[FFmpeg-devel] [PATCH 2/7] libavfilter: Code style fixes for pointers in DNN module and sr filter.
Pedro Arthur
bygrandao at gmail.com
Mon Aug 6 17:55:10 EEST 2018
2018-08-02 15:52 GMT-03:00 Sergey Lavrushkin <dualfal at gmail.com>:
> ---
> libavfilter/dnn_backend_native.c | 84 +++++++++++++++---------------
> libavfilter/dnn_backend_native.h | 8 +--
> libavfilter/dnn_backend_tf.c | 108 +++++++++++++++++++--------------------
> libavfilter/dnn_backend_tf.h | 8 +--
> libavfilter/dnn_espcn.h | 6 +--
> libavfilter/dnn_interface.c | 4 +-
> libavfilter/dnn_interface.h | 16 +++---
> libavfilter/dnn_srcnn.h | 6 +--
> libavfilter/vf_sr.c | 60 +++++++++++-----------
> 9 files changed, 150 insertions(+), 150 deletions(-)
>
> diff --git a/libavfilter/dnn_backend_native.c b/libavfilter/dnn_backend_native.c
> index 3e6b86280d..baefea7fcb 100644
> --- a/libavfilter/dnn_backend_native.c
> +++ b/libavfilter/dnn_backend_native.c
> @@ -34,15 +34,15 @@ typedef enum {RELU, TANH, SIGMOID} ActivationFunc;
>
> typedef struct Layer{
> LayerType type;
> - float* output;
> - void* params;
> + float *output;
> + void *params;
> } Layer;
>
> typedef struct ConvolutionalParams{
> int32_t input_num, output_num, kernel_size;
> ActivationFunc activation;
> - float* kernel;
> - float* biases;
> + float *kernel;
> + float *biases;
> } ConvolutionalParams;
>
> typedef struct InputParams{
> @@ -55,16 +55,16 @@ typedef struct DepthToSpaceParams{
>
> // Represents simple feed-forward convolutional network.
> typedef struct ConvolutionalNetwork{
> - Layer* layers;
> + Layer *layers;
> int32_t layers_num;
> } ConvolutionalNetwork;
>
> -static DNNReturnType set_input_output_native(void* model, DNNData* input, DNNData* output)
> +static DNNReturnType set_input_output_native(void *model, DNNData *input, DNNData *output)
> {
> - ConvolutionalNetwork* network = (ConvolutionalNetwork*)model;
> - InputParams* input_params;
> - ConvolutionalParams* conv_params;
> - DepthToSpaceParams* depth_to_space_params;
> + ConvolutionalNetwork *network = (ConvolutionalNetwork *)model;
> + InputParams *input_params;
> + ConvolutionalParams *conv_params;
> + DepthToSpaceParams *depth_to_space_params;
> int cur_width, cur_height, cur_channels;
> int32_t layer;
>
> @@ -72,7 +72,7 @@ static DNNReturnType set_input_output_native(void* model, DNNData* input, DNNDat
> return DNN_ERROR;
> }
> else{
> - input_params = (InputParams*)network->layers[0].params;
> + input_params = (InputParams *)network->layers[0].params;
> input_params->width = cur_width = input->width;
> input_params->height = cur_height = input->height;
> input_params->channels = cur_channels = input->channels;
> @@ -88,14 +88,14 @@ static DNNReturnType set_input_output_native(void* model, DNNData* input, DNNDat
> for (layer = 1; layer < network->layers_num; ++layer){
> switch (network->layers[layer].type){
> case CONV:
> - conv_params = (ConvolutionalParams*)network->layers[layer].params;
> + conv_params = (ConvolutionalParams *)network->layers[layer].params;
> if (conv_params->input_num != cur_channels){
> return DNN_ERROR;
> }
> cur_channels = conv_params->output_num;
> break;
> case DEPTH_TO_SPACE:
> - depth_to_space_params = (DepthToSpaceParams*)network->layers[layer].params;
> + depth_to_space_params = (DepthToSpaceParams *)network->layers[layer].params;
> if (cur_channels % (depth_to_space_params->block_size * depth_to_space_params->block_size) != 0){
> return DNN_ERROR;
> }
> @@ -127,16 +127,16 @@ static DNNReturnType set_input_output_native(void* model, DNNData* input, DNNDat
> // layers_num,layer_type,layer_parameterss,layer_type,layer_parameters...
