Go to the documentation of this file.
27 for (
i = 0;
i < 2; ++
i) {
28 int n =
s->plane[
i].available_lines;
30 for (j = 0; j < n; ++j) {
33 s->plane[
i].line[j+n] =
NULL;
37 for (
i = 0;
i < 4; ++
i)
38 memset(
s->plane[
i].line, 0,
sizeof(uint8_t*) *
s->plane[
i].available_lines * (
s->is_ring ? 3 : 1));
39 s->should_free_lines = 0;
51 s->should_free_lines = 1;
54 for (
i = 0;
i < 2; ++
i) {
55 int n =
s->plane[
i].available_lines;
60 for (j = 0; j < n; ++j) {
64 if (!
s->plane[
i].line[j]) {
68 s->plane[ii].line[j] =
s->plane[
i].line[j] +
size + 16;
70 s->plane[
i].line[j+n] =
s->plane[
i].line[j];
71 s->plane[ii].line[j+n] =
s->plane[ii].line[j];
82 int size[4] = { lumLines,
87 s->h_chr_sub_sample = h_sub_sample;
88 s->v_chr_sub_sample = v_sub_sample;
91 s->should_free_lines = 0;
93 for (
i = 0;
i < 4; ++
i) {
94 int n =
size[
i] * ( ring == 0 ? 1 : 3);
96 if (!
s->plane[
i].line)
99 s->plane[
i].tmp = ring ?
s->plane[
i].line +
size[
i] * 2 :
NULL;
100 s->plane[
i].available_lines =
size[
i];
101 s->plane[
i].sliceY = 0;
102 s->plane[
i].sliceH = 0;
111 if (
s->should_free_lines)
113 for (
i = 0;
i < 4; ++
i) {
124 for (
i = 0;
i < 4;
i+=3) {
125 int n =
s->plane[
i].available_lines;
126 int l =
lum -
s->plane[
i].sliceY;
129 s->plane[
i].sliceY += n;
130 s->plane[
i].sliceH -= n;
135 for (
i = 1;
i < 3; ++
i) {
136 int n =
s->plane[
i].available_lines;
137 int l = chr -
s->plane[
i].sliceY;
140 s->plane[
i].sliceY += n;
141 s->plane[
i].sliceH -= n;
149 int srcW,
int lumY,
int lumH,
int chrY,
int chrH,
int relative)
153 const int start[4] = {lumY,
158 const int end[4] = {lumY +lumH,
168 int first =
s->plane[
i].sliceY;
169 int n =
s->plane[
i].available_lines;
170 int lines = end[
i] - start[
i];
171 int tot_lines = end[
i] -
first;
173 if (start[
i] >=
first && n >= tot_lines) {
174 s->plane[
i].sliceH =
FFMAX(tot_lines,
s->plane[
i].sliceH);
175 for (j = 0; j < lines; j+= 1)
178 s->plane[
i].sliceY = start[
i];
179 lines = lines > n ? n : lines;
180 s->plane[
i].sliceH = lines;
181 for (j = 0; j < lines; j+= 1)
182 s->plane[
i].line[j] = src_i + j *
stride[
i];
192 int i, j, k,
size, end;
194 for (
i = 0;
i < 4; ++
i) {
195 size =
s->plane[
i].available_lines;
196 for (j = 0; j <
size; ++j) {
199 for (k = 0; k < end; ++k)
200 ((
int32_t*)(
s->plane[
i].line[j]))[k] = 1<<18;
203 for (k = 0; k < end; ++k)
204 ((int16_t*)(
s->plane[
i].line[j]))[k] = 1<<14;
220 int dstH =
c->opts.dst_h;
221 int chrDstH =
c->chrDstH;
222 int *lumFilterPos =
c->vLumFilterPos;
223 int *chrFilterPos =
c->vChrFilterPos;
224 int lumFilterSize =
c->vLumFilterSize;
225 int chrFilterSize =
c->vChrFilterSize;
226 int chrSubSample =
c->chrSrcVSubSample;
228 *out_lum_size = lumFilterSize;
229 *out_chr_size = chrFilterSize;
231 for (lumY = 0; lumY < dstH; lumY++) {
232 int chrY = (
int64_t)lumY * chrDstH / dstH;
233 int nextSlice =
FFMAX(lumFilterPos[lumY] + lumFilterSize - 1,
234 ((chrFilterPos[chrY] + chrFilterSize - 1)
237 nextSlice >>= chrSubSample;
238 nextSlice <<= chrSubSample;
239 (*out_lum_size) =
FFMAX((*out_lum_size), nextSlice - lumFilterPos[lumY]);
240 (*out_chr_size) =
FFMAX((*out_chr_size), (nextSlice >> chrSubSample) - chrFilterPos[chrY]);
253 int need_lum_conv =
c->lumToYV12 ||
c->readLumPlanar ||
c->alpToYV12 ||
c->readAlpPlanar;
254 int need_chr_conv =
c->chrToYV12 ||
c->readChrPlanar;
255 int need_gamma =
c->is_internal_gamma;
257 int dst_stride =
FFALIGN(
c->opts.dst_w *
sizeof(int16_t) + 66, 16);
259 uint32_t * pal =
usePal(
c->opts.src_format) ?
