FFmpeg
magicyuvenc.c
Go to the documentation of this file.
1 /*
2  * MagicYUV encoder
3  * Copyright (c) 2017 Paul B Mahol
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 #include <stdlib.h>
23 #include <string.h>
24 
25 #include "libavutil/cpu.h"
26 #include "libavutil/mem.h"
27 #include "libavutil/opt.h"
28 #include "libavutil/pixdesc.h"
29 #include "libavutil/qsort.h"
30 
31 #include "avcodec.h"
32 #include "bytestream.h"
33 #include "codec_internal.h"
34 #include "encode.h"
35 #include "put_bits.h"
36 #include "lossless_videoencdsp.h"
37 
38 #define MAGICYUV_EXTRADATA_SIZE 32
39 
40 typedef enum Prediction {
41  LEFT = 1,
44 } Prediction;
45 
46 typedef struct HuffEntry {
47  uint8_t len;
48  uint32_t code;
49 } HuffEntry;
50 
51 typedef struct PTable {
52  int value; ///< input value
53  int64_t prob; ///< number of occurences of this value in input
54 } PTable;
55 
56 typedef struct Slice {
57  unsigned pos;
58  unsigned size;
59  uint8_t *slice;
60  uint8_t *bitslice;
61  PTable counts[256];
62 } Slice;
63 
64 typedef struct MagicYUVContext {
65  const AVClass *class;
67  int planes;
68  uint8_t format;
69  int slice_height;
70  int nb_slices;
71  int correlate;
72  int hshift[4];
73  int vshift[4];
74  unsigned bitslice_size;
75  uint8_t *decorrelate_buf[2];
76  Slice *slices;
77  HuffEntry he[4][256];
79  void (*predict)(struct MagicYUVContext *s, const uint8_t *src, uint8_t *dst,
80  ptrdiff_t stride, int width, int height);
82 
84  const uint8_t *src, uint8_t *dst, ptrdiff_t stride,
85  int width, int height)
86 {
87  uint8_t prev = 0;
88  int i, j;
89 
90  for (i = 0; i < width; i++) {
91  dst[i] = src[i] - prev;
92  prev = src[i];
93  }
94  dst += width;
95  src += stride;
96  for (j = 1; j < height; j++) {
97  prev = src[-stride];
98  for (i = 0; i < width; i++) {
99  dst[i] = src[i] - prev;
100  prev = src[i];
101  }
102  dst += width;
103  src += stride;
104  }
105 }
106 
108  const uint8_t *src, uint8_t *dst, ptrdiff_t stride,
109  int width, int height)
110 {
111  int left = 0, top, lefttop;
112  int i, j;
113 
114  for (i = 0; i < width; i++) {
115  dst[i] = src[i] - left;
116  left = src[i];
117  }
118  dst += width;
119  src += stride;
120  for (j = 1; j < height; j++) {
121  top = src[-stride];
122  left = src[0] - top;
123  dst[0] = left;
124  for (i = 1; i < width; i++) {
125  top = src[i - stride];
126  lefttop = src[i - (stride + 1)];
127  left = src[i-1];
128  dst[i] = (src[i] - top) - left + lefttop;
129  }
130  dst += width;
131  src += stride;
132  }
133 }
134 
136  const uint8_t *src, uint8_t *dst, ptrdiff_t stride,
137  int width, int height)
138 {
139  int left = 0, lefttop;
140  int i, j;
141 
142  for (i = 0; i < width; i++) {
143  dst[i] = src[i] - left;
144  left = src[i];
145  }
146  dst += width;
147  src += stride;
148  for (j = 1; j < height; j++) {
149  left = lefttop = src[-stride];
150  s->llvidencdsp.sub_median_pred(dst, src - stride, src, width, &left, &lefttop);
151  dst += width;
152  src += stride;
153  }
154 }
155 
157 {
158  MagicYUVContext *s = avctx->priv_data;
159  PutByteContext pb;
160 
161  switch (avctx->pix_fmt) {
162  case AV_PIX_FMT_GBRP:
163  avctx->codec_tag = MKTAG('M', '8', 'R', 'G');
164  s->correlate = 1;
165  s->format = 0x65;
166  break;
167  case AV_PIX_FMT_GBRAP:
168  avctx->codec_tag = MKTAG('M', '8', 'R', 'A');
169  s->correlate = 1;
170  s->format = 0x66;
171  break;
172  case AV_PIX_FMT_YUV420P:
173  avctx->codec_tag = MKTAG('M', '8', 'Y', '0');
174  s->hshift[1] =
175  s->vshift[1] =
176  s->hshift[2] =
177  s->vshift[2] = 1;
178  s->format = 0x69;
179  break;
180  case AV_PIX_FMT_YUV422P:
181  avctx->codec_tag = MKTAG('M', '8', 'Y', '2');
182  s->hshift[1] =
183  s->hshift[2] = 1;
184  s->format = 0x68;
185  break;
186  case AV_PIX_FMT_YUV444P:
187  avctx->codec_tag = MKTAG('M', '8', 'Y', '4');
188  s->format = 0x67;
189  break;
190  case AV_PIX_FMT_YUVA444P:
191  avctx->codec_tag = MKTAG('M', '8', 'Y', 'A');
192  s->format = 0x6a;
193  break;
194  case AV_PIX_FMT_GRAY8:
195  avctx->codec_tag = MKTAG('M', '8', 'G', '0');
196  s->format = 0x6b;
197  break;
198  }
199 
200  ff_llvidencdsp_init(&s->llvidencdsp);
201 
202  s->planes = av_pix_fmt_count_planes(avctx->pix_fmt);