> // For CONV layer: activation_function, input_num, output_num, kernel_size, kernel, biases
> // For DEPTH_TO_SPACE layer: block_size
> -DNNModel* ff_dnn_load_model_native(const char* model_filename)
> +DNNModel *ff_dnn_load_model_native(const char *model_filename)
> {
> - DNNModel* model = NULL;
> - ConvolutionalNetwork* network = NULL;
> - AVIOContext* model_file_context;
> + DNNModel *model = NULL;
> + ConvolutionalNetwork *network = NULL;
> + AVIOContext *model_file_context;
> int file_size, dnn_size, kernel_size, i;
> int32_t layer;
> LayerType layer_type;
> - ConvolutionalParams* conv_params;
> - DepthToSpaceParams* depth_to_space_params;
> + ConvolutionalParams *conv_params;
> + DepthToSpaceParams *depth_to_space_params;
>
> model = av_malloc(sizeof(DNNModel));
> if (!model){
> @@ -155,7 +155,7 @@ DNNModel* ff_dnn_load_model_native(const char* model_filename)
> av_freep(&model);
> return NULL;
> }
> - model->model = (void*)network;
> + model->model = (void *)network;
>
> network->layers_num = 1 + (int32_t)avio_rl32(model_file_context);
> dnn_size = 4;
> @@ -251,10 +251,10 @@ DNNModel* ff_dnn_load_model_native(const char* model_filename)
> return model;
> }
>
> -static int set_up_conv_layer(Layer* layer, const float* kernel, const float* biases, ActivationFunc activation,
> +static int set_up_conv_layer(Layer *layer, const float *kernel, const float *biases, ActivationFunc activation,
> int32_t input_num, int32_t output_num, int32_t size)
> {
> - ConvolutionalParams* conv_params;
> + ConvolutionalParams *conv_params;
> int kernel_size;
>
> conv_params = av_malloc(sizeof(ConvolutionalParams));
> @@ -282,11 +282,11 @@ static int set_up_conv_layer(Layer* layer, const float* kernel, const float* bia
> return DNN_SUCCESS;
> }
>
> -DNNModel* ff_dnn_load_default_model_native(DNNDefaultModel model_type)
> +DNNModel *ff_dnn_load_default_model_native(DNNDefaultModel model_type)
> {
> - DNNModel* model = NULL;
> - ConvolutionalNetwork* network = NULL;
> - DepthToSpaceParams* depth_to_space_params;
> + DNNModel *model = NULL;
> + ConvolutionalNetwork *network = NULL;
> + DepthToSpaceParams *depth_to_space_params;
> int32_t layer;
>
> model = av_malloc(sizeof(DNNModel));
> @@ -299,7 +299,7 @@ DNNModel* ff_dnn_load_default_model_native(DNNDefaultModel model_type)
> av_freep(&model);
> return NULL;
> }
> - model->model = (void*)network;
> + model->model = (void *)network;
>
> switch (model_type){
> case DNN_SRCNN:
> @@ -365,7 +365,7 @@ DNNModel* ff_dnn_load_default_model_native(DNNDefaultModel model_type)
>
> #define CLAMP_TO_EDGE(x, w) ((x) < 0 ? 0 : ((x) >= (w) ? (w - 1) : (x)))
>
> -static void convolve(const float* input, float* output, const ConvolutionalParams* conv_params, int width, int height)
> +static void convolve(const float *input, float *output, const ConvolutionalParams *conv_params, int width, int height)
> {
> int y, x, n_filter, ch, kernel_y, kernel_x;
> int radius = conv_params->kernel_size >> 1;
> @@ -403,7 +403,7 @@ static void convolve(const float* input, float* output, const ConvolutionalParam
> }
> }
>
> -static void depth_to_space(const float* input, float* output, int block_size, int width, int height, int channels)
> +static void depth_to_space(const float *input, float *output, int block_size, int width, int height, int channels)
> {
> int y, x, by, bx, ch;
> int new_channels = channels / (block_size * block_size);
> @@ -426,20 +426,20 @@ static void depth_to_space(const float* input, float* output, int block_size, in
> }
> }
>
> -DNNReturnType ff_dnn_execute_model_native(const DNNModel* model)
> +DNNReturnType ff_dnn_execute_model_native(const DNNModel *model)
> {
> - ConvolutionalNetwork* network = (ConvolutionalNetwork*)model->model;
> + ConvolutionalNetwork *network = (ConvolutionalNetwork *)model->model;
