FFmpeg
magicyuvenc.c
Go to the documentation of this file.
1 /*
2  * MagicYUV encoder
3  * Copyright (c) 2017 Paul B Mahol
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 #include <stdlib.h>
23 #include <string.h>
24 
25 #include "libavutil/cpu.h"
26 #include "libavutil/mem.h"
27 #include "libavutil/opt.h"
28 #include "libavutil/pixdesc.h"
29 #include "libavutil/qsort.h"
30 
31 #include "avcodec.h"
32 #include "bytestream.h"
33 #include "codec_internal.h"
34 #include "encode.h"
35 #include "put_bits.h"
36 #include "lossless_videoencdsp.h"
37 
38 #define MAGICYUV_EXTRADATA_SIZE 32
39 
40 typedef enum Prediction {
41  LEFT = 1,
44 } Prediction;
45 
46 typedef struct HuffEntry {
47  uint8_t len;
48  uint32_t code;
49 } HuffEntry;
50 
51 typedef struct PTable {
52  int value; ///< input value
53  int64_t prob; ///< number of occurences of this value in input
54 } PTable;
55 
56 typedef struct Slice {
57  unsigned pos;
58  unsigned size;
59  uint8_t *slice;
60  uint8_t *bitslice;
61  PTable counts[256];
62 } Slice;
63 
64 typedef struct MagicYUVContext {
65  const AVClass *class;
67  int planes;
68  uint8_t format;
69  int slice_height;
70  int nb_slices;
71  int correlate;
72  int hshift[4];
73  int vshift[4];
74  unsigned bitslice_size;
75  uint8_t *decorrelate_buf[2];
76  Slice *slices;
77  HuffEntry he[4][256];
79  void (*predict)(struct MagicYUVContext *s, const uint8_t *src, uint8_t *dst,
80  ptrdiff_t stride, int width, int height);
82 
84  const uint8_t *src, uint8_t *dst, ptrdiff_t stride,
85  int width, int height)
86 {
87  uint8_t prev = 0;
88  int i, j;
89 
90  for (i = 0; i < width; i++) {
91  dst[i] = src[i] - prev;
92  prev = src[i];
93  }
94  dst += width;
95  src += stride;
96  for (j = 1; j < height; j++) {
97  prev = src[-stride];
98  for (i = 0; i < width; i++) {
99  dst[i] = src[i] - prev;
100  prev = src[i];
101  }
102  dst += width;
103  src += stride;
104  }
105 }
106 
108  const uint8_t *src, uint8_t *dst, ptrdiff_t stride,
109  int width, int height)
110 {
111  int left = 0, top, lefttop;
112  int i, j;
113 
114  for (i = 0; i < width; i++) {
115  dst[i] = src[i] - left;
116  left = src[i];
117  }
118  dst += width;
119  src += stride;
120  for (j = 1; j < height; j++) {
121  top = src[-stride];
122  left = src[0] - top;
123  dst[0] = left;
124  for (i = 1; i < width; i++) {
125  top = src[i - stride];
126  lefttop = src[i - (stride + 1)];
127  left = src[i-1];
128  dst[i] = (src[i] - top) - left + lefttop;
129  }
130  dst += width;
131  src += stride;
132  }
133 }
134 
136  const uint8_t *src, uint8_t *dst, ptrdiff_t stride,
137  int width, int height)
138 {
139  int left = 0, lefttop;
140  int i, j;
141 
142  for (i = 0; i < width; i++) {
143  dst[i] = src[i] - left;
144  left = src[i];
145  }
146  dst += width;
147  src += stride;
148  for (j = 1; j < height; j++) {
149  left = lefttop = src[-stride];
150  s->llvidencdsp.sub_median_pred(dst, src - stride, src, width, &left, &lefttop);
151  dst += width;
152  src += stride;
153  }
154 }
155 
157 {
158  MagicYUVContext *s = avctx->priv_data;
159  PutByteContext pb;
160 
161  switch (avctx->pix_fmt) {
162  case AV_PIX_FMT_GBRP:
163  avctx->codec_tag = MKTAG('M', '8', 'R', 'G');
164  s->correlate = 1;
165  s->format = 0x65;
166  break;
167  case AV_PIX_FMT_GBRAP:
168  avctx->codec_tag = MKTAG('M', '8', 'R', 'A');
169  s->correlate = 1;
170  s->format = 0x66;
171  break;
172  case AV_PIX_FMT_YUV420P:
173  avctx->codec_tag = MKTAG('M', '8', 'Y', '0');
174  s->hshift[1] =
175  s->vshift[1] =
176  s->hshift[2] =
177  s->vshift[2] = 1;
178  s->format = 0x69;
179  break;
180  case AV_PIX_FMT_YUV422P:
181  avctx->codec_tag = MKTAG('M', '8', 'Y', '2');
182  s->hshift[1] =
183  s->hshift[2] = 1;
184  s->format = 0x68;
185  break;
186  case AV_PIX_FMT_YUV444P:
187  avctx->codec_tag = MKTAG('M', '8', 'Y', '4');
188  s->format = 0x67;
189  break;
190  case AV_PIX_FMT_YUVA444P:
191  avctx->codec_tag = MKTAG('M', '8', 'Y', 'A');
192  s->format = 0x6a;
193  break;
194  case AV_PIX_FMT_GRAY8:
195  avctx->codec_tag = MKTAG('M', '8', 'G', '0');
196  s->format = 0x6b;
197  break;
198  }
199 
200  ff_llvidencdsp_init(&s->llvidencdsp);
201 
202  s->planes = av_pix_fmt_count_planes(avctx->pix_fmt);
203 
204  s->nb_slices = (avctx->slices <= 0) ? av_cpu_count() : avctx->slices;