c->pal_yuv : (uint32_t*)
c->input_rgb2yuv_table;
275 num_ydesc = need_lum_conv ? 2 : 1;
276 num_cdesc = need_chr_conv ? 2 : 1;
278 c->numSlice =
FFMAX(num_ydesc, num_cdesc) + 2;
279 c->numDesc = num_ydesc + num_cdesc + num_vdesc + (need_gamma ? 2 : 0);
280 c->descIndex[0] = num_ydesc + (need_gamma ? 1 : 0);
281 c->descIndex[1] = num_ydesc + num_cdesc + (need_gamma ? 1 : 0);
288 c->input_opaque =
c->h2f_tables;
300 res =
alloc_slice(&
c->slice[0],
c->opts.src_format,
c->opts.src_h,
c->chrSrcH,
c->chrSrcHSubSample,
c->chrSrcVSubSample, 0);
302 for (
i = 1;
i <
c->numSlice-2; ++
i) {
303 res =
alloc_slice(&
c->slice[
i],
c->opts.src_format, lumBufSize, chrBufSize,
c->chrSrcHSubSample,
c->chrSrcVSubSample, 0);
309 res =
alloc_slice(&
c->slice[
i],
c->opts.src_format, lumBufSize, chrBufSize,
c->chrDstHSubSample,
c->chrDstVSubSample, 1);
318 res =
alloc_slice(&
c->slice[
i],
c->opts.dst_format,
c->opts.dst_h,
c->chrDstH,
c->chrDstHSubSample,
c->chrDstVSubSample, 0);
334 c->desc[
index].alpha =
c->needAlpha;
340 dstIdx =
FFMAX(num_ydesc, num_cdesc);
343 c->desc[
index].alpha =
c->needAlpha;
357 dstIdx =
FFMAX(num_ydesc, num_cdesc);
358 if (
c->needs_hcscale)
367 srcIdx =
c->numSlice - 2;
368 dstIdx =
c->numSlice - 1;
390 for (
i = 0;
i <
c->numDesc; ++
i)
396 for (
i = 0;
i <
c->numSlice; ++
i)
int ff_init_desc_cfmt_convert(SwsFilterDescriptor *desc, SwsSlice *src, SwsSlice *dst, uint32_t *pal)
initializes chr pixel format conversion descriptor
AVPixelFormat
Pixel format.
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
static void fill_ones(SwsSlice *s, int n, int bpc)
int ff_rotate_slice(SwsSlice *s, int lum, int chr)
static av_cold void cleanup(FlashSV2Context *s)
static av_always_inline int isGray(enum AVPixelFormat pix_fmt)
int ff_init_desc_hscale(SwsFilterDescriptor *desc, SwsSlice *src, SwsSlice *dst, uint16_t *filter, int *filter_pos, int filter_size, int xInc)
initializes lum horizontal scaling descriptor
int ff_init_desc_no_chr(SwsFilterDescriptor *desc, SwsSlice *src, SwsSlice *dst)
trying all byte sequences megabyte in length and selecting the best looking sequence will yield cases to try But first
#define av_assert0(cond)
assert() equivalent, that is always enabled.
int ff_free_filters(SwsInternal *c)
static av_always_inline int isFloat16(enum AVPixelFormat pix_fmt)
int ff_init_desc_chscale(SwsFilterDescriptor *desc, SwsSlice *src, SwsSlice *dst, uint16_t *filter, int *filter_pos, int filter_size, int xInc)
initializes chr horizontal scaling descriptor
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
static IPT relative(const CmsCtx *ctx, IPT ipt)
static void free_lines(SwsSlice *s)
static int alloc_lines(SwsSlice *s, int size, int width)
static av_always_inline int usePal(enum AVPixelFormat pix_fmt)
int ff_init_vscale(SwsInternal *c, SwsFilterDescriptor *desc, SwsSlice *src, SwsSlice *dst)
initializes vertical scaling descriptors
static void free_slice(SwsSlice *s)
static int alloc_slice(SwsSlice *s, enum AVPixelFormat fmt, int lumLines, int chrLines, int h_sub_sample, int v_sub_sample, int ring)
#define i(width, name, range_min, range_max)
int ff_init_gamma_convert(SwsFilterDescriptor *desc, SwsSlice *src, uint16_t *table)
initializes gamma conversion descriptor
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
static void get_min_buffer_size(SwsInternal *c, int *out_lum_size, int *out_chr_size)
Struct which defines a slice of an image to be scaled or an output for a scaled slice.
void * av_calloc(size_t nmemb, size_t size)
int ff_init_slice_from_src(SwsSlice *s, uint8_t *const src[4], const int stride[4], int srcW, int lumY, int lumH, int chrY, int chrH, int relative)
void ff_init_half2float_tables(Half2FloatTables *t)
static av_always_inline int isPlanarYUV(enum AVPixelFormat pix_fmt)
int ff_init_filters(SwsInternal *c)
static double lum(void *priv, double x, double y, int plane)
int ff_init_desc_fmt_convert(SwsFilterDescriptor *desc, SwsSlice *src, SwsSlice *dst, uint32_t *pal)
initializes lum pixel format conversion descriptor