Go to the documentation of this file.
97 #define MAX_VLC_SIZE 864
103 int counts[17] = {0};
110 codes[0] = counts[0] = 0;
111 for (
int i = 0;
i < 17;
i++)
112 codes[
i+1] = (codes[
i] + counts[
i]) << 1;
124 for (
int i = 0;
i < count;
i++) {
125 for (
int j = 0; j < 2; j++) {
138 for (
int i = 0;
i < 7;
i++)
139 for (
int j = 0; j < 4; j++)
142 for (
int i = 0;
i < 7;
i++)
143 for (
int j = 0; j < 3; j++)
144 for (
int k = 0; k < 4; k++)
160 uint8_t cu_split[1+4+16+64];
162 uint8_t coded_blk[64];
164 uint8_t avg_buffer[64*64 + 32*32*2];
165 uint8_t * avg_data[3];
233 if (
s->nb_progress < count) {
238 memset(
s->progress +
s->nb_progress, 0, (count -
s->nb_progress) *
sizeof(*
s->progress));
239 for (
int i =
s->nb_progress;
i < count;
i++) {
243 s->nb_progress =
i + 1;
247 for (
int i = 0;
i < count;
i++)
264 for (
int i = 0;
i < 3;
i++) {
266 if (!
s->last_frame[
i])
279 if (
width !=
s->avctx->width ||
height !=
s->avctx->height) {
283 for (
int i = 0;
i < 3;
i++)
289 if (
s->avctx->width <= 64 ||
s->avctx->height <= 64)
290 av_log(
s->avctx,
AV_LOG_WARNING,
"unable to faithfully reproduce emulated edges; expect visual artefacts\n");
296 s->cu_width = (
width + 63) >> 6;
297 s->cu_height = (
height + 63) >> 6;
299 s->pu_stride =
s->cu_width << 3;
300 s->blk_stride =
s->cu_width << 4;
311 for (
int j = 0; j <
s->cu_height << 4; j++)
312 for (
int i = 0;
i <
s->cu_width << 4;
i++)
318 s->dblk_stride =
s->awidth >> 2;
320 size =
s->dblk_stride * (
s->aheight >> 2);
328 memset(
s->top_str, 0,
size);
329 memset(
s->left_str, 0,
size);
381 for (
int i = 0;
i < count;
i++)
382 for (
int j = 0; j < 2 <<
i; j++)
393 int last_size, sum = 0;
395 for (
int i = 0;
i <
s->cu_height;
i++)
398 s->slice[0].size = last_size = sum =
get_bits(gb, nbits);
400 for (
int i = 1;
i <
s->cu_height;
i++) {
402 if (
s->slice[
i].sign)
408 s->slice[
i].size = last_size;
409 sum +=
s->slice[
i].size;
429 return ypos + dy && xpos + dx +
size <=
s->awidth;
434 return xpos + dx && ypos + dy +
size <=
s->aheight;
483 memset(
i->t, 0x80,
sizeof(
i->t));
484 memset(
i->l, 0x80,
sizeof(
i->l));
485 i->has_t =
i->has_tr =
i->has_l =
i->has_ld = 0;
497 if (cu->
ypos + yoff > 0) {
509 if (cu->
xpos + xoff > 0)
513 if (cu->
xpos + xoff > 0) {
516 for (
int y = 0; y <
size; y++)
522 for (
int y =
size; y <
size * 2; y++)
527 if (cu->
ypos + yoff > 0)
534 int lastl = p->
l[
size + 1];
535 int lastt = p->
t[
size + 1];
536 int tmp1[64], tmp2[64];
537 int top_ref[64], left_ref[64];
540 for (
int i = 0;
i <
size;
i++) {
541 tmp1[
i] = lastl - p->
t[
i + 1];
542 tmp2[
i] = lastt - p->
l[
i + 1];
546 for (
int i = 0;
i <
size;
i++) {
547 top_ref[
i] = p->
t[
i + 1] << (
shift - 1);
548 left_ref[
i] = p->
l[
i + 1] << (
shift - 1);
551 for (
int y = 0; y <
size; y++) {
553 int sum = left_ref[y] +
size;
554 for (
int x = 0; x <
size; x++) {
555 int v = tmp1[x] + top_ref[x];
572 for (
int x = 0; x <
size; x++)
575 for (
int y = 0; y <
size; y++)
583 for (
int y = 0; y <
size; y++)
587 dst[0] = (p->
t[1] + p->
l[1] + 2 *
dst[0] + 2) >> 2;
588 for (
int x = 1; x <
size; x++)
589 dst[x] = (p->
t[x + 1] + 3 *
dst[x] + 2) >> 2;
590 for (
int y = 1; y <
size; y++)
598 for (
int i = 1;
i <
size - 1;
i++)
606 int sum = (v0 << 5) + (1 << (5 - 1));
607 for (
int i = 0;
i <
size;
i++) {
616 for (
int x = 0; x <
size; x++) {
619 off = (sum >> 5) + 32;
622 for (
int y = 0; y <
size; y++)
625 for (
int y = 0; y <
size; y++) {
626 int a =
src[off + y];
627 int b =
src[off + y + 1];
628 dst[y*
stride + x] = ((32 - frac) *
a + frac *
b + 16) >> 5;
637 for (
int y = 0; y <
size; y++) {
640 off = (sum >> 5) + 32;
645 for (
int x = 0; x <
size; x++) {
646 int a =
src[off + x];
647 int b =
src[off + x + 1];
648 dst[y*
stride + x] = ((32 - frac) *
a + frac *
b + 16) >> 5;
656 uint8_t filtered1[96], filtered2[96];
660 }
else if (imode == 1) {
662 }
else if (imode <= 9) {
664 int add_size = (
size * ang_weight + 31) >> 5;
672 }
else if (imode == 10) {
677 for (
int y = 0; y <
size; y++)
678 for (
int x = 0; x <
size; x++)
682 for (
int x = 0; x <
size; x++)
685 }
else if (imode <= 17) {
688 int add_size = (
size * ang_weight + 31) >> 5;
690 memcpy(filtered1 + 32 - 1, p->
l,
size + 1);
691 memcpy(filtered2 + 32 - 1, p->
t,
size + 1);
693 filtered1[32 - 1] = p->
l[0];
695 filtered2[32 - 1] = p->
t[0];
700 for (
int i = 1;
i < add_size;
