
i = 0;
i < 4;
i++) {
1321 if (
s->wavelet_idx == 3)
1322 s->lowdelay.quant[
level][
i] += 4*(
s->wavelet_depth-1 -
level);
1331 static const uint8_t avgsplit[7] = { 0, 0, 1, 1, 1, 2, 2 };
1340 return avgsplit[sbsplit[-1] + sbsplit[-
stride] + sbsplit[-
stride-1]];
1350 return block[-1].ref & refmask;
1356 return (
pred >> 1) & refmask;
1366 for (
i = 0;
i < 3;
i++)
1372 for (
i = 0;
i < 3;
i++)
1378 for (
i = 0;
i < 3;
i++)
1384 for (
i = 0;
i < 3;
i++)
1386 }
else if (n == 3) {
1387 for (
i = 0;
i < 3;
i++)
1395 int refmask =
ref+1;
1430 int ez =
s->globalmc[
ref].zrs_exp;
1431 int ep =
s->globalmc[
ref].perspective_exp;
1432 int (*
A)[2] =
s->globalmc[
ref].zrs;
1433 int *
b =
s->globalmc[
ref].pan_tilt;
1434 int *
c =
s->globalmc[
ref].perspective;
1440 block->u.mv[
ref][0] = (mx + (1<<(ez+ep))) >> (ez+ep);
1441 block->u.mv[
ref][1] = (my + (1<<(ez+ep))) >> (ez+ep);
1445 int stride,
int x,
int y)
1452 if (
s->num_refs == 2) {
1459 for (
i = 0;
i < 3;
i++)
1464 if (
s->globalmc_flag) {
1469 for (
i = 0;
i <
s->num_refs;
i++)
1470 if (
block->ref & (
i+1)) {
1489 for (x = 1; x <
size; x++)
1492 for (y = 1; y <
size; y++) {
1494 for (x = 0; x <
size; x++)
1506 uint8_t *sbsplit =
s->sbsplit;
1513 s->sbwidth =
DIVRNDUP(
s->seq.width, 4*
s->plane[0].xbsep);
1514 s->sbheight =
DIVRNDUP(
s->seq.height, 4*
s->plane[0].ybsep);
1515 s->blwidth = 4 *
s->sbwidth;
1516 s->blheight = 4 *
s->sbheight;
1521 for (y = 0; y <
s->sbheight; y++) {
1522 for (x = 0; x <
s->sbwidth; x++) {
1528 sbsplit +=
s->sbwidth;
1533 for (
i = 0;
i <
s->num_refs;
i++) {
1537 for (
i = 0;
i < 3;
i++)
1540 for (y = 0; y <
s->sbheight; y++)
1541 for (x = 0; x <
s->sbwidth; x++) {
1542 int blkcnt = 1 <<
s->sbsplit[y *
s->sbwidth + x];
1543 int step = 4 >>
s->sbsplit[y *
s->sbwidth + x];
1545 for (q = 0; q < blkcnt; q++)
1546 for (p = 0; p < blkcnt; p++) {
1547 int bx = 4 * x + p*
step;
1548 int by = 4 * y + q*
step;
1555 for (
i = 0;
i < 4 + 2*
s->num_refs;
i++) {
1565 #define ROLLOFF(i) offset == 1 ? ((i) ? 5 : 3) : \
1566 (1 + (6*(i) + offset - 1) / (2*offset - 1))
1570 else if (
i > blen-1 - 2*
offset)
1576 int left,
int right,
int wy)
1579 for (x = 0;
left && x < p->
xblen >> 1; x++)
1580 obmc_weight[x] = wy*8;
1581 for (; x < p->
xblen >> right; x++)
1583 for (; x < p->
xblen; x++)
1584 obmc_weight[x] = wy*8;
1590 int left,
int right,
int top,
int bottom)
1593 for (y = 0; top && y < p->
yblen >> 1; y++) {
1597 for (; y < p->
yblen >> bottom; y++) {
1602 for (; y < p->
yblen; y++) {
1611 int bottom = by ==
s->blheight-1;
1614 if (top || bottom || by == 1) {
1649 int x,
int y,
int ref,
int plane)
1651 Plane *p = &
s->plane[plane];