> int cur_width, cur_height, cur_channels;
> int32_t layer;
> - InputParams* input_params;
> - ConvolutionalParams* conv_params;
> - DepthToSpaceParams* depth_to_space_params;
> + InputParams *input_params;
> + ConvolutionalParams *conv_params;
> + DepthToSpaceParams *depth_to_space_params;
>
> if (network->layers_num <= 0 || network->layers[0].type != INPUT || !network->layers[0].output){
> return DNN_ERROR;
> }
> else{
> - input_params = (InputParams*)network->layers[0].params;
> + input_params = (InputParams *)network->layers[0].params;
> cur_width = input_params->width;
> cur_height = input_params->height;
> cur_channels = input_params->channels;
> @@ -451,12 +451,12 @@ DNNReturnType ff_dnn_execute_model_native(const DNNModel* model)
> }
> switch (network->layers[layer].type){
> case CONV:
> - conv_params = (ConvolutionalParams*)network->layers[layer].params;
> + conv_params = (ConvolutionalParams *)network->layers[layer].params;
> convolve(network->layers[layer - 1].output, network->layers[layer].output, conv_params, cur_width, cur_height);
> cur_channels = conv_params->output_num;
> break;
> case DEPTH_TO_SPACE:
> - depth_to_space_params = (DepthToSpaceParams*)network->layers[layer].params;
> + depth_to_space_params = (DepthToSpaceParams *)network->layers[layer].params;
> depth_to_space(network->layers[layer - 1].output, network->layers[layer].output,
> depth_to_space_params->block_size, cur_width, cur_height, cur_channels);
> cur_height *= depth_to_space_params->block_size;
> @@ -471,19 +471,19 @@ DNNReturnType ff_dnn_execute_model_native(const DNNModel* model)
> return DNN_SUCCESS;
> }
>
> -void ff_dnn_free_model_native(DNNModel** model)
> +void ff_dnn_free_model_native(DNNModel **model)
> {
> - ConvolutionalNetwork* network;
> - ConvolutionalParams* conv_params;
> + ConvolutionalNetwork *network;
> + ConvolutionalParams *conv_params;
> int32_t layer;
>
> if (*model)
> {
> - network = (ConvolutionalNetwork*)(*model)->model;
> + network = (ConvolutionalNetwork *)(*model)->model;
> for (layer = 0; layer < network->layers_num; ++layer){
> av_freep(&network->layers[layer].output);
> if (network->layers[layer].type == CONV){
> - conv_params = (ConvolutionalParams*)network->layers[layer].params;
> + conv_params = (ConvolutionalParams *)network->layers[layer].params;
> av_freep(&conv_params->kernel);
> av_freep(&conv_params->biases);
> }
> diff --git a/libavfilter/dnn_backend_native.h b/libavfilter/dnn_backend_native.h
> index 599c1302e2..adbb7088b4 100644
> --- a/libavfilter/dnn_backend_native.h
> +++ b/libavfilter/dnn_backend_native.h
> @@ -29,12 +29,12 @@
>
> #include "dnn_interface.h"
>
> -DNNModel* ff_dnn_load_model_native(const char* model_filename);
> +DNNModel *ff_dnn_load_model_native(const char *model_filename);
>
> -DNNModel* ff_dnn_load_default_model_native(DNNDefaultModel model_type);
> +DNNModel *ff_dnn_load_default_model_native(DNNDefaultModel model_type);
>
> -DNNReturnType ff_dnn_execute_model_native(const DNNModel* model);
> +DNNReturnType ff_dnn_execute_model_native(const DNNModel *model);
>
> -void ff_dnn_free_model_native(DNNModel** model);
> +void ff_dnn_free_model_native(DNNModel **model);
>
> #endif
> diff --git a/libavfilter/dnn_backend_tf.c b/libavfilter/dnn_backend_tf.c
> index 21516471c3..6307c794a5 100644
> --- a/libavfilter/dnn_backend_tf.c
> +++ b/libavfilter/dnn_backend_tf.c
> @@ -31,24 +31,24 @@
> #include <tensorflow/c/c_api.h>
>
> typedef struct TFModel{
> - TF_Graph* graph;
> - TF_Session* session;
> - TF_Status* status;
> + TF_Graph *graph;
> + TF_Session *session;
> + TF_Status *status;
> TF_Output input, output;
> - TF_Tensor* input_tensor;
> - DNNData* output_data;
> + TF_Tensor *input_tensor;
> + DNNData *output_data;
> } TFModel;
>