i++) {
702 filtered1[32 - 1 -
i] = filtered2[32 - 1 + (sum >> 8)];
706 }
else if (imode <= 25) {
709 int add_size = (
size * ang_weight + 31) >> 5;
711 memcpy(filtered1 + 32 - 1, p->
t,
size + 1);
712 memcpy(filtered2 + 32 - 1, p->
l,
size + 1);
714 filtered1[32 - 1] = p->
t[0];
716 filtered2[32 - 1] = p->
l[0];
721 for (
int i = 1;
i < add_size;
i++) {
723 filtered1[32 - 1 -
i] = filtered2[32 - 1 + (sum >> 8)];
727 }
else if (imode == 26) {
736 for (
int y = 0; y <
size; y++)
739 }
else if (imode <= 34) {
741 int add_size = (
size * ang_weight + 31) >> 5;
764 #define MK_UNIQUELIST(name, type, max_size) \
766 type list[max_size]; \
768 } unique_list_##name; \
770 static void unique_list_##name##_init(unique_list_##name * s) \
772 memset(s->list, 0, sizeof(s->list)); \
776 static void unique_list_##name##_add(unique_list_##name * s, type cand) \
778 if (s->size == max_size) \
781 for (int i = 0; i < s->size; i++) { \
782 if (!memcmp(&s->list[i], &cand, sizeof(type))) { \
786 s->list[s->size++] = cand; \
794 int blk_pos, tl_x, tl_y;
795 unique_list_intramode ipm_cand;
803 unique_list_intramode_init(&ipm_cand);
806 const PUInfo * pu = &
s->pu_info[cu->pu_pos -
s->pu_stride];
808 unique_list_intramode_add(&ipm_cand,
s->blk_info[cu->blk_pos -
s->blk_stride + (sub & 1)].imode);
811 blk_pos = cu->blk_pos + (sub >> 1) *
s->blk_stride + (sub & 1);
814 const PUInfo * pu = &
s->pu_info[cu->pu_pos - 1];
816 unique_list_intramode_add(&ipm_cand,
s->blk_info[blk_pos - 1 - (sub & 1)].imode);
819 tl_x = !(sub & 2) ? (cu->xpos + (sub & 1) * 4) : cu->xpos;
820 tl_y = cu->ypos + (sub & 2) * 4;
821 if (tl_x > 0 && tl_y > 0) {
824 case 0: pu = &
s->pu_info[cu->pu_pos -
s->pu_stride - 1];
break;
825 case 1: pu = &
s->pu_info[cu->pu_pos -
s->pu_stride];
break;
826 default: pu = &
s->pu_info[cu->pu_pos - 1];
830 unique_list_intramode_add(&ipm_cand,
s->blk_info[blk_pos -
s->blk_stride - 1].imode);
832 unique_list_intramode_add(&ipm_cand,
s->blk_info[blk_pos -
s->blk_stride - 2].imode);
840 return ipm_cand.list[cu->imode_param[sub]];
843 enum IntraMode imode = cu->imode_param[sub];
844 qsort(ipm_cand.list, 3,
sizeof(ipm_cand.list[0]),
ipm_compar);
845 for (
int i = 0;
i < 3;
i++)
846 if (imode >= ipm_cand.list[
i])
868 unique_list_mvinfo_add(skip_cand, *mvi);
873 int mv_size =
size >> 2;
879 if (cu->
ypos && cu->
xpos + size < s->awidth)
881 if (cu->
xpos && cu->
ypos + size < s->aheight)
890 for (
int i = skip_cand->size;
i < 4;
i++)
900 int mv_size =
size >> 2;
903 dim->w =
dim->h = mv_size;
907 dim->h = mv_size >> 1;
910 dim->w = mv_size >> 1;
914 dim->w =
dim->h = mv_size >> 1;
918 dim->h = !part_no ? (mv_size >> 2) : ((3 * mv_size) >> 2);
922 dim->h = !part_no ? ((3 * mv_size) >> 2) : (mv_size >> 2);
925 dim->w = !part_no ? (mv_size >> 2) : ((3 * mv_size) >> 2);
929 dim->w = !part_no ? ((3 * mv_size) >> 2) : (mv_size >> 2);
961 *mv_pos +=
dim->h*
s->blk_stride -
dim->w;
966 *mv_pos +=
dim->h *
s->blk_stride;
1003 if (
a->mvref !=
b->mvref)
1008 int dx =
a->f_mv.x -
b->f_mv.x;
1009 int dy =
a->f_mv.y -
b->f_mv.y;
1013 int dx =
a->b_mv.x -
b->b_mv.x;
1014 int dy =
a->b_mv.y -
b->b_mv.y;
1027 ret->x = a.x < c.x ? c.x : a.x; \
1030 ret->x = a.x < c.x ? a.x : c.x; \
1040 int mv_pos = mv_y *
s->blk_stride + mv_x;
1049 const MVInfo *
mv = &
s->blk_info[mv_pos - 1].mv;
1051 cand[cand_size++] =
mv->f_mv;
1054 const MVInfo *
mv = &
s->blk_info[mv_pos -
s->blk_stride].mv;
1056 cand[cand_size++] =
mv->f_mv;
1059 const MVInfo *
mv = &
s->blk_info[mv_pos -
s->blk_stride + mv_w].mv;
1061 cand[cand_size++] =
mv->f_mv;
1064 switch (cand_size) {
1070 f_mv.
x = (cand[0].
x + cand[1].
x) >> 1;
1071 f_mv.
y = (cand[0].
y + cand[1].
y) >> 1;
1074 mv_pred(&f_mv, cand[0], cand[1], cand[2]);
1084 dst->f_mv.x =
src->f_mv.x + f_mv.
x;
1085 dst->f_mv.y =
src->f_mv.y + f_mv.
y;
1091 const MVInfo *
mv = &
s->blk_info[mv_pos - 1].mv;
1093 cand[cand_size++] =
mv->b_mv;
1096 const MVInfo *
mv = &
s->blk_info[mv_pos -
s->blk_stride].mv;
1098 cand[cand_size++] =
mv->b_mv;
1101 const MVInfo *
mv = &
s->blk_info[mv_pos -
s->blk_stride + mv_w].mv;
1103 cand[cand_size++] =
mv->b_mv;
1106 switch (cand_size) {
1112 b_mv.
x = (cand[0].
x + cand[1].
x) >> 1;
1113 b_mv.
y = (cand[0].
y + cand[1].
y) >> 1;
1116 mv_pred(&b_mv, cand[0], cand[1], cand[2]);
1126 dst->b_mv.x =
src->b_mv.x + b_mv.
x;
1127 dst->b_mv.y =
src->b_mv.y + b_mv.