205  s->nb_slices = FFMIN(s->nb_slices, avctx->height >> s->vshift[1]);
206  s->nb_slices = FFMAX(1, s->nb_slices);
207  s->slice_height = FFALIGN((avctx->height + s->nb_slices - 1) / s->nb_slices, 1 << s->vshift[1]);
208  s->nb_slices = (avctx->height + s->slice_height - 1) / s->slice_height;
209  s->slices = av_calloc(s->nb_slices * s->planes, sizeof(*s->slices));
210  if (!s->slices)
211  return AVERROR(ENOMEM);
212 
213  if (s->correlate) {
214  size_t max_align = av_cpu_max_align();
215  size_t aligned_width = FFALIGN(avctx->width, max_align);
216  s->decorrelate_buf[0] = av_calloc(2U * (s->nb_slices * s->slice_height),
217  aligned_width);
218  if (!s->decorrelate_buf[0])
219  return AVERROR(ENOMEM);
220  s->decorrelate_buf[1] = s->decorrelate_buf[0] + (s->nb_slices * s->slice_height) * aligned_width;
221  }
222 
223  s->bitslice_size = avctx->width * s->slice_height + 2;
224  for (int n = 0; n < s->nb_slices; n++) {
225  for (int i = 0; i < s->planes; i++) {
226  Slice *sl = &s->slices[n * s->planes + i];
227 
228  sl->bitslice = av_malloc(s->bitslice_size + AV_INPUT_BUFFER_PADDING_SIZE);
229  sl->slice = av_malloc(avctx->width * (s->slice_height + 2) +
231  if (!sl->slice || !sl->bitslice) {
232  av_log(avctx, AV_LOG_ERROR, "Cannot allocate temporary buffer.\n");
233  return AVERROR(ENOMEM);
234  }
235  }
236  }
237 
238  switch (s->frame_pred) {
239  case LEFT: s->predict = left_predict; break;
240  case GRADIENT: s->predict = gradient_predict; break;
241  case MEDIAN: s->predict = median_predict; break;
242  }
243 
245 
246  avctx->extradata = av_mallocz(avctx->extradata_size +
248 
249  if (!avctx->extradata) {
250  av_log(avctx, AV_LOG_ERROR, "Could not allocate extradata.\n");
251  return AVERROR(ENOMEM);
252  }
253 
255  bytestream2_put_le32(&pb, MKTAG('M', 'A', 'G', 'Y'));
256  bytestream2_put_le32(&pb, 32);
257  bytestream2_put_byte(&pb, 7);
258  bytestream2_put_byte(&pb, s->format);
259  bytestream2_put_byte(&pb, 12);
260  bytestream2_put_byte(&pb, 0);
261 
262  bytestream2_put_byte(&pb, 0);
263  bytestream2_put_byte(&pb, 0);
264  bytestream2_put_byte(&pb, 32);
265  bytestream2_put_byte(&pb, 0);
266 
267  bytestream2_put_le32(&pb, avctx->width);
268  bytestream2_put_le32(&pb, avctx->height);
269  bytestream2_put_le32(&pb, avctx->width);
270  bytestream2_put_le32(&pb, avctx->height);
271 
272  return 0;
273 }
274 
275 static void calculate_codes(HuffEntry *he, uint16_t codes_count[33])
276 {
277  for (unsigned i = 32, nb_codes = 0; i > 0; i--) {
278  uint16_t curr = codes_count[i]; // # of leafs of length i
279  codes_count[i] = nb_codes / 2; // # of non-leaf nodes on level i
280  nb_codes = codes_count[i] + curr; // # of nodes on level i
281  }
282 
283  for (unsigned i = 0; i < 256; i++) {
284  he[i].code = codes_count[he[i].len];
285  codes_count[he[i].len]++;
286  }
287 }
288 
289 static void count_usage(const uint8_t *src, int width,
290  int height, PTable *counts)
291 {
292  for (int j = 0; j < height; j++) {
293  for (int i = 0; i < width; i++)
294  counts[src[i]].prob++;
295  src += width;
296  }
297 }
298 
299 typedef struct PackageMergerList {
300  int nitems; ///< number of items in the list and probability ex. 4
301  int item_idx[515]; ///< index range for each item in items 0, 2, 5, 9, 13
302  int probability[514]; ///< probability of each item 3, 8, 18, 46
303  int items[257 * 16]; ///< chain of all individual values that make up items A, B, A, B, C, A, B, C, D, C, D, D, E
305 
306 static int compare_by_prob(const void *a, const void *b)
307 {
308  const PTable *a2 = a;
309  const PTable *b2 = b;
310  return a2->prob - b2->prob;
311 }
312 
313 static void magy_huffman_compute_bits(PTable *prob_table, HuffEntry *distincts,
314  uint16_t codes_counts[33],
315  int size, int max_length)
316 {
317  PackageMergerList list_a, list_b, *to = &list_a, *from = &list_b, *temp;
318  int times, i, j, k;
319  int nbits[257] = {0};
320  int min;
321 
322  av_assert0(max_length > 0);
323 
324  to->nitems = 0;
325  from->nitems = 0;
326  to->item_idx[0] = 0;
327  from->item_idx[0] = 0;
328  AV_QSORT(prob_table, size, PTable, compare_by_prob);
329 
330  for (times = 0; times <= max_length; times++) {
331  to->nitems = 0;
332  to->item_idx[0] = 0;
333 
334  j = 0;
335  k = 0;
336 