> -static void free_buffer(void* data, size_t length)
> +static void free_buffer(void *data, size_t length)
> {
> av_freep(&data);
> }
>
> -static TF_Buffer* read_graph(const char* model_filename)
> +static TF_Buffer *read_graph(const char *model_filename)
> {
> - TF_Buffer* graph_buf;
> - unsigned char* graph_data = NULL;
> - AVIOContext* model_file_context;
> + TF_Buffer *graph_buf;
> + unsigned char *graph_data = NULL;
> + AVIOContext *model_file_context;
> long size, bytes_read;
>
> if (avio_open(&model_file_context, model_filename, AVIO_FLAG_READ) < 0){
> @@ -70,20 +70,20 @@ static TF_Buffer* read_graph(const char* model_filename)
> }
>
> graph_buf = TF_NewBuffer();
> - graph_buf->data = (void*)graph_data;
> + graph_buf->data = (void *)graph_data;
> graph_buf->length = size;
> graph_buf->data_deallocator = free_buffer;
>
> return graph_buf;
> }
>
> -static DNNReturnType set_input_output_tf(void* model, DNNData* input, DNNData* output)
> +static DNNReturnType set_input_output_tf(void *model, DNNData *input, DNNData *output)
> {
> - TFModel* tf_model = (TFModel*)model;
> + TFModel *tf_model = (TFModel *)model;
> int64_t input_dims[] = {1, input->height, input->width, input->channels};
> - TF_SessionOptions* sess_opts;
> - const TF_Operation* init_op = TF_GraphOperationByName(tf_model->graph, "init");
> - TF_Tensor* output_tensor;
> + TF_SessionOptions *sess_opts;
> + const TF_Operation *init_op = TF_GraphOperationByName(tf_model->graph, "init");
> + TF_Tensor *output_tensor;
>
> // Input operation should be named 'x'
> tf_model->input.oper = TF_GraphOperationByName(tf_model->graph, "x");
> @@ -99,7 +99,7 @@ static DNNReturnType set_input_output_tf(void* model, DNNData* input, DNNData* o
> if (!tf_model->input_tensor){
> return DNN_ERROR;
> }
> - input->data = (float*)TF_TensorData(tf_model->input_tensor);
> + input->data = (float *)TF_TensorData(tf_model->input_tensor);
>
> // Output operation should be named 'y'
> tf_model->output.oper = TF_GraphOperationByName(tf_model->graph, "y");
> @@ -156,12 +156,12 @@ static DNNReturnType set_input_output_tf(void* model, DNNData* input, DNNData* o
> return DNN_SUCCESS;
> }
>
> -DNNModel* ff_dnn_load_model_tf(const char* model_filename)
> +DNNModel *ff_dnn_load_model_tf(const char *model_filename)
> {
> - DNNModel* model = NULL;
> - TFModel* tf_model = NULL;
> - TF_Buffer* graph_def;
> - TF_ImportGraphDefOptions* graph_opts;
> + DNNModel *model = NULL;
> + TFModel *tf_model = NULL;
> + TF_Buffer *graph_def;
> + TF_ImportGraphDefOptions *graph_opts;
>
> model = av_malloc(sizeof(DNNModel));
> if (!model){
> @@ -197,25 +197,25 @@ DNNModel* ff_dnn_load_model_tf(const char* model_filename)
> return NULL;
> }
>
> - model->model = (void*)tf_model;
> + model->model = (void *)tf_model;
> model->set_input_output = &set_input_output_tf;
>
> return model;
> }
>
> -static TF_Operation* add_pad_op(TFModel* tf_model, TF_Operation* input_op, int32_t pad)
> +static TF_Operation *add_pad_op(TFModel *tf_model, TF_Operation *input_op, int32_t pad)
> {
> - TF_OperationDescription* op_desc;
> - TF_Operation* op;
> - TF_Tensor* tensor;
> + TF_OperationDescription *op_desc;
> + TF_Operation *op;
> + TF_Tensor *tensor;
> TF_Output input;
> - int32_t* pads;
> + int32_t *pads;
> int64_t pads_shape[] = {4, 2};
>
> op_desc = TF_NewOperation(tf_model->graph, "Const", "pads");
> TF_SetAttrType(op_desc, "dtype", TF_INT32);
> tensor = TF_AllocateTensor(TF_INT32, pads_shape, 2, 4 * 2 * sizeof(int32_t));
> - pads = (int32_t*)TF_TensorData(tensor);
> + pads = (int32_t *)TF_TensorData(tensor);
> pads[0] = 0; pads[1] = 0;
> pads[2] = pad; pads[3] = pad;
> pads[4] = pad; pads[5] = pad;
> @@ -246,11 +246,11 @@ static TF_Operation* add_pad_op(TFModel* tf_model, TF_Operation* input_op, int32
> return op;
> }
>