y;
1132 int pu_size =
size >> 3;
1134 int imode, mv_x, mv_y, mv_pos, count, mv_size;
1135 unique_list_mvinfo skip_cand;
1144 for (
int y = 0; y < 2; y++)
1145 for (
int x = 0; x < 2; x++)
1146 s->blk_info[cu->
blk_pos + y*
s->blk_stride + x].imode =
1154 for (
int y = 0; y < size >> 2; y++)
1155 for (
int x = 0; x < size >> 2; x++)
1156 s->blk_info[cu->
blk_pos + y*
s->blk_stride + x].imode = imode;
1159 mv_x = cu->
xpos >> 2;
1160 mv_y = cu->
ypos >> 2;
1163 for (
int part_no = 0; part_no < count; part_no++) {
1167 for (
int y = 0; y <
dim.h; y++)
1168 for (
int x = 0; x <
dim.w; x++)
1169 s->blk_info[mv_pos + y*
s->blk_stride + x].mv =
mv;
1174 unique_list_mvinfo_init(&skip_cand);
1177 mv_size =
size >> 2;
1178 for (
int y = 0; y < mv_size; y++)
1179 for (
int x = 0; x < mv_size; x++)
1180 s->blk_info[cu->
blk_pos + y*
s->blk_stride + x].mv =
mv;
1183 for (
int y = 0; y < pu_size; y++)
1184 for (
int x = 0; x < pu_size; x++)
1185 s->pu_info[cu->
pu_pos + y*
s->pu_stride + x] = pui;
1222 #define FILTER1(src, src_stride, src_y_ofs, step) \
1223 ( (src)[(y + src_y_ofs)*(src_stride) + x - 2*step] \
1224 - 5 * (src)[(y + src_y_ofs)*(src_stride) + x - 1*step] \
1225 +52 * (src)[(y + src_y_ofs)*(src_stride) + x ] \
1226 +20 * (src)[(y + src_y_ofs)*(src_stride) + x + 1*step] \
1227 - 5 * (src)[(y + src_y_ofs)*(src_stride) + x + 2*step] \
1228 + (src)[(y + src_y_ofs)*(src_stride) + x + 3*step] + 32) >> 6
1230 #define FILTER2(src, src_stride, src_y_ofs, step) \
1231 ( (src)[(y + src_y_ofs)*(src_stride) + x - 2*step] \
1232 - 5 * (src)[(y + src_y_ofs)*(src_stride) + x - 1*step] \
1233 +20 * (src)[(y + src_y_ofs)*(src_stride) + x ] \
1234 +20 * (src)[(y + src_y_ofs)*(src_stride) + x + 1*step] \
1235 - 5 * (src)[(y + src_y_ofs)*(src_stride) + x + 2*step] \
1236 + (src)[(y + src_y_ofs)*(src_stride) + x + 3*step] + 16) >> 5
1238 #define FILTER3(src, src_stride, src_y_ofs, step) \
1239 ( (src)[(y + src_y_ofs)*(src_stride) + x - 2*step] \
1240 - 5 * (src)[(y + src_y_ofs)*(src_stride) + x - 1*step] \
1241 +20 * (src)[(y + src_y_ofs)*(src_stride) + x ] \
1242 +52 * (src)[(y + src_y_ofs)*(src_stride) + x + 1*step] \
1243 - 5 * (src)[(y + src_y_ofs)*(src_stride) + x + 2*step] \
1244 + (src)[(y + src_y_ofs)*(src_stride) + x + 3*step] + 32) >> 6
1246 #define FILTER_CASE(idx, dst, dst_stride, filter, w, h) \
1248 for (int y = 0; y < h; y++) \
1249 for (int x = 0; x < w; x++) \
1250 (dst)[y*dst_stride + x] = av_clip_uint8(filter); \
1253 #define FILTER_BLOCK(dst, dst_stride, src, src_stride, src_y_ofs, w, h, cond, step) \
1255 FILTER_CASE(1, dst, dst_stride, FILTER1(src, src_stride, src_y_ofs, step), w, h) \
1256 FILTER_CASE(2, dst, dst_stride, FILTER2(src, src_stride, src_y_ofs, step), w, h) \
1257 FILTER_CASE(3, dst, dst_stride, FILTER3(src, src_stride, src_y_ofs, step), w, h) \
1260 static void luma_mc(uint8_t *
dst,
int dst_stride,
const uint8_t *
src,
int src_stride,
int w,
int h,
int cx,
int cy)
1263 for (
int y = 0; y <
h; y++)
1264 memcpy(
dst + y*dst_stride,
src + y*src_stride,
w);
1269 }
else if (cx != 3 || cy != 3) {
1270 uint8_t
tmp[70 * 64];
1274 for (
int j = 0; j <
h; j++)
1275 for (
int i = 0;
i <
w;
i++)
1276 dst[j*dst_stride +
i] = (
1277 src[j*src_stride +
i] +
1278 src[j*src_stride +
i + 1] +
1279 src[(j + 1)*src_stride +
i] +
1280 src[(j + 1)*src_stride +
i + 1] + 2) >> 2;
1284 static void chroma_mc(uint8_t *
dst,
int dst_stride,
const uint8_t *
src,
int src_stride,
int w,
int h,
int x,
int y)
1287 for (
int j = 0; j <
h; j++)
1288 memcpy(
dst + j*dst_stride,
src + j*src_stride,
w);
1289 }
else if (x > 0 && y > 0) {
1292 if (x == 3 && y == 3)
1295 a = (4 - x) * (4 - y);
1299 for (
int j = 0; j <
h; j++)
1300 for (
int i = 0;
i <
w;
i++)
1301 dst[j*dst_stride +
i] =
1302 (
a *
src[j*src_stride +
i] +
1303 b *
src[j*src_stride +
i + 1] +
1304 c *
src[(j + 1)*src_stride +
i] +
1305 d *
src[(j + 1)*src_stride +
i + 1] + 8) >> 4;
1307 int a = (4 - x) * (4 - y);
1308 int e = x * (4 - y) + (4 - x) * y;
1309 int step = y > 0 ? src_stride : 1;
1310 for (
int j = 0; j <
h; j++)
1311 for (
int i = 0;
i <
w;
i++)
1312 dst[j*dst_stride +
i] =
1313 (
a *
src[j*src_stride +
i] +
1314 e *
src[j*src_stride +
i +
step] + 8) >> 4;
1318 static int check_pos(
int x,
int y,
int cw,
int ch,
int w,
int h,
int dx,
int dy,
int e0,
int e1,
int e2,
int e3)
1322 return x2 - e0 >= 0 && x2 + cw + e1 <=
w && y2 - e2 >= 0 && y2 + ch + e3 <=
h;
1328 int off = !
avg ? y * frame_linesize[0] + x : 0;
1330 int fh =
s->aheight;
1336 if (
check_pos(x, y,
w,
h, fw, fh, dx, dy,
rv60_edge1[cx],
rv60_edge2[cx],
rv60_edge1[cy],
rv60_edge2[cy])) {
1340 ref->data[0] + (y + dy) *
ref->linesize[0] + x + dx,
1345 int xoff = x + dx - 2;
1346 int yoff = y + dy - 2;
1347 s->vdsp.emulated_edge_mc(buf,
1348 ref->data[0] + yoff *
ref->linesize[0] + xoff,
1349 70,
ref->linesize[0],
1355 buf + 70 * 2 + 2, 70,
w,
h, cx, cy);
1359 int fw =
s->awidth >> 1;
1360 int fh =
s->aheight >> 1;
1370 for (
int plane = 1; plane < 3; plane++) {
1371 int off = !