337  if (times < max_length) {
338  i = 0;
339  }
340  while (i < size || j + 1 < from->nitems) {
341  to->nitems++;
342  to->item_idx[to->nitems] = to->item_idx[to->nitems - 1];
343  if (i < size &&
344  (j + 1 >= from->nitems ||
345  prob_table[i].prob <
346  from->probability[j] + from->probability[j + 1])) {
347  to->items[to->item_idx[to->nitems]++] = prob_table[i].value;
348  to->probability[to->nitems - 1] = prob_table[i].prob;
349  i++;
350  } else {
351  for (k = from->item_idx[j]; k < from->item_idx[j + 2]; k++) {
352  to->items[to->item_idx[to->nitems]++] = from->items[k];
353  }
354  to->probability[to->nitems - 1] =
355  from->probability[j] + from->probability[j + 1];
356  j += 2;
357  }
358  }
359  temp = to;
360  to = from;
361  from = temp;
362  }
363 
364  min = (size - 1 < from->nitems) ? size - 1 : from->nitems;
365  for (i = 0; i < from->item_idx[min]; i++) {
366  nbits[from->items[i]]++;
367  }
368 
369  for (i = 0; i < size; i++) {
370  distincts[i].len = nbits[i];
371  codes_counts[nbits[i]]++;
372  }
373 }
374 
375 static int count_plane_slice(AVCodecContext *avctx, int n, int plane)
376 {
377  MagicYUVContext *s = avctx->priv_data;
378  Slice *sl = &s->slices[n * s->planes + plane];
379  const uint8_t *dst = sl->slice;
380  PTable *counts = sl->counts;
381  const int slice_height = s->slice_height;
382  const int last_height = FFMIN(slice_height, avctx->height - n * slice_height);
383  const int height = (n < (s->nb_slices - 1)) ? slice_height : last_height;
384 
385  memset(counts, 0, sizeof(sl->counts));
386 
387  count_usage(dst, AV_CEIL_RSHIFT(avctx->width, s->hshift[plane]),
388  AV_CEIL_RSHIFT(height, s->vshift[plane]), counts);
389 
390  return 0;
391 }
392 
393 static int encode_table(AVCodecContext *avctx,
394  PutBitContext *pb, HuffEntry *he, int plane)
395 {
396  MagicYUVContext *s = avctx->priv_data;
397  PTable counts[256] = { {0} };
398  uint16_t codes_counts[33] = { 0 };
399 
400  for (int n = 0; n < s->nb_slices; n++) {
401  Slice *sl = &s->slices[n * s->planes + plane];
402  PTable *slice_counts = sl->counts;
403 
404  for (int i = 0; i < 256; i++)
405  counts[i].prob = slice_counts[i].prob;
406  }
407 
408  for (int i = 0; i < 256; i++) {
409  counts[i].prob++;
410  counts[i].value = i;
411  }
412 
413  magy_huffman_compute_bits(counts, he, codes_counts, 256, 12);
414 
415  calculate_codes(he, codes_counts);
416 
417  for (int i = 0; i < 256; i++) {
418  put_bits(pb, 1, 0);
419  put_bits(pb, 7, he[i].len);
420  }
421 
422  return 0;
423 }
424 
425 static int encode_plane_slice_raw(const uint8_t *src, uint8_t *dst, unsigned dst_size,
426  int width, int height, int prediction)
427 {
428  unsigned count = width * height;
429 
430  dst[0] = 1;
431  dst[1] = prediction;
432 
433  memcpy(dst + 2, src, count);
434  count += 2;
435  AV_WN32(dst + count, 0);
436  if (count & 3)
437  count += 4 - (count & 3);
438 
439  return count;
440 }
441 
442 static int encode_plane_slice(const uint8_t *src, uint8_t *dst, unsigned dst_size,
443  int width, int height, HuffEntry *he, int prediction)
444 {
445  const uint8_t *osrc = src;
446  PutBitContext pb;
447  int count;
448 
449  init_put_bits(&pb, dst, dst_size);
450 
451  put_bits(&pb, 8, 0);
452  put_bits(&pb, 8, prediction);
453 
454  for (int j = 0; j < height; j++) {
455  for (int i = 0; i < width; i++) {
456  const int idx = src[i];
457  const int len = he[idx].len;
458  if (put_bits_left(&pb) < len + 32)
459  return encode_plane_slice_raw(osrc, dst, dst_size, width, height, prediction);
460  put_bits(&pb, len, he[idx].code);
461  }
462 
463  src += width;
464  }
465 
466  count = put_bits_count(&pb) & 0x1F;
467 
468  if (count)
469  put_bits(&pb, 32 - count, 0);
470 
471  flush_put_bits(&pb);
472 
473  return put_bytes_output(&pb);
474 }
475 
476 static int encode_slice(AVCodecContext *avctx, void *tdata,
477  int n, int threadnr)
478 {
479  MagicYUVContext *s = avctx->priv_data;
480  const int slice_height = s->slice_height;
481  const int last_height = FFMIN(slice_height, avctx->height - n * slice_height);
482  const int height = (n < (s->nb_slices - 1)) ? slice_height : last_height;
483 
484  for (int i = 0; i < s->planes; i++) {
485  Slice *sl = &s->slices[n * s->planes + i];
486 
487  sl->size =
489  sl->bitslice,
490  s->bitslice_size,