1652 uint8_t **ref_hpel =
s->ref_pics[
ref]->hpel[plane];
1653 int motion_x =
block->u.mv[
ref][0];
1654 int motion_y =
block->u.mv[
ref][1];
1655 int mx, my,
i, epel, nplanes = 0;
1658 motion_x >>=
s->chroma_x_shift;
1659 motion_y >>=
s->chroma_y_shift;
1662 mx = motion_x & ~(-1
U <<
s->mv_precision);
1663 my = motion_y & ~(-1
U <<
s->mv_precision);
1664 motion_x >>=
s->mv_precision;
1665 motion_y >>=
s->mv_precision;
1668 mx <<= 3 -
s->mv_precision;
1669 my <<= 3 -
s->mv_precision;
1678 src[0] = ref_hpel[(my>>1)+(mx>>2)] + y*p->
stride + x;
1682 for (
i = 0;
i < 4;
i++)
1707 src[!mx] =
src[2 + !!mx];
1709 }
else if (!(my&3)) {
1732 for (
i = 0;
i < nplanes;
i++) {
1733 s->vdsp.emulated_edge_mc(
s->edge_emu_buffer[
i],
src[
i],
1737 src[
i] =
s->edge_emu_buffer[
i];
1740 return (nplanes>>1) + epel;
1744 uint8_t *obmc_weight,
int xblen,
int yblen)
1749 for (y = 0; y < yblen; y++) {
1750 for (x = 0; x < xblen; x += 2) {
1751 dst[x ] +=
dc * obmc_weight[x ];
1752 dst[x+1] +=
dc * obmc_weight[x+1];
1760 uint16_t *mctmp, uint8_t *obmc_weight,
1761 int plane,
int dstx,
int dsty)
1763 Plane *p = &
s->plane[plane];
1764 const uint8_t *
src[5];
1767 switch (
block->ref&3) {
1776 s->weight_func(
s->mcscratch, p->
stride,
s->weight_log2denom,
1777 s->weight[0] +
s->weight[1], p->
yblen);
1783 if (
s->biweight_func) {
1786 s->biweight_func(
s->mcscratch,
s->mcscratch+32, p->
stride,
s->weight_log2denom,
1787 s->weight[0],
s->weight[1], p->
yblen);
1792 s->add_obmc(mctmp,
s->mcscratch, p->
stride, obmc_weight, p->
yblen);
1797 Plane *p = &
s->plane[plane];
1803 for (x = 1; x <
s->blwidth-1; x++) {
1819 memcpy(
s->put_pixels_tab,
s->diracdsp.put_dirac_pixels_tab[idx],
sizeof(
s->put_pixels_tab));
1820 memcpy(
s->avg_pixels_tab,
s->diracdsp.avg_dirac_pixels_tab[idx],
sizeof(
s->avg_pixels_tab));
1821 s->add_obmc =
s->diracdsp.add_dirac_obmc[idx];
1822 if (
s->weight_log2denom > 1 ||
s->weight[0] != 1 ||
s->weight[1] != 1) {
1823 s->weight_func =
s->diracdsp.weight_dirac_pixels_tab[idx];
1824 s->biweight_func =
s->diracdsp.biweight_dirac_pixels_tab[idx];
1826 s->weight_func =
NULL;
1827 s->biweight_func =
NULL;
1838 ref->hpel[plane][0] =
ref->avframe->data[plane];
1842 if (!
s->mv_precision)
1845 for (
i = 1;
i < 4;
i++) {
1846 if (!
ref->hpel_base[plane][
i])
1848 if (!
ref->hpel_base[plane][
i]) {
1852 ref->hpel[plane][
i] =
ref->hpel_base[plane][
i] + edge*
ref->avframe->linesize[plane] + 16;
1855 if (!
ref->interpolated[plane]) {
1856 s->diracdsp.dirac_hpel_filter(
ref->hpel[plane][1],
ref->hpel[plane][2],
1857 ref->hpel[plane][3],
ref->hpel[plane][0],
1863 ref->interpolated[plane] = 1;
1875 int y,
i,
comp, dsty;
1880 if (!