avg ? (y >> 1) * frame_linesize[plane] + (x >> 1) : 0;
1372 if (
check_pos(x >> 1, y >> 1, cw, ch, fw, fh, dx, dy, 0, 1, 0, 1)) {
1375 frame_linesize[plane],
1376 ref->data[plane] + ((y >> 1) + dy) *
ref->linesize[plane] + (x >> 1) + dx,
1377 ref->linesize[plane],
1381 s->vdsp.emulated_edge_mc(buf,
1382 ref->data[plane] + ((y >> 1) + dy) *
ref->linesize[plane] + (x >> 1) + dx,
1383 40,
ref->linesize[plane],
1385 (x >> 1) + dx, (y >> 1) + dy,
1393 static void avg_plane(uint8_t *
dst,
int dst_stride,
const uint8_t *
src,
int src_stride,
int w,
int h)
1395 for (
int j = 0; j <
h; j++)
1396 for (
int i = 0;
i <
w;
i++)
1397 dst[j*dst_stride +
i] = (
dst[j*dst_stride +
i] +
src[j*src_stride +
i]) >> 1;
1400 static void avg(
AVFrame *
frame, uint8_t * prev_frame_data[3],
int prev_frame_linesize[3],
int x,
int y,
int w,
int h)
1402 for (
int plane = 0; plane < 3; plane++) {
1403 int shift = !plane ? 0 : 1;
1405 prev_frame_data[plane], prev_frame_linesize[plane],
1420 return (v * q + 8) >> 4;
1428 return inval &&
get_bits1(gb) ? -inval : inval;
1432 int esc_bits = esc_sym - 23;
1433 val += (1 << esc_bits) +
get_bits(gb, esc_bits) + 22;
1480 int sym0 =
get_vlc2(gb, vlcs->
l0[!is_luma], 9, 2);
1481 int grp0 = sym0 >> 3;
1487 int grp =
get_vlc2(gb, vlcs->
l12[!is_luma], 9, 2);
1491 int grp =
get_vlc2(gb, vlcs->
l12[!is_luma], 9, 2);
1495 int grp =
get_vlc2(gb, vlcs->
l3[!is_luma], 9, 2);
1502 int sym0 =
get_vlc2(gb, vlcs->
l0[!is_luma], 9, 2);
1503 int grp0 = (sym0 >> 3);
1509 int grp =
get_vlc2(gb, vlcs->
l12[!is_luma], 9, 2);
1513 int grp =
get_vlc2(gb, vlcs->
l12[!is_luma], 9, 2);
1517 int grp =
get_vlc2(gb, vlcs->
l3[!is_luma], 9, 2);
1530 memset(y_coeffs, 0,
sizeof(y_coeffs[0])*256);
1531 for (
int i = 0;
i < 16;
i++)
1535 memset(u_coeffs, 0,
sizeof(u_coeffs[0])*64);
1536 for (
int i = 0;
i < 4;
i++)
1537 if ((cbp >> (16 +
i)) & 1)
1540 memset(v_coeffs, 0,
sizeof(v_coeffs[0])*64);
1541 for (
int i = 0;
i < 4;
i++)
1542 if ((cbp >> (20 +
i)) & 1)
1552 static void decode_cu_8x8(
GetBitContext * gb,
int is_intra,
int qp,
int sel_qp, int16_t * y_coeffs, int16_t * u_coeffs, int16_t * v_coeffs,
int ccbp,
int mode4x4)
1560 memset(y_coeffs, 0,
sizeof(y_coeffs[0])*64);
1561 for (
int i = 0;
i < 4;
i++) {
1562 if ((ccbp >>
i) & 1) {
1568 offset = (
i & 1) * 4 + (
i & 2) * 2 * 8;
1575 if ((ccbp >> 4) & 1) {
1576 memset(u_coeffs, 0,
sizeof(u_coeffs[0])*16);
1580 if ((ccbp >> 5) & 1) {
1581 memset(v_coeffs, 0,
sizeof(u_coeffs[0])*16);
1594 memset(y_coeffs, 0,
sizeof(y_coeffs[0])*256);
1595 for (
int i = 0;
i < 16;
i++)
1596 if ((ccbp >>
i) & 1) {
1597 int off = (
i & 3) * 4 + (
i >> 2) * 4 * 16;
1601 memset(u_coeffs, 0,
sizeof(u_coeffs[0])*64);
1602 for (
int i = 0;
i < 4;
i++)
1603 if ((ccbp >> (16 +
i)) & 1) {
1604 int off = (
i & 1) * 4 + (
i & 2) * 2 * 8;
1611 memset(v_coeffs, 0,
sizeof(v_coeffs[0])*64);
1612 for (
int i = 0;
i < 4;
i++)
1613 if ((ccbp >> (20 +
i)) & 1) {
1614 int off = (
i & 1) * 4 + (
i & 2) * 2 * 8;
1624 int sym0 =
get_vlc2(gb, vlc[0], 9, 2);
1625 int sym1 =
get_vlc2(gb, vlc[1], 9, 2);
1626 int sym2 =
get_vlc2(gb, vlc[2], 9, 2);
1627 int sym3 =
get_vlc2(gb, vlc[3], 9, 2);
1629 + ((sym0 & 0x03) << 0)
1630 + ((sym0 & 0x0C) << 2)
1631 + ((sym0 & 0x10) << 12)
1632 + ((sym0 & 0x20) << 15)
1633 + ((sym1 & 0x03) << 2)
1634 + ((sym1 & 0x0C) << 4)
1635 + ((sym1 & 0x10) << 13)
1636 + ((sym1 & 0x20) << 16)
1637 + ((sym2 & 0x03) << 8)
1638 + ((sym2 & 0x0C) << 10)
1639 + ((sym2 & 0x10) << 14)
1640 + ((sym2 & 0x20) << 17)
1641 + ((sym3 & 0x03) << 10)
1642 + ((sym3 & 0x0C) << 12)
1643 + ((sym3 & 0x10) << 15)
1644 + ((sym3 & 0x20) << 18);
1658 int size = 1 << log_size;
1659 int split,
ret, ttype, count, is_intra, cu_pos, subset, cbp8, imode, split_i4x4, num_clusters, cl_cbp, super_cbp, mv_x, mv_y, mv_pos;
1660 int16_t y_coeffs[16*16], u_coeffs[8*8], v_coeffs[8*8];
1663 if (xpos >=
s->awidth || ypos >=
s->aheight)
1681 cu.
pu_pos = (xpos >> 3) + (ypos >> 3) *
s->pu_stride;
1682 cu.
blk_pos = (xpos >> 2) + (ypos >> 2) *
s->blk_stride;
1689 for (
int i = 0;
i < 4;
i++)
1691 else if (
size <= 32)
1699 for (
int i = 0;
i < count;
i++)
1714 imode =
s->blk_info[cu.
blk_pos].imode;
1716 int off = ypos *
frame->linesize[0] + xpos;
1721 for (
int plane = 1; plane < 3; plane++) {
1722 int off = (ypos >> 1) *
frame->linesize[plane] + (xpos >> 1);
1731 mv_pos = mv_y *
s->blk_stride + mv_x;
1733 for (
int part_no = 0; part_no < count; part_no++) {
1738 mv =
s->blk_info[mv_pos].mv;
1750 if (!