491  AV_CEIL_RSHIFT(avctx->width, s->hshift[i]),
492  AV_CEIL_RSHIFT(height, s->vshift[i]),
493  s->he[i], s->frame_pred);
494  }
495 
496  return 0;
497 }
498 
499 static int predict_slice(AVCodecContext *avctx, void *tdata,
500  int n, int threadnr)
501 {
502  size_t max_align = av_cpu_max_align();
503  const int aligned_width = FFALIGN(avctx->width, max_align);
504  MagicYUVContext *s = avctx->priv_data;
505  const int slice_height = s->slice_height;
506  const int last_height = FFMIN(slice_height, avctx->height - n * slice_height);
507  const int height = (n < (s->nb_slices - 1)) ? slice_height : last_height;
508  const int width = avctx->width;
509  AVFrame *frame = tdata;
510 
511  if (s->correlate) {
512  uint8_t *decorrelated[2] = { s->decorrelate_buf[0] + n * slice_height * aligned_width,
513  s->decorrelate_buf[1] + n * slice_height * aligned_width };
514  const int decorrelate_linesize = aligned_width;
515  const uint8_t *const data[4] = { decorrelated[0], frame->data[0] + n * slice_height * frame->linesize[0],
516  decorrelated[1], s->planes == 4 ? frame->data[3] + n * slice_height * frame->linesize[3] : NULL };
517  const uint8_t *r, *g, *b;
518  const int linesize[4] = { decorrelate_linesize, frame->linesize[0],
519  decorrelate_linesize, frame->linesize[3] };
520 
521  g = frame->data[0] + n * slice_height * frame->linesize[0];
522  b = frame->data[1] + n * slice_height * frame->linesize[1];
523  r = frame->data[2] + n * slice_height * frame->linesize[2];
524 
525  for (int i = 0; i < height; i++) {
526  s->llvidencdsp.diff_bytes(decorrelated[0], b, g, width);
527  s->llvidencdsp.diff_bytes(decorrelated[1], r, g, width);
528  g += frame->linesize[0];
529  b += frame->linesize[1];
530  r += frame->linesize[2];
531  decorrelated[0] += decorrelate_linesize;
532  decorrelated[1] += decorrelate_linesize;
533  }
534 
535  for (int i = 0; i < s->planes; i++) {
536  Slice *sl = &s->slices[n * s->planes + i];
537 
538  s->predict(s, data[i], sl->slice, linesize[i],
539  frame->width, height);
540  }
541  } else {
542  for (int i = 0; i < s->planes; i++) {
543  Slice *sl = &s->slices[n * s->planes + i];
544 
545  s->predict(s, frame->data[i] + n * (slice_height >> s->vshift[i]) * frame->linesize[i],
546  sl->slice,
547  frame->linesize[i],
548  AV_CEIL_RSHIFT(frame->width, s->hshift[i]),
549  AV_CEIL_RSHIFT(height, s->vshift[i]));
550  }
551  }
552 
553  for (int p = 0; p < s->planes; p++)
554  count_plane_slice(avctx, n, p);
555 
556  return 0;
557 }
558 
560  const AVFrame *frame, int *got_packet)
561 {
562  MagicYUVContext *s = avctx->priv_data;
563  const int width = avctx->width, height = avctx->height;
564  const int slice_height = s->slice_height;
565  unsigned tables_size;
566  PutBitContext pbit;
567  PutByteContext pb;
568  int pos, ret = 0;
569 
570  ret = ff_alloc_packet(avctx, pkt, (256 + 4 * s->nb_slices + width * height) *
571  s->planes + 256);
572  if (ret < 0)
573  return ret;
574 
576  bytestream2_put_le32(&pb, MKTAG('M', 'A', 'G', 'Y'));
577  bytestream2_put_le32(&pb, 32); // header size
578  bytestream2_put_byte(&pb, 7); // version
579  bytestream2_put_byte(&pb, s->format);
580  bytestream2_put_byte(&pb, 12); // max huffman length
581  bytestream2_put_byte(&pb, 0);
582 
583  bytestream2_put_byte(&pb, 0);
584  bytestream2_put_byte(&pb, 0);
585  bytestream2_put_byte(&pb, 32); // coder type
586  bytestream2_put_byte(&pb, 0);
587 
588  bytestream2_put_le32(&pb, avctx->width);
589  bytestream2_put_le32(&pb, avctx->height);
590  bytestream2_put_le32(&pb, avctx->width);
591  bytestream2_put_le32(&pb, slice_height);
592  bytestream2_put_le32(&pb, 0);
593 
594  for (int i = 0; i < s->planes; i++) {
595  bytestream2_put_le32(&pb, 0);
596  for (int j = 1; j < s->nb_slices; j++)
597  bytestream2_put_le32(&pb, 0);
598  }
599 
600  bytestream2_put_byte(&pb, s->planes);
601 
602  for (int i = 0; i < s->planes; i++) {
603  for (int n = 0; n < s->nb_slices; n++)
604  bytestream2_put_byte(&pb, n * s->planes + i);
605  }
606 
607  avctx->execute2(avctx, predict_slice, (void *)frame, NULL, s->nb_slices);
608 
610 
611  for (int i = 0; i < s->planes; i++)
612  encode_table(avctx, &pbit, s->he[i], i);
613 
614  tables_size = put_bytes_count(&pbit, 1);
615  bytestream2_skip_p(&pb, tables_size);
616 