s->hq_picture) {
1894 uint8_t *
frame =
s->current_picture->avframe->data[
comp];
1897 for (
i = 0;
i < 4;
i++)
1900 if (!
s->zero_res && !
s->low_delay)
1908 s->wavelet_depth,
s->bit_depth);
1913 for (y = 0; y < p->
height; y += 16) {
1914 int idx = (
s->bit_depth - 8) >> 1;
1916 s->diracdsp.put_signed_rect_clamped[idx](
frame + y*p->
stride,
1926 for (
i = 0;
i <
s->num_refs;
i++) {
1935 for (y = 0; y <
s->blheight; y++) {
1937 start =
FFMAX(dsty, 0);
1938 uint16_t *mctmp =
s->mctmp + y*rowheight;
1946 h = p->
ybsep - (start - dsty);
1972 int chroma_x_shift, chroma_y_shift;
1984 for (
i = 0;
f->data[
i];
i++) {
1986 f->linesize[
i] + 32;
2001 unsigned retire, picnum;
2007 picnum =
s->current_picture->picture_number =
get_bits_long(gb, 32);
2014 if (
s->frame_number < 0)
2015 s->frame_number = picnum;
2017 s->ref_pics[0] =
s->ref_pics[1] =
NULL;
2018 for (
i = 0;
i <
s->num_refs;
i++) {
2020 refdist = INT64_MAX;
2025 if (
s->ref_frames[j]
2026 &&
FFABS(
s->ref_frames[j]->picture_number - refnum) < refdist) {
2027 s->ref_pics[
i] =
s->ref_frames[j];
2028 refdist =
FFABS(
s->ref_frames[j]->picture_number - refnum);
2031 if (!
s->ref_pics[
i] || refdist)
2035 if (!
s->ref_pics[
i])
2037 if (!
s->all_frames[j].avframe->data[0]) {
2038 s->ref_pics[
i] = &
s->all_frames[j];
2045 if (!
s->ref_pics[
i]) {
2053 if (
s->current_picture->reference) {
2055 if (retire != picnum) {
2094 for (
i = 1;
s->delay_frames[
i];
i++)
2095 if (
s->delay_frames[
i]->picture_number <
out->picture_number) {
2096 out =
s->delay_frames[
i];
2100 for (
i = out_idx;
s->delay_frames[
i];
i++)
2101 s->delay_frames[
i] =
s->delay_frames[
i+1];
2118 #define DATA_UNIT_HEADER_SIZE 13
2134 parse_code = buf[4];
2139 if (
s->seen_sequence_header)
2173 s->pshift =
s->bit_depth > 8;
2177 &
s->chroma_y_shift);
2185 s->seen_sequence_header = 1;
2188 s->seen_sequence_header = 0;
2194 if (sscanf(buf+14,
"Schroedinger %d.%d.%d", ver, ver+1, ver+2) == 3)
2195 if (ver[0] == 1 && ver[1] == 0 && ver[2] <= 7)
2196 s->old_delta_quant = 1;
2198 }
else if (parse_code & 0x8) {
2199 if (!
s->seen_sequence_header) {
2206 if (
s->all_frames[
i].avframe->data[0] ==
NULL)
2207 pic = &
s->all_frames[
i];
2216 tmp = parse_code & 0x03;
2222 s->is_arith = (parse_code & 0x48) == 0x08;
2223 s->low_delay = (parse_code & 0x88) == 0x88;
2224 s->core_syntax = (parse_code & 0x88) == 0x08;
2225 s->ld_picture = (parse_code & 0xF8) == 0xC8;
2226 s->hq_picture = (parse_code & 0xF8) == 0xE8;
2227 s->dc_prediction = (parse_code & 0x28) == 0x08;
2228 pic->
reference = (parse_code & 0x0C) == 0x0C;
2229 if (
s->num_refs == 0)
2236 if (
s->version.minor == 2 && parse_code == 0x88)
2239 if (
s->low_delay && !(
s->ld_picture ||
s->hq_picture) ) {
2246 s->current_picture = pic;
2271 const uint8_t *buf =
pkt->
data;
2275 unsigned data_unit_size;
2279 if (
s->all_frames[
i].avframe->data[0] && !