s->last_frame[
NEXT_PIC]->data[0]) {
1774 else if (
size >= 32)
1776 else if (
size == 16)
1782 if (is_intra && qp >= 32)
1784 cu_pos = ((xpos & 63) >> 3) + ((ypos & 63) >> 3) * 8;
1788 subset = is_intra ? 0 : 2;
1793 for (
int y = 0; y < 4; y++)
1794 for (
int x = 0; x < 4; x++) {
1796 if ((cbp16 >>
i) & 1) {
1797 int off = (ypos + y * 4)*
frame->linesize[0] + xpos + x * 4;
1799 thread->
coded_blk[cu_pos + (y/2)*8 + (x/2)] = 1;
1802 for (
int y = 0; y < 2; y++)
1803 for (
int x = 0; x < 2; x++) {
1805 int xoff = (xpos >> 1) + x * 4;
1806 int yoff = (ypos >> 1) + y * 4;
1807 if ((cbp16 >> (16 +
i)) & 1) {
1808 int off = yoff *
frame->linesize[1] + xoff;
1810 thread->
coded_blk[cu_pos + y*8 + x] = 1;
1812 if ((cbp16 >> (20 +
i)) & 1) {
1813 int off = yoff *
frame->linesize[2] + xoff;
1815 thread->
coded_blk[cu_pos + y*8 + x] = 1;
1823 decode_cu_8x8(gb, is_intra, qp, sel_qp, y_coeffs, u_coeffs, v_coeffs, cbp8, 1);
1825 for (
int i = 0;
i < 4;
i++) {
1826 int xoff = (
i & 1) << 2;
1827 int yoff = (
i & 2) << 1;
1829 int off = (ypos + yoff) *
frame->linesize[0] + xpos + xoff;
1830 int imode =
s->blk_info[cu.
blk_pos + (
i >> 1) *
s->blk_stride + (
i & 1)].imode;
1835 if ((cbp8 >>
i) & 1) {
1836 int off = (ypos + yoff) *
frame->linesize[0] + xpos + xoff;
1840 if ((cbp8 >> 4) & 1) {
1841 int off = (ypos >> 1) *
frame->linesize[1] + (xpos >> 1);
1844 if ((cbp8 >> 5) & 1) {
1845 int off = (ypos >> 1) *
frame->linesize[2] + (xpos >> 1);
1851 subset = is_intra ? 1 : 3;
1855 decode_cu_8x8(gb, is_intra, qp, sel_qp, y_coeffs, u_coeffs, v_coeffs, cbp8, 0);
1857 int off = ypos *
frame->linesize[0] + xpos;
1860 if ((cbp8 >> 4) & 1) {
1861 int off = (ypos >> 1) *
frame->linesize[1] + (xpos >> 1);
1864 if ((cbp8 >> 5) & 1) {
1865 int off = (ypos >> 1) *
frame->linesize[2] + (xpos >> 1);
1871 subset = is_intra ? 1 : 3;
1872 num_clusters =
size >> 4;
1873 cl_cbp =
get_bits(gb, num_clusters * num_clusters);
1874 for (
int y = 0; y < num_clusters; y++) {
1875 for (
int x = 0; x < num_clusters; x++) {
1876 if (!((cl_cbp >> (y*num_clusters + x)) & 1))
1878 thread->
coded_blk[cu_pos + y*2*8 + x*2 + 0] = 1;
1879 thread->
coded_blk[cu_pos + y*2*8 + x*2 + 1] = 1;
1880 thread->
coded_blk[cu_pos + y*2*8 + x*2 + 8] = 1;
1881 thread->
coded_blk[cu_pos + y*2*8 + x*2 + 9] = 1;
1884 decode_cu_16x16(gb, is_intra, qp, sel_qp, y_coeffs, u_coeffs, v_coeffs, super_cbp);
1885 if (super_cbp & 0xFFFF) {
1886 int off = (ypos + y * 16) *
frame->linesize[0] + xpos + x * 16;
1889 if ((super_cbp >> 16) & 0xF) {
1890 int off = ((ypos >> 1) + y * 8) *
frame->linesize[1] + (xpos >> 1) + x * 8;
1893 if ((super_cbp >> 20) & 0xF) {
1894 int off = ((ypos >> 1) + y * 8) *
frame->linesize[2] + (xpos >> 1) + x * 8;
1908 return (ypos >> 2) *
s->dblk_stride + (xpos >> 2);
1914 int dsize =
size >> 2;
1915 int dval = (q << 2) + strength;
1917 for (
int x = 0; x < dsize; x++) {
1918 s->top_str[
pos + x] = dval;
1919 s->top_str[
pos + (dsize - 1)*
s->dblk_stride + x] = dval;
1922 for (
int y = 0; y < dsize; y++) {
1923 s->left_str[
pos + y*
s->dblk_stride] = dval;
1924 s->left_str[
pos + y*
s->dblk_stride + dsize - 1] = dval;
1930 return s->top_str[
pos] & 3;
1935 return s->left_str[
pos] & 3;
1940 s->top_str[
pos] |= strength;
1945 s->left_str[
pos] |= strength;
1950 int blk_pos = (ypos >> 2) *
s->blk_stride + (xpos >> 2);
1953 for (
int i = 0;
i <
size;
i++)
1957 for (
int i = 0;
i <
size;
i++)
1962 #define STRENGTH(el, lim) (FFABS(el) < (lim) ? 3 : 1)
1963 #define CLIP_SYMM(a, b) av_clip(a, -(b), b)
1967 int16_t diff_q1q0[4];
1968 int16_t diff_p1p0[4];
1969 int str_p, str_q, msum, maxprod, weak;
1971 for (
int i = 0;
i < 4;
i++) {
1976 str_p =
STRENGTH(diff_q1q0[0] + diff_q1q0[1] + diff_q1q0[2] + diff_q1q0[3], lim2);
1977 str_q =
STRENGTH(diff_p1p0[0] + diff_p1p0[1] + diff_p1p0[2] + diff_p1p0[3], lim2);
1979 if (str_p + str_q <= 2)
1982 msum = (mode1 + mode2 + str_q + str_p) >> 1;
1983 if (str_q == 1 || str_p == 1) {
1991 for (
int y = 0; y < 4; y++) {
1994 if (diff_p0q0 &&
result <= maxprod) {
2001 int diff_strg = (
dst[-2*
step] -
dst[
step] + 4 * diff_p0q0 + 4) >> 3;
2006 if (str_p != 1 &&
FFABS(diff_q1q2) <= (lim2 >> 2)) {
2007 int diff = (diff_q1q0[y] + diff_q1q2 -
delta) >> 1;
2011 if (str_q != 1 &&
FFABS(diff_p1p2) <= (lim2 >> 2)) {
2012 int diff = (diff_p1p0[y] + diff_p1p2 +
delta) >> 1;
2025 int str_q =
STRENGTH(diff_q, lim2);
2026 int str_p =
STRENGTH(diff_p, lim2);
2027 int msum, maxprod, weak;
2029 if (str_p + str_q <= 2)