617  avctx->execute2(avctx, encode_slice, NULL, NULL, s->nb_slices);
618 
619  for (int n = 0; n < s->nb_slices; n++) {
620  for (int i = 0; i < s->planes; i++) {
621  Slice *sl = &s->slices[n * s->planes + i];
622 
623  sl->pos = bytestream2_tell_p(&pb);
624 
625  bytestream2_put_buffer(&pb, sl->bitslice, sl->size);
626  }
627  }
628 
629  pos = bytestream2_tell_p(&pb);
630  bytestream2_seek_p(&pb, 32, SEEK_SET);
631  bytestream2_put_le32(&pb, s->slices[0].pos - 32);
632  for (int i = 0; i < s->planes; i++) {
633  for (int n = 0; n < s->nb_slices; n++) {
634  Slice *sl = &s->slices[n * s->planes + i];
635 
636  bytestream2_put_le32(&pb, sl->pos - 32);
637  }
638  }
639  bytestream2_seek_p(&pb, pos, SEEK_SET);
640 
641  pkt->size = bytestream2_tell_p(&pb);
642 
643  *got_packet = 1;
644 
645  return 0;
646 }
647 
649 {
650  MagicYUVContext *s = avctx->priv_data;
651 
652  for (int i = 0; i < s->planes * s->nb_slices && s->slices; i++) {
653  Slice *sl = &s->slices[i];
654 
655  av_freep(&sl->slice);
656  av_freep(&sl->bitslice);
657  }
658  av_freep(&s->slices);
659  av_freep(&s->decorrelate_buf);
660 
661  return 0;
662 }
663 
664 #define OFFSET(x) offsetof(MagicYUVContext, x)
665 #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
666 static const AVOption options[] = {
667  { "pred", "Prediction method", OFFSET(frame_pred), AV_OPT_TYPE_INT, {.i64=LEFT}, LEFT, MEDIAN, VE, .unit = "pred" },
668  { "left", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = LEFT }, 0, 0, VE, .unit = "pred" },
669  { "gradient", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = GRADIENT }, 0, 0, VE, .unit = "pred" },
670  { "median", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = MEDIAN }, 0, 0, VE, .unit = "pred" },
671  { NULL},
672 };
673 
674 static const AVClass magicyuv_class = {
675  .class_name = "magicyuv",
676  .item_name = av_default_item_name,
677  .option = options,
678  .version = LIBAVUTIL_VERSION_INT,
679 };
680 
682  .p.name = "magicyuv",
683  CODEC_LONG_NAME("MagicYUV video"),
684  .p.type = AVMEDIA_TYPE_VIDEO,
685  .p.id = AV_CODEC_ID_MAGICYUV,
686  .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS |
689  .priv_data_size = sizeof(MagicYUVContext),
690  .p.priv_class = &magicyuv_class,
691  .init = magy_encode_init,
692  .close = magy_encode_close,
694  .p.pix_fmts = (const enum AVPixelFormat[]) {
698  },
699  .color_ranges = AVCOL_RANGE_MPEG, /* FIXME: implement tagging */
700  .caps_internal = FF_CODEC_CAP_INIT_CLEANUP,
701 };
GRADIENT
@ GRADIENT
Definition: magicyuvenc.c:42
VE
#define VE
Definition: magicyuvenc.c:665
AVPixelFormat
AVPixelFormat
Pixel format.
Definition: pixfmt.h:71
FF_CODEC_CAP_INIT_CLEANUP
#define FF_CODEC_CAP_INIT_CLEANUP
The codec allows calling the close function for deallocation even if the init function returned a fai...
Definition: codec_internal.h:43
r
const char * r
Definition: vf_curves.c:127
AVERROR
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
opt.h
Prediction
Definition: aptx.h:70
count_usage
static void count_usage(const uint8_t *src, int width, int height, PTable *counts)
Definition: magicyuvenc.c:289
put_bytes_output
static int put_bytes_output(const PutBitContext *s)
Definition: put_bits.h:89
HuffEntry::len
uint8_t len
Definition: exr.c:96
MagicYUVContext::nb_slices
int nb_slices
Definition: magicyuv.c:61
ff_magicyuv_encoder
const FFCodec ff_magicyuv_encoder
Definition: magicyuvenc.c:681
compare_by_prob
static int compare_by_prob(const void *a, const void *b)
Definition: magicyuvenc.c:306
MagicYUVContext::hshift
int hshift[4]
Definition: magicyuv.c:68
left_predict
static void left_predict(MagicYUVContext *s, const uint8_t *src, uint8_t *dst, ptrdiff_t stride, int width, int height)
Definition: magicyuvenc.c:83
int64_t
long long int64_t
Definition: coverity.c:34
init_put_bits
static void init_put_bits(PutBitContext *s, uint8_t *buffer, int buffer_size)
Initialize the PutBitContext s.
Definition: put_bits.h:62
AVFrame
This structure describes decoded (raw) audio or video data.
Definition: frame.h:389
put_bits
static void put_bits(Jpeg2000EncoderContext *s, int val, int n)
put n times val bit
Definition: j2kenc.c:223
pixdesc.h
Slice::slice
uint8_t * slice
Definition: magicyuvenc.c:59
AVPacket::data
uint8_t * data
Definition: packet.h:539
AVOption
AVOption.