203 
204  s->nb_slices = (avctx->slices <= 0) ? av_cpu_count() : avctx->slices;
205  s->nb_slices = FFMIN(s->nb_slices, avctx->height >> s->vshift[1]);
206  s->nb_slices = FFMAX(1, s->nb_slices);
207  s->slice_height = FFALIGN((avctx->height + s->nb_slices - 1) / s->nb_slices, 1 << s->vshift[1]);
208  s->nb_slices = (avctx->height + s->slice_height - 1) / s->slice_height;
209  s->slices = av_calloc(s->nb_slices * s->planes, sizeof(*s->slices));
210  if (!s->slices)
211  return AVERROR(ENOMEM);
212 
213  if (s->correlate) {
214  size_t max_align = av_cpu_max_align();
215  size_t aligned_width = FFALIGN(avctx->width, max_align);
216  s->decorrelate_buf[0] = av_calloc(2U * (s->nb_slices * s->slice_height),
217  aligned_width);
218  if (!s->decorrelate_buf[0])
219  return AVERROR(ENOMEM);
220  s->decorrelate_buf[1] = s->decorrelate_buf[0] + (s->nb_slices * s->slice_height) * aligned_width;
221  }
222 
223  s->bitslice_size = avctx->width * s->slice_height + 2;
224  for (int n = 0; n < s->nb_slices; n++) {
225  for (int i = 0; i < s->planes; i++) {
226  Slice *sl = &s->slices[n * s->planes + i];
227 
228  sl->bitslice = av_malloc(s->bitslice_size + AV_INPUT_BUFFER_PADDING_SIZE);
229  sl->slice = av_malloc(avctx->width * (s->slice_height + 2) +
231  if (!sl->slice || !sl->bitslice) {
232  av_log(avctx, AV_LOG_ERROR, "Cannot allocate temporary buffer.\n");
233  return AVERROR(ENOMEM);
234  }
235  }
236  }
237 
238  switch (s->frame_pred) {
239  case LEFT: s->predict = left_predict; break;
240  case GRADIENT: s->predict = gradient_predict; break;
241  case MEDIAN: s->predict = median_predict; break;
242  }
243 
245 
246  avctx->extradata = av_mallocz(avctx->extradata_size +
248 
249  if (!avctx->extradata) {
250  av_log(avctx, AV_LOG_ERROR, "Could not allocate extradata.\n");
251  return AVERROR(ENOMEM);
252  }
253 
255  bytestream2_put_le32(&pb, MKTAG('M', 'A', 'G', 'Y'));
256  bytestream2_put_le32(&pb, 32);
257  bytestream2_put_byte(&pb, 7);
258  bytestream2_put_byte(&pb, s->format);
259  bytestream2_put_byte(&pb, 12);
260  bytestream2_put_byte(&pb, 0);
261 
262  bytestream2_put_byte(&pb, 0);
263  bytestream2_put_byte(&pb, 0);
264  bytestream2_put_byte(&pb, 32);
265  bytestream2_put_byte(&pb, 0);
266 
267  bytestream2_put_le32(&pb, avctx->width);
268  bytestream2_put_le32(&pb, avctx->height);
269  bytestream2_put_le32(&pb, avctx->width);
270  bytestream2_put_le32(&pb, avctx->height);
271 
272  return 0;
273 }
274 
275 static void calculate_codes(HuffEntry *he, uint16_t codes_count[33])
276 {
277  for (unsigned i = 32, nb_codes = 0; i > 0; i--) {
278  uint16_t curr = codes_count[i]; // # of leafs of length i
279  codes_count[i] = nb_codes / 2; // # of non-leaf nodes on level i
280  nb_codes = codes_count[i] + curr; // # of nodes on level i
281  }
282 
283  for (unsigned i = 0; i < 256; i++) {
284  he[i].code = codes_count[he[i].len];
285  codes_count[he[i].len]++;
286  }
287 }
288 
289 static void count_usage(const uint8_t *src, int width,
290  int height, PTable *counts)
291 {
292  for (int j = 0; j < height; j++) {
293  for (int i = 0; i < width; i++)
294  counts[src[i]].prob++;
295  src += width;
296  }
297 }
298 
299 typedef struct PackageMergerList {
300  int nitems; ///< number of items in the list and probability ex. 4
301  int item_idx[515]; ///< index range for each item in items 0, 2, 5, 9, 13
302  int probability[514]; ///< probability of each item 3, 8, 18, 46
303  int items[257 * 16]; ///< chain of all individual values that make up items A, B, A, B, C, A, B, C, D, C, D, D, E
305 
306 static int compare_by_prob(const void *a, const void *b)
307 {
308  const PTable *a2 = a;
309  const PTable *b2 = b;
310  return a2->prob - b2->prob;
311 }
312 
313 static void magy_huffman_compute_bits(PTable *prob_table, HuffEntry *distincts,
314  uint16_t codes_counts[33],
315  int size, int max_length)
316 {
317  PackageMergerList list_a, list_b, *to = &list_a, *from = &list_b, *temp;
318  int times, i, j, k;
319  int nbits[257] = {0};
320  int min;
321 
322  av_assert0(max_length > 0);
323 
324  to->nitems = 0;
325  from->nitems = 0;
326  to->item_idx[0] = 0;
327  from->item_idx[0] = 0;
328  AV_QSORT(prob_table, size, PTable, compare_by_prob);
329 