2032 msum = (mode1 + mode2 + str_q + str_p) >> 1;
2033 if (str_q == 1 || str_p == 1) {
2041 for (
int y = 0; y < 2; y++) {
2044 if (diff_pq &&
result <= maxprod) {
2049 int diff_strg = (
dst[-2*
step] -
dst[
step] + 4 * diff_pq + 4) >> 3;
2061 int qp_l = dblk_l >> 2;
2062 int str_l = dblk_l & 3;
2063 int qp_r = dblk_r >> 2;
2064 int str_r = dblk_r & 3;
2067 int mode_l = str_l ? dl_l[str_l - 1] : 0;
2068 int mode_r = str_r ? dl_r[str_r - 1] : 0;
2070 int lim2 = dl_r[3] * 4;
2073 if ((str_l | str_r) >= 2 && deblock_chroma)
2074 for (
int plane = 1; plane < 3; plane++)
2080 int qp_t = dblk_t >> 2;
2081 int str_t = dblk_t & 3;
2082 int qp_d = dblk_d >> 2;
2083 int str_d = dblk_d & 3;
2086 int mode_t = str_t ? dl_t[str_t - 1] : 0;
2087 int mode_d = str_d ? dl_d[str_d - 1] : 0;
2089 int lim2 = dl_d[3] * 4;
2092 if ((str_t | str_d) >= 2 && deblock_chroma)
2093 for (
int plane = 1; plane < 3; plane++)
2101 int str_l =
s->left_str[dblkpos -
s->dblk_stride - 1];
2102 int str_r =
s->left_str[dblkpos -
s->dblk_stride];
2103 if ((str_l | str_r) & 3)
2107 int str_l =
s->left_str[dblkpos - 1];
2108 int str_r =
s->left_str[dblkpos];
2109 if ((str_l | str_r) & 3)
2112 if (ypos + 8 >=
s->aheight) {
2113 int str_l =
s->left_str[dblkpos +
s->dblk_stride - 1];
2114 int str_r =
s->left_str[dblkpos +
s->dblk_stride];
2115 if ((str_l | str_r) & 3)
2121 int str_t =
s->top_str[dblkpos -
s->dblk_stride - 1];
2122 int str_d =
s->top_str[dblkpos - 1];
2123 if ((str_t | str_d) & 3)
2127 int str_t =
s->top_str[dblkpos -
s->dblk_stride];
2128 int str_d =
s->top_str[dblkpos];
2129 if ((str_t | str_d) & 3)
2132 if (xpos + 8 >=
s->awidth) {
2133 int str_t =
s->top_str[dblkpos -
s->dblk_stride + 1];
2134 int str_d =
s->top_str[dblkpos + 1];
2135 if ((str_t | str_d) & 3)
2143 for (
int x = 0; x < size >> 3; x++)
2146 for (
int y = 1; y < size >> 3; y++)
2152 int pu_pos, tsize, ntiles;
2155 if (xpos >=
s->awidth || ypos >=
s->aheight)
2159 int hsize = 1 << (log_size - 1);
2168 pu_pos = (ypos >> 3) *
s->pu_stride + (xpos >> 3);
2169 cu_type =
s->pu_info[pu_pos].cu_type;
2171 case 3: tsize = 3;
break;
2172 case 4: tsize = cu_type &&
s->pu_info[pu_pos].pu_type ? 3 : 4;
break;
2174 case 6: tsize = 4;
break;
2176 ntiles = 1 << (log_size - tsize);
2178 for (
int ty = 0; ty < ntiles; ty++)
2179 for (
int tx = 0; tx < ntiles; tx++) {
2180 int x = xpos + (tx << tsize);
2181 int y = ypos + (ty << tsize);
2182 int cu_pos = ((y & 63) >> 3) * 8 + ((x & 63) >> 3);
2201 switch (qp_off_type) {
2206 return val != 2 ?
val : -1;
2214 return -((
val & 1) + 1);
2222 case 1:
return qp <= 25 ? qp + 5 : qp;
2239 int qp, sel_qp,
ret;
2251 for (
int cu_x = 0; cu_x <
s->cu_width; cu_x++) {
2290 if (avpkt->
size == 0) {
2298 if (avpkt->
size < 9)
2301 header_size = avpkt->
data[0] * 8 + 9;
2302 if (avpkt->
size < header_size)
2325 s->last_frame[
CUR_PIC]->pict_type =
s->pict_type;
2332 if (!
s->last_frame[
CUR_PIC]->data[0])
2341 for (
int i = 0;
i <
s->cu_height;
i++) {
2342 if (header_size + ofs >= avpkt->
size)
2344 s->slice[
i].data = avpkt->
data + header_size + ofs;
2345 s->slice[
i].data_size =
FFMIN(
s->slice[
i].size, avpkt->
size - header_size - ofs);
2346 ofs +=
s->slice[
i].size;
2358 else if (
s->last_frame[
LAST_PIC]->data[0])
2372 s->ref_pts[0] =
s->ref_pts[1];
2373 s->ref_pts[1] = avpkt->
pts;
2375 s->ref_ts[0] =
s->ref_ts[1];
2376 s->ref_ts[1] =
s->ts;
2378 if (
s->ref_pts[1] >
s->ref_pts[0] &&
s->ref_ts[1] >
s->ref_ts[0])
2379 s->ts_scale = (
s->ref_pts[1] -
s->ref_pts[0]) / (
s->ref_ts[1] -
s->ref_ts[0]);
2381 frame->pts =
s->ref_pts[0] + (
s->ts -
s->ref_ts[0]) *
s->ts_scale;
2391 for (
int i = 0;
i < 3;
i++)
2399 for (
int i = 0;
i < 3;
i++)
2408 for (
int i = 0;
i <
s->nb_progress;
i++)
static void fill_mv_skip_cand(RV60Context *s, const CUContext *cu, unique_list_mvinfo *skip_cand, int size)
static void filter_luma_edge(uint8_t *dst, int step, int stride, int mode1, int mode2, int lim1, int lim2)
static const uint8_t skip_mv_ref[4]
#define AV_LOG_WARNING
Something somehow does not look correct.
static void decode_2x2_dc(GetBitContext *gb, const CoeffVLCs *vlcs, int16_t *coeffs, int stride, int block2, int dsc, int q_dc, int q_ac)
void ff_thread_progress_report(ThreadProgress *pro, int n)
This function is a no-op in no-op mode; otherwise it notifies other threads that a certain level of p...
#define FF_CODEC_CAP_INIT_CLEANUP
The codec allows calling the close function for deallocation even if the init function returned a fai...