s->all_frames[
i].reference) {
2281 memset(
s->all_frames[
i].interpolated, 0,
sizeof(
s->all_frames[
i].interpolated));
2284 s->current_picture =
NULL;
2296 if (buf[buf_idx ] ==
'B' && buf[buf_idx+1] ==
'B' &&
2297 buf[buf_idx+2] ==
'C' && buf[buf_idx+3] ==
'D')
2304 data_unit_size =
AV_RB32(buf+buf_idx+5);
2305 if (data_unit_size > buf_size - buf_idx || !data_unit_size) {
2306 if(data_unit_size > buf_size - buf_idx)
2308 "Data unit with size %d is larger than input buffer, discarding\n",
2320 buf_idx += data_unit_size;
2323 if (!
s->current_picture)
2326 if (
s->current_picture->picture_number >
s->frame_number) {
2332 unsigned min_num =
s->delay_frames[0]->picture_number;
2336 for (
i = 1;
s->delay_frames[
i];
i++)
2337 if (
s->delay_frames[
i]->picture_number < min_num)
2338 min_num =
s->delay_frames[
i]->picture_number;
2344 if (delayed_frame) {
2351 }
else if (
s->current_picture->picture_number ==
s->frame_number) {
2355 s->frame_number =
s->current_picture->picture_number + 1LL;
static void error(const char *err)
#define DATA_UNIT_HEADER_SIZE
Dirac Specification -> 9.6 Parse Info Header Syntax.
void(* put_pixels_tab[4])(uint8_t *dst, const uint8_t *src[5], int stride, int h)
int av_dirac_parse_sequence_header(AVDiracSeqHeader **pdsh, const uint8_t *buf, size_t buf_size, void *log_ctx)
Parse a Dirac sequence header.
static void skip_bits_long(GetBitContext *s, int n)
Skips the specified number of bits.
#define FF_CODEC_CAP_INIT_CLEANUP
The codec allows calling the close function for deallocation even if the init function returned a fai...
static int get_bits_left(GetBitContext *gb)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
enum AVColorSpace colorspace
YUV colorspace type.
struct DiracContext::@101 lowdelay
static void comp(unsigned char *dst, ptrdiff_t dst_stride, unsigned char *src, ptrdiff_t src_stride, int add)
#define u(width, name, range_min, range_max)
#define MAX_DWT_LEVELS
The spec limits the number of wavelet decompositions to 4 for both level 1 (VC-2) and 128 (long-gop d...
static unsigned int get_bits_long(GetBitContext *s, int n)
Read 0-32 bits.
static const uint8_t epel_weights[4][4][4]
static int dirac_decode_picture_header(DiracContext *s)
Dirac Specification -> 11.1.1 Picture Header.
static const int8_t mv[256][2]
static int get_bits_count(const GetBitContext *s)
static int dirac_unpack_prediction_parameters(DiracContext *s)
Unpack the motion compensation parameters Dirac Specification -> 11.2 Picture prediction data.
#define DIRAC_REF_MASK_REF1
DiracBlock->ref flags, if set then the block does MC from the given ref.
static unsigned get_interleaved_ue_golomb(GetBitContext *gb)
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
This structure describes decoded (raw) audio or video data.
trying all byte sequences megabyte in length and selecting the best looking sequence will yield cases to try But a word about which is also called distortion Distortion can be quantified by almost any quality measurement one chooses the sum of squared differences is used but more complex methods that consider psychovisual effects can be used as well It makes no difference in this discussion First step
enum AVColorTransferCharacteristic color_trc
Color Transfer Characteristic.
dirac_biweight_func biweight_func
static int decode_lowdelay_slice(AVCodecContext *avctx, void *arg)
Dirac Specification -> 13.5.2 Slices.
MpegvideoEncDSPContext mpvencdsp
void(* dirac_biweight_func)(uint8_t *dst, const uint8_t *src, int stride, int log2_denom, int weightd, int weights, int h)
static void init_planes(DiracContext *s)
#define DIRAC_REF_MASK_GLOBAL
static AVOnce dirac_arith_init
int flags
Frame flags, a combination of AV_FRAME_FLAGS.