330  for (times = 0; times <= max_length; times++) {
331  to->nitems = 0;
332  to->item_idx[0] = 0;
333 
334  j = 0;
335  k = 0;
336 
337  if (times < max_length) {
338  i = 0;
339  }
340  while (i < size || j + 1 < from->nitems) {
341  to->nitems++;
342  to->item_idx[to->nitems] = to->item_idx[to->nitems - 1];
343  if (i < size &&
344  (j + 1 >= from->nitems ||
345  prob_table[i].prob <
346  from->probability[j] + from->probability[j + 1])) {
347  to->items[to->item_idx[to->nitems]++] = prob_table[i].value;
348  to->probability[to->nitems - 1] = prob_table[i].prob;
349  i++;
350  } else {
351  for (k = from->item_idx[j]; k < from->item_idx[j + 2]; k++) {
352  to->items[to->item_idx[to->nitems]++] = from->items[k];
353  }
354  to->probability[to->nitems - 1] =
355  from->probability[j] + from->probability[j + 1];
356  j += 2;
357  }
358  }
359  temp = to;
360  to = from;
361  from = temp;
362  }
363 
364  min = (size - 1 < from->nitems) ? size - 1 : from->nitems;
365  for (i = 0; i < from->item_idx[min]; i++) {
366  nbits[from->items[i]]++;
367  }
368 
369  for (i = 0; i < size; i++) {
370  distincts[i].len = nbits[i];
371  codes_counts[nbits[i]]++;
372  }
373 }
374 
375 static int count_plane_slice(AVCodecContext *avctx, int n, int plane)
376 {
377  MagicYUVContext *s = avctx->priv_data;
378  Slice *sl = &s->slices[n * s->planes + plane];
379  const uint8_t *dst = sl->slice;
380  PTable *counts = sl->counts;
381 
382  memset(counts, 0, sizeof(sl->counts));
383 
384  count_usage(dst, AV_CEIL_RSHIFT(avctx->width, s->hshift[plane]),
385  AV_CEIL_RSHIFT(s->slice_height, s->vshift[plane]), counts);
386 
387  return 0;
388 }
389 
390 static int encode_table(AVCodecContext *avctx,
391  PutBitContext *pb, HuffEntry *he, int plane)
392 {
393  MagicYUVContext *s = avctx->priv_data;
394  PTable counts[256] = { {0} };
395  uint16_t codes_counts[33] = { 0 };
396 
397  for (int n = 0; n < s->nb_slices; n++) {
398  Slice *sl = &s->slices[n * s->planes + plane];
399  PTable *slice_counts = sl->counts;
400 
401  for (int i = 0; i < 256; i++)
402  counts[i].prob = slice_counts[i].prob;
403  }
404 
405  for (int i = 0; i < 256; i++) {
406  counts[i].prob++;
407  counts[i].value = i;
408  }
409 
410  magy_huffman_compute_bits(counts, he, codes_counts, 256, 12);
411 
412  calculate_codes(he, codes_counts);
413 
414  for (int i = 0; i < 256; i++) {
415  put_bits(pb, 1, 0);
416  put_bits(pb, 7, he[i].len);
417  }
418 
419  return 0;
420 }
421 
422 static int encode_plane_slice_raw(const uint8_t *src, uint8_t *dst, unsigned dst_size,
423  int width, int height, int prediction)
424 {
425  unsigned count = width * height;
426 
427  dst[0] = 1;
428  dst[1] = prediction;
429 
430  memcpy(dst + 2, src, count);
431  count += 2;
432  AV_WN32(dst + count, 0);
433  if (count & 3)
434  count += 4 - (count & 3);
435 
436  return count;
437 }
438 
439 static int encode_plane_slice(const uint8_t *src, uint8_t *dst, unsigned dst_size,
440  int width, int height, HuffEntry *he, int prediction)
441 {
442  const uint8_t *osrc = src;
443  PutBitContext pb;
444  int count;
445 
446  init_put_bits(&pb, dst, dst_size);
447 
448  put_bits(&pb, 8, 0);
449  put_bits(&pb, 8, prediction);
450 
451  for (int j = 0; j < height; j++) {
452  for (int i = 0; i < width; i++) {
453  const int idx = src[i];
454  const int len = he[idx].len;
455  if (put_bits_left(&pb) < len + 32)
456  return encode_plane_slice_raw(osrc, dst, dst_size, width, height, prediction);
457  put_bits(&pb, len, he[idx].code);
458  }
459 
460  src += width;
461  }
462 
463  count = put_bits_count(&pb) & 0x1F;
464 
465  if (count)
466  put_bits(&pb, 32 - count, 0);
467 
468  flush_put_bits(&pb);
469 
470  return put_bytes_output(&pb);
471 }
472 
473 static int encode_slice(AVCodecContext *avctx, void *tdata,
474  int n, int threadnr)
475 {
476  MagicYUVContext *s = avctx->priv_data;
477  const int slice_height = s->slice_height;
478  const int last_height = FFMIN(slice_height, avctx->height - n * slice_height);
479  const int height = (n < (s->nb_slices - 1)) ? slice_height : last_height;
480 
481  for (int i = 0; i < s->planes; i++) {
482  Slice *sl = &s->slices[n * s->planes + i];
483 
484  sl->size =
486  sl->bitslice,
487  s->bitslice_size,