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
static void rv60_flush(AVCodecContext *avctx)
static int pu_is_intra(const PUInfo *pu)
ThreadProgress is an API to easily notify other threads about progress of any kind as long as it can ...
static int deblock_get_top_strength(const RV60Context *s, int pos)
static void deblock(const RV60Context *s, AVFrame *frame, int xpos, int ypos, int size, int dpos)
static int pred_angle(const IntraPredContext *p, uint8_t *dst, int stride, int size, int imode, int filter)
void ff_rv60_idct8x8_add(const int16_t *block, uint8_t *dst, int dst_stride)
static void read_mv(GetBitContext *gb, MV *mv)
static void decode_cu_16x16(GetBitContext *gb, int is_intra, int qp, int sel_qp, int16_t *y_coeffs, int16_t *u_coeffs, int16_t *v_coeffs, int ccbp)
static const int8_t mv[256][2]
#define FILTER_BLOCK(dst, dst_stride, src, src_stride, src_y_ofs, w, h, cond, step)
static int get_bits_count(const GetBitContext *s)
static void deblock_edge_ver(AVFrame *frame, int xpos, int ypos, int dblk_l, int dblk_r, int deblock_chroma)
static const VLCElem * cbp8_vlc[7][4]
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
This structure describes decoded (raw) audio or video data.
static av_cold void rv60_init_static_data(void)
trying all byte sequences megabyte in length and selecting the best looking sequence will yield cases to try But a word about which is also called distortion Distortion can be quantified by almost any quality measurement one chooses the sum of squared differences is used but more complex methods that consider psychovisual effects can be used as well It makes no difference in this discussion First step
static int mvinfo_matches_forward(const MVInfo *a, const MVInfo *b)
static void mc(RV60Context *s, uint8_t *frame_data[3], int frame_linesize[3], const AVFrame *ref, int x, int y, int w, int h, MV mv, int avg)
static void filter_weak(uint8_t *dst, const uint8_t *src, int size)
const FFCodec ff_rv60_decoder
void(* filter)(uint8_t *src, int stride, int qscale)
static const uint8_t rv60_cbp8_lens[7][4][64]
static int update_dimensions_clear_info(RV60Context *s, int width, int height)
static void decode_4x4_block(GetBitContext *gb, const CoeffVLCs *vlcs, int is_luma, int16_t *coeffs, int stride, int q_ac)
static void decode_cu_4x4in16x16(GetBitContext *gb, int is_intra, int qp, int sel_qp, int16_t *y_coeffs, int16_t *u_coeffs, int16_t *v_coeffs, int cbp)
static int ipm_compar(const void *a, const void *b)
int ff_set_dimensions(AVCodecContext *s, int width, int height)
Check that the provided frame dimensions are valid and set them on the codec context.
static int deblock_get_pos(RV60Context *s, int xpos, int ypos)
static int deblock_get_left_strength(const RV60Context *s, int pos)
static void populate_ipred(const RV60Context *s, CUContext *cu, const uint8_t *src, int stride, int xoff, int yoff, int size, int is_luma)
uint8_t avg_buffer[64 *64+32 *32 *2]
static void skip_bits(GetBitContext *s, int n)
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
static int has_left_block(const RV60Context *s, int xpos, int ypos, int dx, int dy, int size)
AVCodec p
The public AVCodec.
enum AVDiscard skip_frame
Skip decoding for selected frames.
static void deblock_set_top_strength(RV60Context *s, int pos, int strength)
static int get_skip_mv_index(enum MVRefEnum mvref)
static void deblock_edge_hor(AVFrame *frame, int xpos, int ypos, int dblk_t, int dblk_d, int deblock_chroma)
const h264_weight_func weight
static double val(void *priv, double ch)
av_cold void ff_videodsp_init(VideoDSPContext *ctx, int bpc)
static void get_mv_dimensions(Dimensions *dim, enum PUType pu_type, int part_no, int size)
static void pred_plane(const IntraPredContext *p, uint8_t *dst, int stride, int size)
AVFrame * av_frame_alloc(void)
Allocate an AVFrame and set its fields to default values.
static void derive_deblock_strength(RV60Context *s, int xpos, int ypos, int size)
static int ff_thread_once(char *control, void(*routine)(void))
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
#define FF_ARRAY_ELEMS(a)
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
static int quant(int v, int q)
#define AV_FRAME_FLAG_KEY
A flag to mark frames that are keyframes.
For static VLCs, the number of bits can often be hardcoded at each get_vlc2() callsite.
static int decode_slice(AVCodecContext *avctx, void *tdata, int cu_y, int threadnr)
#define FF_CODEC_DECODE_CB(func)
static const uint8_t rv60_deblock_limits[32][4]
void * av_realloc_array(void *ptr, size_t nmemb, size_t size)
static const uint8_t rv60_edge2[4]
uint8_t cu_split[1+4+16+64]
#define MK_UNIQUELIST(name, type, max_size)
#define av_assert0(cond)
assert() equivalent, that is always enabled.
static const uint8_t rv60_cbp16_lens[7][3][4][64]
static void predict_mv(const RV60Context *s, MVInfo *dst, int mv_x, int mv_y, int mv_w, const MVInfo *src)
static int mv_is_forward(enum MVRefEnum mvref)
static const uint8_t rv60_ipred_angle[9]
static int mv_is_ref0(enum MVRefEnum mvref)
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
static void mv_pred(MV *ret, MV a, MV b, MV c)
static void deblock8x8(const RV60Context *s, AVFrame *frame, int xpos, int ypos, int dblkpos)
#define CODEC_LONG_NAME(str)
static int read_frame_header(RV60Context *s, GetBitContext *gb, int *width, int *height)
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
@ AVDISCARD_ALL
discard all
static void decode_4x4_block_dc(GetBitContext *gb, const CoeffVLCs *vlcs, int is_luma, int16_t *coeffs, int stride, int q_dc, int q_ac)
static void ipred_init(IntraPredContext *i)
void ff_thread_progress_await(const ThreadProgress *pro_c, int n)
This function is a no-op in no-op mode; otherwise it waits until other threads have reached a certain...
static int mvinfo_is_deblock_cand(const MVInfo *a, const MVInfo *b)
and forward the result(frame or status change) to the corresponding input. If nothing is possible
static int decode_cu_r(RV60Context *s, AVFrame *frame, ThreadContext *thread, GetBitContext *gb, int xpos, int ypos, int log_size, int qp, int sel_qp)
static const uint8_t rv60_chroma_quant_ac[32]
static int has_ver_split(enum PUType pu_type)
static VLCElem table_data[129148]
static unsigned int get_bits1(GetBitContext *s)
@ AV_PICTURE_TYPE_I
Intra.
static int read_slice_sizes(RV60Context *s, GetBitContext *gb)
static int has_hor_split(enum PUType pu_type)
static void decode_2x2(GetBitContext *gb, const CoeffVLCs *vlcs, int16_t *coeffs, int stride, int block2, int dsc, int q_ac)
static int has_top_block(const RV60Context *s, int xpos, int ypos, int dx, int dy, int size)
static const uint8_t rv60_dsc_to_lx[][4]
static const VLCElem * gen_vlc(const uint8_t *bits, int size, VLCInitState *state)
static av_always_inline int get_vlc2(GetBitContext *s, const VLCElem *table, int bits, int max_depth)
Parse a vlc code.
static const CoeffLens rv60_intra_lens[5]
static void luma_mc(uint8_t *dst, int dst_stride, const uint8_t *src, int src_stride, int w, int h, int cx, int cy)
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
static void pred_dc(const IntraPredContext *p, uint8_t *dst, int stride, int size, int filter)
static int get_unary(GetBitContext *gb, int stop, int len)
Get unary code of limited length.
static void read_mv_info(RV60Context *s, GetBitContext *gb, MVInfo *mvinfo, int size, enum PUType pu_type)
@ AVDISCARD_NONKEY
discard all frames except keyframes
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame.
int(* init)(AVBSFContext *ctx)
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() or get_encode_buffer() for allocating buffers and supports custom allocators.