DiracFrame * delay_frames[MAX_DELAY+1]
#define AVERROR_UNKNOWN
Unknown error, typically from an external library.
const int32_t ff_dirac_qscale_tab[116]
int ff_set_dimensions(AVCodecContext *s, int width, int height)
Check that the provided frame dimensions are valid and set them on the codec context.
static int dirac_get_arith_int(DiracArith *c, int follow_ctx, int data_ctx)
#define CHECKEDREAD(dst, cond, errmsg)
static void decode_subband(const DiracContext *s, GetBitContext *gb, int quant, int slice_x, int slice_y, int bits_end, const SubBand *b1, const SubBand *b2)
static int init_get_bits(GetBitContext *s, const uint8_t *buffer, int bit_size)
Initialize GetBitContext.
DiracFrame * current_picture
static int alloc_buffers(DiracContext *s, int stride)
const uint8_t ff_dirac_default_qmat[7][4][4]
static int decode_subband_arith(AVCodecContext *avctx, void *b)
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
static int codeblock(const DiracContext *s, SubBand *b, GetBitContext *gb, DiracArith *c, int left, int right, int top, int bottom, int blockcnt_one, int is_arith)
Decode the coeffs in the rectangle defined by left, right, top, bottom [DIRAC_STD] 13....
AVCodec p
The public AVCodec.
static double b1(void *priv, double x, double y)
uint8_t * edge_emu_buffer[4]
int ff_spatial_idwt_init(DWTContext *d, DWTPlane *p, enum dwt_type type, int decomposition_count, int bit_depth)
int thread_count
thread count is used to decide how many independent tasks should be passed to execute()
static double val(void *priv, double ch)
static int dirac_unpack_block_motion_data(DiracContext *s)
Dirac Specification ->
int av_pix_fmt_get_chroma_sub_sample(enum AVPixelFormat pix_fmt, int *h_shift, int *v_shift)
Utility function to access log2_chroma_w log2_chroma_h from the pixel format AVPixFmtDescriptor.
static int decode_component(DiracContext *s, int comp)
Dirac Specification -> [DIRAC_STD] 13.4.1 core_transform_data()
av_cold void ff_videodsp_init(VideoDSPContext *ctx, int bpc)
static int pred_sbsplit(uint8_t *sbsplit, int stride, int x, int y)
static void pred_block_dc(DiracBlock *block, int stride, int x, int y)
struct DiracContext::@100 codeblock[MAX_DWT_LEVELS+1]
static av_always_inline int decode_subband_internal(const DiracContext *s, SubBand *b, int is_arith)
Dirac Specification -> 13.4.2 Non-skipped subbands.
static void select_dsp_funcs(DiracContext *s, int width, int height, int xblen, int yblen)
AVFrame * av_frame_alloc(void)
Allocate an AVFrame and set its fields to default values.
static const uint8_t quant[64]
void(* dirac_weight_func)(uint8_t *block, int stride, int log2_denom, int weight, int h)
enum AVColorPrimaries color_primaries
Chromaticity coordinates of the source primaries.
static int ff_thread_once(char *control, void(*routine)(void))
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
static int coeff_unpack_golomb(GetBitContext *gb, int qfactor, int qoffset)
#define AV_FRAME_FLAG_KEY
A flag to mark frames that are keyframes.
const FFCodec ff_dirac_decoder
#define FF_CODEC_DECODE_CB(func)
#define AV_GET_BUFFER_FLAG_REF
The decoder will keep a reference to the frame and may reuse it later.
#define MAX_REFERENCE_FRAMES
The spec limits this to 3 for frame coding, but in practice can be as high as 6.
void ff_dirac_init_arith_decoder(DiracArith *c, GetBitContext *gb, int length)
#define av_assert0(cond)
assert() equivalent, that is always enabled.