488  AV_CEIL_RSHIFT(avctx->width, s->hshift[i]),
489  AV_CEIL_RSHIFT(height, s->vshift[i]),
490  s->he[i], s->frame_pred);
491  }
492 
493  return 0;
494 }
495 
496 static int predict_slice(AVCodecContext *avctx, void *tdata,
497  int n, int threadnr)
498 {
499  size_t max_align = av_cpu_max_align();
500  const int aligned_width = FFALIGN(avctx->width, max_align);
501  MagicYUVContext *s = avctx->priv_data;
502  const int slice_height = s->slice_height;
503  const int last_height = FFMIN(slice_height, avctx->height - n * slice_height);
504  const int height = (n < (s->nb_slices - 1)) ? slice_height : last_height;
505  const int width = avctx->width;
506  AVFrame *frame = tdata;
507 
508  if (s->correlate) {
509  uint8_t *decorrelated[2] = { s->decorrelate_buf[0] + n * slice_height * aligned_width,
510  s->decorrelate_buf[1] + n * slice_height * aligned_width };
511  const int decorrelate_linesize = aligned_width;
512  const uint8_t *const data[4] = { decorrelated[0], frame->data[0] + n * slice_height * frame->linesize[0],
513  decorrelated[1], s->planes == 4 ? frame->data[3] + n * slice_height * frame->linesize[3] : NULL };
514  const uint8_t *r, *g, *b;
515  const int linesize[4] = { decorrelate_linesize, frame->linesize[0],
516  decorrelate_linesize, frame->linesize[3] };
517 
518  g = frame->data[0] + n * slice_height * frame->linesize[0];
519  b = frame->data[1] + n * slice_height * frame->linesize[1];
520  r = frame->data[2] + n * slice_height * frame->linesize[2];
521 
522  for (int i = 0; i < height; i++) {
523  s->llvidencdsp.diff_bytes(decorrelated[0], b, g, width);
524  s->llvidencdsp.diff_bytes(decorrelated[1], r, g, width);
525  g += frame->linesize[0];
526  b += frame->linesize[1];
527  r += frame->linesize[2];
528  decorrelated[0] += decorrelate_linesize;
529  decorrelated[1] += decorrelate_linesize;
530  }
531 
532  for (int i = 0; i < s->planes; i++) {
533  Slice *sl = &s->slices[n * s->planes + i];
534 
535  s->predict(s, data[i], sl->slice, linesize[i],
536  frame->width, height);
537  }
538  } else {
539  for (int i = 0; i < s->planes; i++) {
540  Slice *sl = &s->slices[n * s->planes + i];
541 
542  s->predict(s, frame->data[i] + n * (slice_height >> s->vshift[i]) * frame->linesize[i],
543  sl->slice,
544  frame->linesize[i],
545  AV_CEIL_RSHIFT(frame->width, s->hshift[i]),
546  AV_CEIL_RSHIFT(height, s->vshift[i]));
547  }
548  }
549 
550  for (int p = 0; p < s->planes; p++)
551  count_plane_slice(avctx, n, p);
552 
553  return 0;
554 }
555 
557  const AVFrame *frame, int *got_packet)
558 {
559  MagicYUVContext *s = avctx->priv_data;
560  const int width = avctx->width, height = avctx->height;
561  const int slice_height = s->slice_height;
562  unsigned tables_size;
563  PutBitContext pbit;
564  PutByteContext pb;
565  int pos, ret = 0;
566 
567  ret = ff_alloc_packet(avctx, pkt, (256 + 4 * s->nb_slices + width * height) *
568  s->planes + 256);
569  if (ret < 0)
570  return ret;
571 
573  bytestream2_put_le32(&pb, MKTAG('M', 'A', 'G', 'Y'));
574  bytestream2_put_le32(&pb, 32); // header size
575  bytestream2_put_byte(&pb, 7); // version
576  bytestream2_put_byte(&pb, s->format);
577  bytestream2_put_byte(&pb, 12); // max huffman length
578  bytestream2_put_byte(&pb, 0);
579 
580  bytestream2_put_byte(&pb, 0);
581  bytestream2_put_byte(&pb, 0);
582  bytestream2_put_byte(&pb, 32); // coder type
583  bytestream2_put_byte(&pb, 0);
584 
585  bytestream2_put_le32(&pb, avctx->width);
586  bytestream2_put_le32(&pb, avctx->height);
587  bytestream2_put_le32(&pb, avctx->width);
588  bytestream2_put_le32(&pb, slice_height);
589  bytestream2_put_le32(&pb, 0);
590 
591  for (int i = 0; i < s->planes; i++) {
592  bytestream2_put_le32(&pb, 0);
593  for (int j = 1; j < s->nb_slices; j++)
594  bytestream2_put_le32(&pb, 0);
595  }
596 
597  bytestream2_put_byte(&pb, s->planes);
598 
599  for (int i = 0; i < s->planes; i++) {
600  for (int n = 0; n < s->nb_slices; n++)
601  bytestream2_put_byte(&pb, n * s->planes + i);
602  }
603 
604  avctx->execute2(avctx, predict_slice, (void *)frame, NULL, s->nb_slices);
605 
607 
608  for (int i = 0; i < s->planes; i++)
609  encode_table(avctx, &pbit, s->he[i], i);
610 
611  tables_size = put_bytes_count(&pbit, 1);