static const uint8_t rv60_avail_mask[64]
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled top and top right vectors is used as motion vector prediction the used motion vector is the sum of the predictor and(mvx_diff, mvy_diff) *mv_scale Intra DC Prediction block[y][x] dc[1]
static const uint16_t rv60_ipred_inv_angle[9]
int av_frame_ref(AVFrame *dst, const AVFrame *src)
Set up a new reference to the data described by the source frame.
static void filter_bilin32(uint8_t *dst, int v0, int v1, int size)
static void build_coeff_vlc(const CoeffLens *lens, CoeffVLCs *vlc, int count, VLCInitState *state)
static int shift(int a, int b)
uint8_t ptrdiff_t const uint8_t ptrdiff_t int intptr_t intptr_t int int16_t * dst
static int rv60_decode_frame(AVCodecContext *avctx, AVFrame *frame, int *got_frame, AVPacket *avpkt)
static int pu_type_num_parts(enum PUType pu_type)
static void add_if_valid(unique_list_mvinfo *skip_cand, const MVInfo *mvi)
static int get_interleaved_se_golomb(GetBitContext *gb)
static const CoeffLens rv60_inter_lens[7]
static void chroma_mc(uint8_t *dst, int dst_stride, const uint8_t *src, int src_stride, int w, int h, int x, int y)
#define FF_THREAD_SLICE
Decode more than one part of a single frame at once.
static void filter_chroma_edge(uint8_t *dst, int step, int stride, int mode1, int mode2, int lim1, int lim2)
static av_cold int rv60_decode_end(AVCodecContext *avctx)
@ AV_PICTURE_TYPE_NONE
Undefined.
FrameData * frame_data(AVFrame *frame)
Get our axiliary frame data attached to the frame, allocating it if needed.
static av_always_inline int diff(const struct color_info *a, const struct color_info *b, const int trans_thresh)
static char * split(char *message, char delim)
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
int av_reallocp_array(void *ptr, size_t nmemb, size_t size)
Allocate, reallocate an array through a pointer to a pointer.
static CoeffVLCs intra_coeff_vlc[5]
#define AV_CODEC_CAP_SLICE_THREADS
Codec supports slice-based (or partition-based) multithreading.
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf offset
static void pred_hor_angle(uint8_t *dst, int stride, int size, int weight, const uint8_t *src)
struct ThreadProgress * progress
static void skip_bits1(GetBitContext *s)
static void deblock_cu_r(RV60Context *s, AVFrame *frame, ThreadContext *thread, int xpos, int ypos, int log_size, int qp)
static int calc_sel_qp(int osvquant, int qp)
static int read_intra_mode(GetBitContext *gb, int *param)
#define AV_LOG_INFO
Standard information.
static int decode_super_cbp(GetBitContext *gb, const VLCElem *vlc[4])
#define STRENGTH(el, lim)
static const uint8_t rv60_candidate_intra_angles[6]
static int decode_cbp8(GetBitContext *gb, int subset, int qp)
#define i(width, name, range_min, range_max)
int64_t pts
Presentation timestamp in AVStream->time_base units; the time at which the decompressed packet will b...
static int has_left_down_block(const RV60Context *s, int xpos, int ypos, int dx, int dy, int size)
av_cold int ff_thread_progress_init(ThreadProgress *pro, int init_mode)
Initialize a ThreadProgress.
void av_frame_move_ref(AVFrame *dst, AVFrame *src)
Move everything contained in src to dst and reset src.
void av_frame_unref(AVFrame *frame)
Unreference all the buffers referenced by frame and reset the frame fields.
static int has_top_right_block(const RV60Context *s, int xpos, int ypos, int dx, int dy, int size)
static void avg(AVFrame *frame, uint8_t *prev_frame_data[3], int prev_frame_linesize[3], int x, int y, int w, int h)
const char * name
Name of the codec implementation.
void ff_rv60_idct4x4_add(const int16_t *block, uint8_t *dst, int dst_stride)
static void pred_ver_angle(uint8_t *dst, int stride, int size, int weight, const uint8_t *src)
static av_cold int rv60_decode_init(AVCodecContext *avctx)
static int decode_coeff(GetBitContext *gb, const CoeffVLCs *vlcs, int inval, int val)
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
static int mv_is_backward(enum MVRefEnum mvref)
static int reconstruct_intra(const RV60Context *s, const CUContext *cu, int size, int sub)
static int mvinfo_matches_backward(const MVInfo *a, const MVInfo *b)
#define FFSWAP(type, a, b)
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
static int progress_init(RV60Context *s, unsigned count)
static const uint8_t * align_get_bits(GetBitContext *s)
static CoeffVLCs inter_coeff_vlc[7]
av_cold void ff_thread_progress_destroy(ThreadProgress *pro)
Destroy a ThreadProgress.
static int decode_cbp16(GetBitContext *gb, int subset, int qp)
main external API structure.
@ AV_PICTURE_TYPE_B
Bi-dir predicted.
static void get_next_mv(const RV60Context *s, const Dimensions *dim, enum PUType pu_type, int part_no, int *mv_pos, int *mv_x, int *mv_y)
static int ref[MAX_W *MAX_W]
#define AV_CODEC_CAP_DELAY
Encoder or decoder requires flushing with NULL input at the end in order to give the complete and cor...
static void ff_thread_progress_reset(ThreadProgress *pro)
Reset the ThreadProgress.progress counter; must only be called if the ThreadProgress is not in use in...
static void deblock_set_strength(RV60Context *s, int xpos, int ypos, int size, int q, int strength)
@ AV_PICTURE_TYPE_P
Predicted.
static const VLCElem * ff_vlc_init_tables(VLCInitState *state, int nb_bits, int nb_codes, const void *bits, int bits_wrap, int bits_size, const void *codes, int codes_wrap, int codes_size, int flags)
static void deblock_set_left_strength(RV60Context *s, int pos, int strength)
static const uint8_t rv60_chroma_quant_dc[32]
static int read_qp_offset(GetBitContext *gb, int qp_off_type)
static int read_code012(GetBitContext *gb)
static int check_pos(int x, int y, int cw, int ch, int w, int h, int dx, int dy, int e0, int e1, int e2, int e3)
static const uint8_t rv60_qp_to_idx[64]
#define VLC_INIT_STATE(_table)
static int get_c4x4_set(int qp, int is_intra)
This structure stores compressed data.
static void avg_plane(uint8_t *dst, int dst_stride, const uint8_t *src, int src_stride, int w, int h)
void ff_rv60_idct16x16_add(const int16_t *block, uint8_t *dst, int dst_stride)
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
static void decode_cu_8x8(GetBitContext *gb, int is_intra, int qp, int sel_qp, int16_t *y_coeffs, int16_t *u_coeffs, int16_t *v_coeffs, int ccbp, int mode4x4)
@ AVDISCARD_NONREF
discard all non reference
static const uint8_t rv60_edge1[4]
static void reconstruct(RV60Context *s, const CUContext *cu, int size)
static const VLCElem * cbp16_vlc[7][3][4]
static const int8_t frame_types[4]
static const uint16_t rv60_quants_b[32]