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
int64_t max_pixels
The number of pixels per image to maximally accept.
static const float bands[]
#define CODEC_LONG_NAME(str)
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
#define av_realloc_f(p, o, n)
DiracSlice * slice_params_buf
uint8_t * edge_emu_buffer_base
static int dirac_get_arith_bit(DiracArith *c, int ctx)
static void mc_row(DiracContext *s, DiracBlock *block, uint16_t *mctmp, int plane, int dsty)
const int ff_dirac_qoffset_inter_tab[122]
static int decode_hq_slice_row(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
dirac_weight_func weight_func
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
static int dirac_decode_frame_internal(DiracContext *s)
Dirac Specification -> 13.0 Transform data syntax.
enum AVColorRange color_range
MPEG vs JPEG YUV range.
static int decode_lowdelay(DiracContext *s)
Dirac Specification -> 13.5.1 low_delay_transform_data()
static int subband_coeffs(const DiracContext *s, int x, int y, int p, SliceCoeffs c[MAX_DWT_LEVELS])
Rational number (pair of numerator and denominator).
DiracFrame * ref_frames[MAX_REFERENCE_FRAMES+1]
static unsigned int get_bits1(GetBitContext *s)
unsigned old_delta_quant
schroedinger older than 1.0.8 doesn't store quant delta if only one codebook exists in a band
int ff_set_sar(AVCodecContext *avctx, AVRational sar)
Check that the provided sample aspect ratio is valid and set it on the codec context.
static int dirac_get_arith_uint(DiracArith *c, int follow_ctx, int data_ctx)
#define DIRAC_MAX_QUANT_INDEX
int level
Encoding level descriptor.
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
static int weight(int i, int blen, int offset)
void ff_spatial_idwt_slice2(DWTContext *d, int y)
#define DELAYED_PIC_REF
Value of Picture.reference when Picture is not a reference picture, but is held for delayed output.
static int add_frame(DiracFrame *framelist[], int maxframes, DiracFrame *frame)
#define INTRA_DC_PRED(n, type)
Dirac Specification -> 13.3 intra_dc_prediction(band)
static av_cold int dirac_decode_end(AVCodecContext *avctx)
enum AVPictureType pict_type
Picture type of the frame.
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame.
int(* init)(AVBSFContext *ctx)
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() or get_encode_buffer() for allocating buffers and supports custom allocators.
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled top and top right vectors is used as motion vector prediction the used motion vector is the sum of the predictor and(mvx_diff, mvy_diff) *mv_scale Intra DC Prediction block[y][x] dc[1]
int av_frame_ref(AVFrame *dst, const AVFrame *src)
Set up a new reference to the data described by the source frame.
#define DECLARE_ALIGNED(n, t, v)
static void init_obmc_weight_row(Plane *p, uint8_t *obmc_weight, int stride, int left, int right, int wy)
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_WL16 uint64_t_TMPL AV_WB64 unsigned int_TMPL AV_RB32
unsigned weight_log2denom
static char * split(char *message, char delim)
static double b2(void *priv, double x, double y)
#define AV_CODEC_CAP_SLICE_THREADS
Codec supports slice-based (or partition-based) multithreading.
static int dirac_get_se_golomb(GetBitContext *gb)
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf offset
static void add_dc(uint16_t *dst, int dc, int stride, uint8_t *obmc_weight, int xblen, int yblen)
static av_cold void dirac_decode_flush(AVCodecContext *avctx)
static int get_buffer_with_edge(AVCodecContext *avctx, AVFrame *f, int flags)
static int pred_block_mode(DiracBlock *block, int stride, int x, int y, int refmask)
struct DiracContext::@103 globalmc[2]
static void init_obmc_weights(DiracContext *s, Plane *p, int by)
static int dirac_decode_frame(AVCodecContext *avctx, AVFrame *picture, int *got_frame, AVPacket *pkt)
#define i(width, name, range_min, range_max)
static void pred_mv(DiracBlock *block, int stride, int x, int y, int ref)
#define UNPACK_ARITH(n, type)
static int alloc_sequence_buffers(DiracContext *s)
#define DIRAC_REF_MASK_REF2
#define PARSE_VALUES(type, x, gb, ebits, buf1, buf2)
static void decode_block_params(DiracContext *s, DiracArith arith[8], DiracBlock *block, int stride, int x, int y)
static int decode_hq_slice(const DiracContext *s, DiracSlice *slice, uint8_t *tmp_buf)
VC-2 Specification -> 13.5.3 hq_slice(sx,sy)
int ff_dirac_golomb_read_16bit(const uint8_t *buf, int bytes, uint8_t *_dst, int coeffs)
#define av_malloc_array(a, b)
void av_frame_unref(AVFrame *frame)
Unreference all the buffers referenced by frame and reset the frame fields.