612  bytestream2_skip_p(&pb, tables_size);
613 
614  avctx->execute2(avctx, encode_slice, NULL, NULL, s->nb_slices);
615 
616  for (int n = 0; n < s->nb_slices; n++) {
617  for (int i = 0; i < s->planes; i++) {
618  Slice *sl = &s->slices[n * s->planes + i];
619 
620  sl->pos = bytestream2_tell_p(&pb);
621 
622  bytestream2_put_buffer(&pb, sl->bitslice, sl->size);
623  }
624  }
625 
626  pos = bytestream2_tell_p(&pb);
627  bytestream2_seek_p(&pb, 32, SEEK_SET);
628  bytestream2_put_le32(&pb, s->slices[0].pos - 32);
629  for (int i = 0; i < s->planes; i++) {
630  for (int n = 0; n < s->nb_slices; n++) {
631  Slice *sl = &s->slices[n * s->planes + i];
632 
633  bytestream2_put_le32(&pb, sl->pos - 32);
634  }
635  }
636  bytestream2_seek_p(&pb, pos, SEEK_SET);
637 
638  pkt->size = bytestream2_tell_p(&pb);
639 
640  *got_packet = 1;
641 
642  return 0;
643 }
644 
646 {
647  MagicYUVContext *s = avctx->priv_data;
648 
649  for (int i = 0; i < s->planes * s->nb_slices && s->slices; i++) {
650  Slice *sl = &s->slices[i];
651 
652  av_freep(&sl->slice);
653  av_freep(&sl->bitslice);
654  }
655  av_freep(&s->slices);
656  av_freep(&s->decorrelate_buf);
657 
658  return 0;
659 }
660 
661 #define OFFSET(x) offsetof(MagicYUVContext, x)
662 #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
663 static const AVOption options[] = {
664  { "pred", "Prediction method", OFFSET(frame_pred), AV_OPT_TYPE_INT, {.i64=LEFT}, LEFT, MEDIAN, VE, .unit = "pred" },
665  { "left", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = LEFT }, 0, 0, VE, .unit = "pred" },
666  { "gradient", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = GRADIENT }, 0, 0, VE, .unit = "pred" },
667  { "median", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = MEDIAN }, 0, 0, VE, .unit = "pred" },
668  { NULL},
669 };
670 
671 static const AVClass magicyuv_class = {
672  .class_name = "magicyuv",
673  .item_name = av_default_item_name,
674  .option = options,
675  .version = LIBAVUTIL_VERSION_INT,
676 };
677 
679  .p.name = "magicyuv",
680  CODEC_LONG_NAME("MagicYUV video"),
681  .p.type = AVMEDIA_TYPE_VIDEO,
682  .p.id = AV_CODEC_ID_MAGICYUV,
683  .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS |
686  .priv_data_size = sizeof(MagicYUVContext),
687  .p.priv_class = &magicyuv_class,
688  .init = magy_encode_init,
689  .close = magy_encode_close,
691  .p.pix_fmts = (const enum AVPixelFormat[]) {
695  },
696  .caps_internal = FF_CODEC_CAP_INIT_CLEANUP,
697 };
GRADIENT
@ GRADIENT
Definition: magicyuvenc.c:42
VE
#define VE
Definition: magicyuvenc.c:662
AVPixelFormat
AVPixelFormat
Pixel format.
Definition: pixfmt.h:71
FF_CODEC_CAP_INIT_CLEANUP
#define FF_CODEC_CAP_INIT_CLEANUP
The codec allows calling the close function for deallocation even if the init function returned a fai...
Definition: codec_internal.h:42
r
const char * r
Definition: vf_curves.c:127
AVERROR
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
opt.h
Prediction
Definition: aptx.h:70
count_usage
static void count_usage(const uint8_t *src, int width, int height, PTable *counts)
Definition: magicyuvenc.c:289
put_bytes_output
static int put_bytes_output(const PutBitContext *s)
Definition: put_bits.h:89
HuffEntry::len
uint8_t len
Definition: exr.c:96
MagicYUVContext::nb_slices
int nb_slices
Definition: magicyuv.c:61
ff_magicyuv_encoder
const FFCodec ff_magicyuv_encoder
Definition: magicyuvenc.c:678
compare_by_prob
static int compare_by_prob(const void *a, const void *b)
Definition: magicyuvenc.c:306
MagicYUVContext::hshift
int hshift[4]
Definition: magicyuv.c:68
left_predict
static void left_predict(MagicYUVContext *s, const uint8_t *src, uint8_t *dst, ptrdiff_t stride, int width, int height)
Definition: magicyuvenc.c:83
init_put_bits
static void init_put_bits(PutBitContext *s, uint8_t *buffer, int buffer_size)
Initialize the PutBitContext s.
Definition: put_bits.h:62
AVFrame
This structure describes decoded (raw) audio or video data.
Definition: frame.h:375
put_bits
static void put_bits(Jpeg2000EncoderContext *s, int val, int n)
put n times val bit
Definition: j2kenc.c:223
pixdesc.h
Slice::slice
uint8_t * slice
Definition: magicyuvenc.c:59
AVPacket::data
uint8_t * data
Definition: packet.h:524
AVOption
AVOption.