Definition: opt.h:429
encode.h
b
#define b
Definition: input.c:41
put_bytes_count
static int put_bytes_count(const PutBitContext *s, int round_up)
Definition: put_bits.h:100
PackageMergerList::item_idx
int item_idx[515]
index range for each item in items 0, 2, 5, 9, 13
Definition: magicyuvenc.c:301
bytestream2_tell_p
static av_always_inline int bytestream2_tell_p(PutByteContext *p)
Definition: bytestream.h:197
data
const char data[16]
Definition: mxf.c:149
FFCodec
Definition: codec_internal.h:127
FFMAX
#define FFMAX(a, b)
Definition: macros.h:47
Slice::size
uint32_t size
Definition: magicyuv.c:42
av_malloc
#define av_malloc(s)
Definition: tableprint_vlc.h:30
MagicYUVContext
Definition: magicyuv.c:56
av_pix_fmt_count_planes
int av_pix_fmt_count_planes(enum AVPixelFormat pix_fmt)
Definition: pixdesc.c:3210
MagicYUVContext::llvidencdsp
LLVidEncDSPContext llvidencdsp
Definition: magicyuvenc.c:78
FFCodec::p
AVCodec p
The public AVCodec.
Definition: codec_internal.h:131
AV_PIX_FMT_GBRAP
@ AV_PIX_FMT_GBRAP
planar GBRA 4:4:4:4 32bpp
Definition: pixfmt.h:212
magy_encode_frame
static int magy_encode_frame(AVCodecContext *avctx, AVPacket *pkt, const AVFrame *frame, int *got_packet)
Definition: magicyuvenc.c:559
calculate_codes
static void calculate_codes(HuffEntry *he, uint16_t codes_count[33])
Definition: magicyuvenc.c:275
count_plane_slice
static int count_plane_slice(AVCodecContext *avctx, int n, int plane)
Definition: magicyuvenc.c:375
put_bits_left
static int put_bits_left(PutBitContext *s)
Definition: put_bits.h:125
MagicYUVContext::predict
void(* predict)(struct MagicYUVContext *s, const uint8_t *src, uint8_t *dst, ptrdiff_t stride, int width, int height)
Definition: magicyuvenc.c:79
a2
static double a2(void *priv, double x, double y)
Definition: vf_xfade.c:2030
FF_CODEC_ENCODE_CB
#define FF_CODEC_ENCODE_CB(func)
Definition: codec_internal.h:320
encode_table
static int encode_table(AVCodecContext *avctx, PutBitContext *pb, HuffEntry *he, int plane)
Definition: magicyuvenc.c:393
magicyuv_class
static const AVClass magicyuv_class
Definition: magicyuvenc.c:674
OFFSET
#define OFFSET(x)
Definition: magicyuvenc.c:664
pkt
AVPacket * pkt
Definition: movenc.c:60
AV_LOG_ERROR
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:209
bytestream2_get_bytes_left_p
static av_always_inline int bytestream2_get_bytes_left_p(PutByteContext *p)
Definition: bytestream.h:163
av_cold
#define av_cold
Definition: attributes.h:90
bytestream2_init_writer
static av_always_inline void bytestream2_init_writer(PutByteContext *p, uint8_t *buf, int buf_size)
Definition: bytestream.h:147
AVCodecContext::extradata_size
int extradata_size
Definition: avcodec.h:530
MEDIAN
@ MEDIAN
Definition: magicyuvenc.c:43
Prediction
Prediction
Definition: magicyuvenc.c:40
Slice::size
unsigned size
Definition: magicyuvenc.c:58
s
#define s(width, name)
Definition: cbs_vp9.c:198
AV_CEIL_RSHIFT
#define AV_CEIL_RSHIFT(a, b)
Definition: common.h:60
g
const char * g
Definition: vf_curves.c:128
PackageMergerList::nitems
int nitems
number of items in the list and probability ex. 4
Definition: magicyuvenc.c:300
bytestream2_put_buffer
static av_always_inline unsigned int bytestream2_put_buffer(PutByteContext *p, const uint8_t *src, unsigned int size)
Definition: bytestream.h:286
AV_CODEC_CAP_ENCODER_REORDERED_OPAQUE
#define AV_CODEC_CAP_ENCODER_REORDERED_OPAQUE
This encoder can reorder user opaque values from input AVFrames and return them with corresponding ou...
Definition: codec.h:159
from
const char * from
Definition: jacosubdec.c:66
to
const char * to
Definition: webvttdec.c:35
av_assert0
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:40
Slice
Definition: magicyuv.c:40
AV_PIX_FMT_YUV420P
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
Definition: pixfmt.h:73
PTable::prob
int64_t prob
number of occurences of this value in input
Definition: magicyuvenc.c:53
median_predict
static void median_predict(MagicYUVContext *s, const uint8_t *src, uint8_t *dst, ptrdiff_t stride, int width, int height)
Definition: magicyuvenc.c:135
PutBitContext
Definition: put_bits.h:50
CODEC_LONG_NAME
#define CODEC_LONG_NAME(str)
Definition: codec_internal.h:296
AV_CODEC_CAP_FRAME_THREADS
#define AV_CODEC_CAP_FRAME_THREADS
Codec supports frame-level multithreading.
Definition: codec.h:110
LIBAVUTIL_VERSION_INT
#define LIBAVUTIL_VERSION_INT
Definition: version.h:85
MagicYUVContext::vshift
int vshift[4]
Definition: magicyuv.c:69
AVClass
Describe the class of an AVClass context structure.
Definition: log.h:75
PTable
Used to assign a occurrence count or "probability" to an input value.