av_cold void ff_dirac_init_arith_tables(void)
const char * name
Name of the codec implementation.
static int mc_subpel(DiracContext *s, DiracBlock *block, const uint8_t *src[5], int x, int y, int ref, int plane)
For block x,y, determine which of the hpel planes to do bilinear interpolation from and set src[] to ...
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
void * av_calloc(size_t nmemb, size_t size)
static int interpolate_refplane(DiracContext *s, DiracFrame *ref, int plane, int width, int height)
const uint8_t * coeff_data
static const float pred[4]
#define FFSWAP(type, a, b)
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
static const uint8_t * align_get_bits(GetBitContext *s)
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled left
static DiracFrame * remove_frame(DiracFrame *framelist[], unsigned picnum)
int ff_dirac_golomb_read_32bit(const uint8_t *buf, int bytes, uint8_t *_dst, int coeffs)
static int decode_subband_golomb(AVCodecContext *avctx, void *arg)
const int32_t ff_dirac_qoffset_intra_tab[120]
void(* add_obmc)(uint16_t *dst, const uint8_t *src, int stride, const uint8_t *obmc_weight, int yblen)
main external API structure.
int(* execute)(struct AVCodecContext *c, int(*func)(struct AVCodecContext *c2, void *arg), void *arg2, int *ret, int count, int size)
The codec may call this to execute several independent things.
DiracFrame all_frames[MAX_FRAMES]
static av_cold void free_sequence_buffers(DiracContext *s)
#define CALC_PADDING(size, depth)
static int ref[MAX_W *MAX_W]
#define AV_CODEC_CAP_DELAY
Encoder or decoder requires flushing with NULL input at the end in order to give the complete and cor...
static int divide3(int x)
uint8_t quant[MAX_DWT_LEVELS][4]
SubBand band[DWT_LEVELS_3D][4]
static void propagate_block_data(DiracBlock *block, int stride, int size)
Copies the current block to the other blocks covered by the current superblock split mode.
This structure stores compressed data.
static void global_mv(DiracContext *s, DiracBlock *block, int x, int y, int ref)
void(* avg_pixels_tab[4])(uint8_t *dst, const uint8_t *src[5], int stride, int h)
av_cold void ff_mpegvideoencdsp_init(MpegvideoEncDSPContext *c, AVCodecContext *avctx)
struct DiracContext::@102 highquality
int width
picture width / height.
#define flags(name, subs,...)
int linesize[AV_NUM_DATA_POINTERS]
For video, a positive or negative value, which is typically indicating the size in bytes of each pict...
The exact code depends on how similar the blocks are and how related they are to the block
static const double coeff[2][5]
static int dirac_decode_data_unit(AVCodecContext *avctx, const uint8_t *buf, int size)
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
static av_cold int dirac_decode_init(AVCodecContext *avctx)
av_cold void ff_diracdsp_init(DiracDSPContext *c)
static int dirac_unpack_idwt_params(DiracContext *s)
Dirac Specification -> 11.3 Wavelet transform data.
uint8_t obmc_weight[3][MAX_BLOCKSIZE *MAX_BLOCKSIZE]
int(* execute2)(struct AVCodecContext *c, int(*func)(struct AVCodecContext *c2, void *arg, int jobnr, int threadnr), void *arg2, int *ret, int count)
The codec may call this to execute several independent things.
static int get_delayed_pic(DiracContext *s, AVFrame *picture, int *got_frame)
static void init_obmc_weight(Plane *p, uint8_t *obmc_weight, int stride, int left, int right, int top, int bottom)
static void block_mc(DiracContext *s, DiracBlock *block, uint16_t *mctmp, uint8_t *obmc_weight, int plane, int dstx, int dsty)