Definition: opt.h:346
encode.h
b
#define b
Definition: input.c:41
put_bytes_count
static int put_bytes_count(const PutBitContext *s, int round_up)
Definition: put_bits.h:100
PackageMergerList::item_idx
int item_idx[515]
index range for each item in items 0, 2, 5, 9, 13
Definition: magicyuvenc.c:301
bytestream2_tell_p
static av_always_inline int bytestream2_tell_p(PutByteContext *p)
Definition: bytestream.h:197
data
const char data[16]
Definition: mxf.c:148
FFCodec
Definition: codec_internal.h:127
FFMAX
#define FFMAX(a, b)
Definition: macros.h:47
Slice::size
uint32_t size
Definition: magicyuv.c:42
av_malloc
#define av_malloc(s)
Definition: tableprint_vlc.h:30
MagicYUVContext
Definition: magicyuv.c:56
av_pix_fmt_count_planes
int av_pix_fmt_count_planes(enum AVPixelFormat pix_fmt)
Definition: pixdesc.c:3005
MagicYUVContext::llvidencdsp
LLVidEncDSPContext llvidencdsp
Definition: magicyuvenc.c:78
FFCodec::p
AVCodec p
The public AVCodec.
Definition: codec_internal.h:131
AV_PIX_FMT_GBRAP
@ AV_PIX_FMT_GBRAP
planar GBRA 4:4:4:4 32bpp
Definition: pixfmt.h:212
magy_encode_frame
static int magy_encode_frame(AVCodecContext *avctx, AVPacket *pkt, const AVFrame *frame, int *got_packet)
Definition: magicyuvenc.c:556
calculate_codes
static void calculate_codes(HuffEntry *he, uint16_t codes_count[33])
Definition: magicyuvenc.c:275
count_plane_slice
static int count_plane_slice(AVCodecContext *avctx, int n, int plane)
Definition: magicyuvenc.c:375
put_bits_left
static int put_bits_left(PutBitContext *s)
Definition: put_bits.h:125
MagicYUVContext::predict
void(* predict)(struct MagicYUVContext *s, const uint8_t *src, uint8_t *dst, ptrdiff_t stride, int width, int height)
Definition: magicyuvenc.c:79
FF_CODEC_ENCODE_CB
#define FF_CODEC_ENCODE_CB(func)
Definition: codec_internal.h:296
encode_table
static int encode_table(AVCodecContext *avctx, PutBitContext *pb, HuffEntry *he, int plane)
Definition: magicyuvenc.c:390
magicyuv_class
static const AVClass magicyuv_class
Definition: magicyuvenc.c:671
OFFSET
#define OFFSET(x)
Definition: magicyuvenc.c:661
pkt
AVPacket * pkt
Definition: movenc.c:60
AV_LOG_ERROR
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:180
bytestream2_get_bytes_left_p
static av_always_inline int bytestream2_get_bytes_left_p(PutByteContext *p)
Definition: bytestream.h:163
av_cold
#define av_cold
Definition: attributes.h:90
bytestream2_init_writer
static av_always_inline void bytestream2_init_writer(PutByteContext *p, uint8_t *buf, int buf_size)
Definition: bytestream.h:147
AVCodecContext::extradata_size
int extradata_size
Definition: avcodec.h:524
MEDIAN
@ MEDIAN
Definition: magicyuvenc.c:43
Prediction
Prediction
Definition: magicyuvenc.c:40
width
#define width
Slice::size
unsigned size
Definition: magicyuvenc.c:58
s
#define s(width, name)
Definition: cbs_vp9.c:198
AV_CEIL_RSHIFT
#define AV_CEIL_RSHIFT(a, b)
Definition: common.h:59
g
const char * g
Definition: vf_curves.c:128
PackageMergerList::nitems
int nitems
number of items in the list and probability ex. 4
Definition: magicyuvenc.c:300
bytestream2_put_buffer
static av_always_inline unsigned int bytestream2_put_buffer(PutByteContext *p, const uint8_t *src, unsigned int size)
Definition: bytestream.h:286
AV_CODEC_CAP_ENCODER_REORDERED_OPAQUE
#define AV_CODEC_CAP_ENCODER_REORDERED_OPAQUE
This encoder can reorder user opaque values from input AVFrames and return them with corresponding ou...
Definition: codec.h:159
from
const char * from
Definition: jacosubdec.c:66
to
const char * to
Definition: webvttdec.c:35
av_assert0
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:40
Slice
Definition: magicyuv.c:40
AV_PIX_FMT_YUV420P
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
Definition: pixfmt.h:73
PTable::prob
int64_t prob
number of occurences of this value in input
Definition: magicyuvenc.c:53
median_predict
static void median_predict(MagicYUVContext *s, const uint8_t *src, uint8_t *dst, ptrdiff_t stride, int width, int height)
Definition: magicyuvenc.c:135
PutBitContext
Definition: put_bits.h:50
CODEC_LONG_NAME
#define CODEC_LONG_NAME(str)
Definition: codec_internal.h:272
AV_CODEC_CAP_FRAME_THREADS
#define AV_CODEC_CAP_FRAME_THREADS
Codec supports frame-level multithreading.
Definition: codec.h:110
LIBAVUTIL_VERSION_INT
#define LIBAVUTIL_VERSION_INT
Definition: version.h:85
MagicYUVContext::vshift
int vshift[4]
Definition: magicyuv.c:69
AVClass
Describe the class of an AVClass context structure.