Definition: magicyuvenc.c:51
NULL
#define NULL
Definition: coverity.c:32
av_default_item_name
const char * av_default_item_name(void *ptr)
Return the context name.
Definition: log.c:237
options
Definition: swscale.c:42
av_cpu_max_align
size_t av_cpu_max_align(void)
Get the maximum data alignment that may be required by FFmpeg.
Definition: cpu.c:280
AV_PIX_FMT_GRAY8
@ AV_PIX_FMT_GRAY8
Y , 8bpp.
Definition: pixfmt.h:81
MagicYUVContext::slices
Slice * slices[4]
Definition: magicyuv.c:70
MagicYUVContext::correlate
int correlate
Definition: magicyuvenc.c:71
AV_CODEC_ID_MAGICYUV
@ AV_CODEC_ID_MAGICYUV
Definition: codec_id.h:274
Slice::pos
unsigned pos
Definition: magicyuvenc.c:57
ff_llvidencdsp_init
av_cold void ff_llvidencdsp_init(LLVidEncDSPContext *c)
Definition: lossless_videoencdsp.c:100
MagicYUVContext::he
HuffEntry he[1<< 14]
Definition: magicyuv.c:77
PutByteContext
Definition: bytestream.h:37
av_cpu_count
int av_cpu_count(void)
Definition: cpu.c:221
qsort.h
Slice::counts
PTable counts[256]
Definition: magicyuvenc.c:61
AV_CODEC_CAP_DR1
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() or get_encode_buffer() for allocating buffers and supports custom allocators.
Definition: codec.h:52
PackageMergerList
Used to store intermediate lists in the package merge algorithm.
Definition: magicyuvenc.c:299
AVPacket::size
int size
Definition: packet.h:540
height
#define height
Definition: dsp.h:85
codec_internal.h
AV_WN32
#define AV_WN32(p, v)
Definition: intreadwrite.h:372
dst
uint8_t ptrdiff_t const uint8_t ptrdiff_t int intptr_t intptr_t int int16_t * dst
Definition: dsp.h:83
cpu.h
for
for(k=2;k<=8;++k)
Definition: h264pred_template.c:425
options
static const AVOption options[]
Definition: magicyuvenc.c:666
MagicYUVContext::bitslice_size
unsigned bitslice_size
Definition: magicyuvenc.c:74
size
int size
Definition: twinvq_data.h:10344
prediction
static int64_t prediction(int delta, ChannelContext *c)
Definition: misc4.c:78
b2
static double b2(void *priv, double x, double y)
Definition: vf_xfade.c:2035
a
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
Definition: undefined.txt:41
AV_PIX_FMT_YUVA444P
@ AV_PIX_FMT_YUVA444P
planar YUV 4:4:4 32bpp, (1 Cr & Cb sample per 1x1 Y & A samples)
Definition: pixfmt.h:174
MagicYUVContext::slice_height
int slice_height
Definition: magicyuv.c:60
AV_CODEC_CAP_SLICE_THREADS
#define AV_CODEC_CAP_SLICE_THREADS
Codec supports slice-based (or partition-based) multithreading.
Definition: codec.h:114
PTable::value
int value
input value
Definition: magicyuvenc.c:52
magy_encode_close
static av_cold int magy_encode_close(AVCodecContext *avctx)
Definition: magicyuvenc.c:648
lossless_videoencdsp.h
MagicYUVContext::frame_pred
int frame_pred
Definition: magicyuvenc.c:66
i
#define i(width, name, range_min, range_max)
Definition: cbs_h2645.c:256
code
and forward the test the status of outputs and forward it to the corresponding return FFERROR_NOT_READY If the filters stores internally one or a few frame for some it can consider them to be part of the FIFO and delay acknowledging a status change accordingly Example code
Definition: filter_design.txt:178
put_bits_count
static int put_bits_count(PutBitContext *s)
Definition: put_bits.h:80
AV_QSORT
#define AV_QSORT(p, num, type, cmp)
Quicksort This sort is fast, and fully inplace but not stable and it is possible to construct input t...
Definition: qsort.h:33
AVCodecContext::extradata
uint8_t * extradata
some codecs need / can use extradata like Huffman tables.
Definition: avcodec.h:529
encode_plane_slice_raw
static int encode_plane_slice_raw(const uint8_t *src, uint8_t *dst, unsigned dst_size, int width, int height, int prediction)
Definition: magicyuvenc.c:425
bytestream2_skip_p
static av_always_inline void bytestream2_skip_p(PutByteContext *p, unsigned int size)
Definition: bytestream.h:180
FFMIN
#define FFMIN(a, b)
Definition: macros.h:49
av_mallocz
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
Definition: mem.c:256
AVCodec::name
const char * name
Name of the codec implementation.
Definition: codec.h:194
PackageMergerList::items
int items[257 *16]
chain of all individual values that make up items A, B, A, B, C, A, B, C, D, C, D,...
Definition: magicyuvenc.c:303
len
int len
Definition: vorbis_enc_data.h:426
AVCodecContext::height
int height
Definition: avcodec.h:624
AVCodecContext::pix_fmt
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
Definition: avcodec.h:663
LLVidEncDSPContext
Definition: lossless_videoencdsp.h:25
AVCOL_RANGE_MPEG
@ AVCOL_RANGE_MPEG
Narrow or limited range content.