Definition: log.h:66
PTable
Used to assign a occurrence count or "probability" to an input value.
Definition: magicyuvenc.c:51
NULL
#define NULL
Definition: coverity.c:32
av_default_item_name
const char * av_default_item_name(void *ptr)
Return the context name.
Definition: log.c:237
av_cpu_max_align
size_t av_cpu_max_align(void)
Get the maximum data alignment that may be required by FFmpeg.
Definition: cpu.c:268
AV_PIX_FMT_GRAY8
@ AV_PIX_FMT_GRAY8
Y , 8bpp.
Definition: pixfmt.h:81
MagicYUVContext::slices
Slice * slices[4]
Definition: magicyuv.c:70
MagicYUVContext::correlate
int correlate
Definition: magicyuvenc.c:71
AV_CODEC_ID_MAGICYUV
@ AV_CODEC_ID_MAGICYUV
Definition: codec_id.h:270
Slice::pos
unsigned pos
Definition: magicyuvenc.c:57
ff_llvidencdsp_init
av_cold void ff_llvidencdsp_init(LLVidEncDSPContext *c)
Definition: lossless_videoencdsp.c:100
MagicYUVContext::he
HuffEntry he[1<< 14]
Definition: magicyuv.c:77
PutByteContext
Definition: bytestream.h:37
av_cpu_count
int av_cpu_count(void)
Definition: cpu.c:209
qsort.h
Slice::counts
PTable counts[256]
Definition: magicyuvenc.c:61
AV_CODEC_CAP_DR1
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() or get_encode_buffer() for allocating buffers and supports custom allocators.
Definition: codec.h:52
PackageMergerList
Used to store intermediate lists in the package merge algorithm.
Definition: magicyuvenc.c:299
AVPacket::size
int size
Definition: packet.h:525
codec_internal.h
AV_WN32
#define AV_WN32(p, v)
Definition: intreadwrite.h:374
cpu.h
for
for(k=2;k<=8;++k)
Definition: h264pred_template.c:425
options
static const AVOption options[]
Definition: magicyuvenc.c:663
MagicYUVContext::bitslice_size
unsigned bitslice_size
Definition: magicyuvenc.c:74
size
int size
Definition: twinvq_data.h:10344
prediction
static int64_t prediction(int delta, ChannelContext *c)
Definition: misc4.c:78
height
#define height
b2
static double b2(void *priv, double x, double y)
Definition: vf_xfade.c:2036
a
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
Definition: undefined.txt:41
AV_PIX_FMT_YUVA444P
@ AV_PIX_FMT_YUVA444P
planar YUV 4:4:4 32bpp, (1 Cr & Cb sample per 1x1 Y & A samples)
Definition: pixfmt.h:174
MagicYUVContext::slice_height
int slice_height
Definition: magicyuv.c:60
AV_CODEC_CAP_SLICE_THREADS
#define AV_CODEC_CAP_SLICE_THREADS
Codec supports slice-based (or partition-based) multithreading.
Definition: codec.h:114
PTable::value
int value
input value
Definition: magicyuvenc.c:52
magy_encode_close
static av_cold int magy_encode_close(AVCodecContext *avctx)
Definition: magicyuvenc.c:645
lossless_videoencdsp.h
MagicYUVContext::frame_pred
int frame_pred
Definition: magicyuvenc.c:66
i
#define i(width, name, range_min, range_max)
Definition: cbs_h2645.c:256
code
and forward the test the status of outputs and forward it to the corresponding return FFERROR_NOT_READY If the filters stores internally one or a few frame for some it can consider them to be part of the FIFO and delay acknowledging a status change accordingly Example code
Definition: filter_design.txt:178
put_bits_count
static int put_bits_count(PutBitContext *s)
Definition: put_bits.h:80
AV_QSORT
#define AV_QSORT(p, num, type, cmp)
Quicksort This sort is fast, and fully inplace but not stable and it is possible to construct input t...
Definition: qsort.h:33
AVCodecContext::extradata
uint8_t * extradata
some codecs need / can use extradata like Huffman tables.
Definition: avcodec.h:523
encode_plane_slice_raw
static int encode_plane_slice_raw(const uint8_t *src, uint8_t *dst, unsigned dst_size, int width, int height, int prediction)
Definition: magicyuvenc.c:422
bytestream2_skip_p
static av_always_inline void bytestream2_skip_p(PutByteContext *p, unsigned int size)
Definition: bytestream.h:180
a2
#define a2
Definition: regdef.h:48
FFMIN
#define FFMIN(a, b)
Definition: macros.h:49
av_mallocz
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
Definition: mem.c:256
AVCodec::name
const char * name
Name of the codec implementation.
Definition: codec.h:194
PackageMergerList::items
int items[257 *16]
chain of all individual values that make up items A, B, A, B, C, A, B, C, D, C, D,...
Definition: magicyuvenc.c:303
len
int len
Definition: vorbis_enc_data.h:426
AVCodecContext::height
int height
Definition: avcodec.h:618
AVCodecContext::pix_fmt
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
Definition: avcodec.h:657
LLVidEncDSPContext
Definition: lossless_videoencdsp.h:25
av_calloc
void * av_calloc(size_t nmemb, size_t size)
Definition: mem.c:264
LEFT
@ LEFT
Definition: magicyuvenc.c:41
avcodec.h
stride
#define stride
Definition: h264pred_template.c:537
MAGICYUV_EXTRADATA_SIZE
#define MAGICYUV_EXTRADATA_SIZE
Definition: magicyuvenc.c:38
ret
ret
Definition: filter_design.txt:187
MagicYUVContext::decorrelate_buf
uint8_t * decorrelate_buf[2]
Definition: magicyuvenc.c:75
AVClass::class_name
const char * class_name
The name of the class; usually it is the same name as the context structure type to which the AVClass...
Definition: log.h:71
frame
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
Definition: filter_design.txt:264
encode_slice
static int encode_slice(AVCodecContext *avctx, void *tdata, int n, int threadnr)
Definition: magicyuvenc.c:473
prob
#define prob(name, subs,...)
Definition: cbs_vp9.c:325
pos
unsigned int pos
Definition: spdifenc.c:414
encode_plane_slice
static int encode_plane_slice(const uint8_t *src, uint8_t *dst, unsigned dst_size, int width, int height, HuffEntry *he, int prediction)
Definition: magicyuvenc.c:439
HuffEntry::code
uint32_t code
Definition: exr.c:98
AV_INPUT_BUFFER_PADDING_SIZE
#define AV_INPUT_BUFFER_PADDING_SIZE
Definition: defs.h:40
left
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled left
Definition: snow.txt:386
U
#define U(x)
Definition: vpx_arith.h:37
AVCodecContext
main external API structure.
Definition: avcodec.h:445
predict_slice
static int predict_slice(AVCodecContext *avctx, void *tdata, int n, int threadnr)
Definition: magicyuvenc.c:496
magy_encode_init
static av_cold int magy_encode_init(AVCodecContext *avctx)
Definition: magicyuvenc.c:156
PackageMergerList::probability
int probability[514]
probability of each item 3, 8, 18, 46
Definition: magicyuvenc.c:302
AV_PIX_FMT_NONE
@ AV_PIX_FMT_NONE
Definition: pixfmt.h:72
bytestream2_seek_p
static av_always_inline int bytestream2_seek_p(PutByteContext *p, int offset, int whence)
Definition: bytestream.h:236
AV_OPT_TYPE_INT
@ AV_OPT_TYPE_INT
Definition: opt.h:235
HuffEntry
Definition: exr.c:95
temp
else temp
Definition: vf_mcdeint.c:263
AV_PIX_FMT_YUV444P
@ AV_PIX_FMT_YUV444P
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
Definition: pixfmt.h:78
AV_PIX_FMT_GBRP
@ AV_PIX_FMT_GBRP
planar GBR 4:4:4 24bpp
Definition: pixfmt.h:165
AVMEDIA_TYPE_VIDEO
@ AVMEDIA_TYPE_VIDEO
Definition: avutil.h:201
AV_PIX_FMT_YUV422P
@ AV_PIX_FMT_YUV422P
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
Definition: pixfmt.h:77
mem.h
Slice::bitslice
uint8_t * bitslice
Definition: magicyuvenc.c:60
flush_put_bits
static void flush_put_bits(PutBitContext *s)
Pad the end of the output stream with zeros.
Definition: put_bits.h:143
AVCodecContext::codec_tag
unsigned int codec_tag
fourcc (LSB first, so "ABCD" -> ('D'<<24) + ('C'<<16) + ('B'<<8) + 'A').
Definition: avcodec.h:470
FFALIGN
#define FFALIGN(x, a)
Definition: macros.h:78
AVCodecContext::slices
int slices
Number of slices.
Definition: avcodec.h:1047
AVPacket
This structure stores compressed data.
Definition: packet.h:501
AVCodecContext::priv_data
void * priv_data
Definition: avcodec.h:472
MagicYUVContext::planes
int planes
Definition: magicyuv.c:62
av_freep
#define av_freep(p)
Definition: tableprint_vlc.h:34
src
INIT_CLIP pixel * src
Definition: h264pred_template.c:418
gradient_predict
static void gradient_predict(MagicYUVContext *s, const uint8_t *src, uint8_t *dst, ptrdiff_t stride, int width, int height)
Definition: magicyuvenc.c:107
AVCodecContext::width
int width
picture width / height.
Definition: avcodec.h:618
bytestream.h
av_log
#define av_log(a,...)
Definition: tableprint_vlc.h:27
MKTAG
#define MKTAG(a, b, c, d)
Definition: macros.h:55
put_bits.h
AV_OPT_TYPE_CONST
@ AV_OPT_TYPE_CONST
Definition: opt.h:244
AVCodecContext::execute2
int(* execute2)(struct AVCodecContext *c, int(*func)(struct AVCodecContext *c2, void *arg, int jobnr, int threadnr), void *arg2, int *ret, int count)
The codec may call this to execute several independent things.
Definition: avcodec.h:1631
ff_alloc_packet
int ff_alloc_packet(AVCodecContext *avctx, AVPacket *avpkt, int64_t size)
Check AVPacket size and allocate data.
Definition: encode.c:62
magy_huffman_compute_bits
static void magy_huffman_compute_bits(PTable *prob_table, HuffEntry *distincts, uint16_t codes_counts[33], int size, int max_length)
Definition: magicyuvenc.c:313
MagicYUVContext::format
uint8_t format
Definition: magicyuvenc.c:68
min
float min
Definition: vorbis_enc_data.h:429