Definition: pixfmt.h:700
av_calloc
void * av_calloc(size_t nmemb, size_t size)
Definition: mem.c:264
LEFT
@ LEFT
Definition: magicyuvenc.c:41
avcodec.h
stride
#define stride
Definition: h264pred_template.c:537
MAGICYUV_EXTRADATA_SIZE
#define MAGICYUV_EXTRADATA_SIZE
Definition: magicyuvenc.c:38
ret
ret
Definition: filter_design.txt:187
MagicYUVContext::decorrelate_buf
uint8_t * decorrelate_buf[2]
Definition: magicyuvenc.c:75
AVClass::class_name
const char * class_name
The name of the class; usually it is the same name as the context structure type to which the AVClass...
Definition: log.h:80
frame
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
Definition: filter_design.txt:264
encode_slice
static int encode_slice(AVCodecContext *avctx, void *tdata, int n, int threadnr)
Definition: magicyuvenc.c:476
prob
#define prob(name, subs,...)
Definition: cbs_vp9.c:325
pos
unsigned int pos
Definition: spdifenc.c:414
encode_plane_slice
static int encode_plane_slice(const uint8_t *src, uint8_t *dst, unsigned dst_size, int width, int height, HuffEntry *he, int prediction)
Definition: magicyuvenc.c:442
HuffEntry::code
uint32_t code
Definition: exr.c:98
AV_INPUT_BUFFER_PADDING_SIZE
#define AV_INPUT_BUFFER_PADDING_SIZE
Definition: defs.h:40
left
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled left
Definition: snow.txt:386
U
#define U(x)
Definition: vpx_arith.h:37
AVCodecContext
main external API structure.
Definition: avcodec.h:451
predict_slice
static int predict_slice(AVCodecContext *avctx, void *tdata, int n, int threadnr)
Definition: magicyuvenc.c:499
magy_encode_init
static av_cold int magy_encode_init(AVCodecContext *avctx)
Definition: magicyuvenc.c:156
PackageMergerList::probability
int probability[514]
probability of each item 3, 8, 18, 46
Definition: magicyuvenc.c:302
AV_PIX_FMT_NONE
@ AV_PIX_FMT_NONE
Definition: pixfmt.h:72
bytestream2_seek_p
static av_always_inline int bytestream2_seek_p(PutByteContext *p, int offset, int whence)
Definition: bytestream.h:236
AV_OPT_TYPE_INT
@ AV_OPT_TYPE_INT
Underlying C type is int.
Definition: opt.h:259
HuffEntry
Definition: exr.c:95
temp
else temp
Definition: vf_mcdeint.c:263
AV_PIX_FMT_YUV444P
@ AV_PIX_FMT_YUV444P
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
Definition: pixfmt.h:78
AV_PIX_FMT_GBRP
@ AV_PIX_FMT_GBRP
planar GBR 4:4:4 24bpp
Definition: pixfmt.h:165
AVMEDIA_TYPE_VIDEO
@ AVMEDIA_TYPE_VIDEO
Definition: avutil.h:201
AV_PIX_FMT_YUV422P
@ AV_PIX_FMT_YUV422P
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
Definition: pixfmt.h:77
mem.h
Slice::bitslice
uint8_t * bitslice
Definition: magicyuvenc.c:60
flush_put_bits
static void flush_put_bits(PutBitContext *s)
Pad the end of the output stream with zeros.
Definition: put_bits.h:143
AVCodecContext::codec_tag
unsigned int codec_tag
fourcc (LSB first, so "ABCD" -> ('D'<<24) + ('C'<<16) + ('B'<<8) + 'A').
Definition: avcodec.h:476
FFALIGN
#define FFALIGN(x, a)
Definition: macros.h:78
AVCodecContext::slices
int slices
Number of slices.
Definition: avcodec.h:1053
AVPacket
This structure stores compressed data.
Definition: packet.h:516
AVCodecContext::priv_data
void * priv_data
Definition: avcodec.h:478
MagicYUVContext::planes
int planes
Definition: magicyuv.c:62
av_freep
#define av_freep(p)
Definition: tableprint_vlc.h:34
gradient_predict
static void gradient_predict(MagicYUVContext *s, const uint8_t *src, uint8_t *dst, ptrdiff_t stride, int width, int height)
Definition: magicyuvenc.c:107
AVCodecContext::width
int width
picture width / height.
Definition: avcodec.h:624
bytestream.h
av_log
#define av_log(a,...)
Definition: tableprint_vlc.h:27
MKTAG
#define MKTAG(a, b, c, d)
Definition: macros.h:55
width
#define width
Definition: dsp.h:85
put_bits.h
AV_OPT_TYPE_CONST
@ AV_OPT_TYPE_CONST
Special option type for declaring named constants.
Definition: opt.h:299
AVCodecContext::execute2
int(* execute2)(struct AVCodecContext *c, int(*func)(struct AVCodecContext *c2, void *arg, int jobnr, int threadnr), void *arg2, int *ret, int count)
The codec may call this to execute several independent things.
Definition: avcodec.h:1642
ff_alloc_packet
int ff_alloc_packet(AVCodecContext *avctx, AVPacket *avpkt, int64_t size)
Check AVPacket size and allocate data.
Definition: encode.c:62
src
#define src
Definition: vp8dsp.c:248
magy_huffman_compute_bits
static void magy_huffman_compute_bits(PTable *prob_table, HuffEntry *distincts, uint16_t codes_counts[33], int size, int max_length)
Definition: magicyuvenc.c:313
MagicYUVContext::format
uint8_t format
Definition: magicyuvenc.c:68
min
float min
Definition: vorbis_enc_data.h:429