> -static TF_Operation* add_const_op(TFModel* tf_model, const float* values, const int64_t* dims, int dims_len, const char* name)
> +static TF_Operation *add_const_op(TFModel *tf_model, const float *values, const int64_t *dims, int dims_len, const char *name)
> {
> int dim;
> - TF_OperationDescription* op_desc;
> - TF_Tensor* tensor;
> + TF_OperationDescription *op_desc;
> + TF_Tensor *tensor;
> size_t len;
>
> op_desc = TF_NewOperation(tf_model->graph, "Const", name);
> @@ -269,25 +269,25 @@ static TF_Operation* add_const_op(TFModel* tf_model, const float* values, const
> return TF_FinishOperation(op_desc, tf_model->status);
> }
>
> -static TF_Operation* add_conv_layers(TFModel* tf_model, const float** consts, const int64_t** consts_dims,
> - const int* consts_dims_len, const char** activations,
> - TF_Operation* input_op, int layers_num)
> +static TF_Operation* add_conv_layers(TFModel *tf_model, const float **consts, const int64_t **consts_dims,
> + const int *consts_dims_len, const char **activations,
> + TF_Operation *input_op, int layers_num)
> {
> int i;
> - TF_OperationDescription* op_desc;
> - TF_Operation* op;
> - TF_Operation* transpose_op;
> + TF_OperationDescription *op_desc;
> + TF_Operation *op;
> + TF_Operation *transpose_op;
> TF_Output input;
> int64_t strides[] = {1, 1, 1, 1};
> - int32_t* transpose_perm;
> - TF_Tensor* tensor;
> + int32_t *transpose_perm;
> + TF_Tensor *tensor;
> int64_t transpose_perm_shape[] = {4};
> char name_buffer[256];
>
> op_desc = TF_NewOperation(tf_model->graph, "Const", "transpose_perm");
> TF_SetAttrType(op_desc, "dtype", TF_INT32);
> tensor = TF_AllocateTensor(TF_INT32, transpose_perm_shape, 1, 4 * sizeof(int32_t));
> - transpose_perm = (int32_t*)TF_TensorData(tensor);
> + transpose_perm = (int32_t *)TF_TensorData(tensor);
> transpose_perm[0] = 1;
> transpose_perm[1] = 2;
> transpose_perm[2] = 3;
> @@ -368,13 +368,13 @@ static TF_Operation* add_conv_layers(TFModel* tf_model, const float** consts, co
> return input_op;
> }
>
> -DNNModel* ff_dnn_load_default_model_tf(DNNDefaultModel model_type)
> +DNNModel *ff_dnn_load_default_model_tf(DNNDefaultModel model_type)
> {
> - DNNModel* model = NULL;
> - TFModel* tf_model = NULL;
> - TF_OperationDescription* op_desc;
> - TF_Operation* op;
> - TF_Operation* const_ops_buffer[6];
> + DNNModel *model = NULL;
> + TFModel *tf_model = NULL;
> + TF_OperationDescription *op_desc;
> + TF_Operation *op;
> + TF_Operation *const_ops_buffer[6];
> TF_Output input;
> int64_t input_shape[] = {1, -1, -1, 1};
>
> @@ -460,16 +460,16 @@ DNNModel* ff_dnn_load_default_model_tf(DNNDefaultModel model_type)
> CLEANUP_ON_ERROR(tf_model, model);
> }
>
> - model->model = (void*)tf_model;
> + model->model = (void *)tf_model;
> model->set_input_output = &set_input_output_tf;
>
> return model;
> }
>
> -DNNReturnType ff_dnn_execute_model_tf(const DNNModel* model)
> +DNNReturnType ff_dnn_execute_model_tf(const DNNModel *model)
> {
> - TFModel* tf_model = (TFModel*)model->model;
> - TF_Tensor* output_tensor;
> + TFModel *tf_model = (TFModel *)model->model;
> + TF_Tensor *output_tensor;
>
> TF_SessionRun(tf_model->session, NULL,
> &tf_model->input, &tf_model->input_tensor, 1,
> @@ -489,12 +489,12 @@ DNNReturnType ff_dnn_execute_model_tf(const DNNModel* model)
> }
> }
>
> -void ff_dnn_free_model_tf(DNNModel** model)
> +void ff_dnn_free_model_tf(DNNModel **model)
> {
> - TFModel* tf_model;
> + TFModel *tf_model;
>
> if (*model){
> - tf_model = (TFModel*)(*model)->model;
> + tf_model = (TFModel *)(*model)->model;
> if (tf_model->graph){
> TF_DeleteGraph(tf_model->graph);
> }
> diff --git a/libavfilter/dnn_backend_tf.h b/libavfilter/dnn_backend_tf.h
> index 08e4a568b3..357a82d948 100644
> --- a/libavfilter/dnn_backend_tf.h
> +++ b/libavfilter/dnn_backend_tf.h
> @@ -29,12 +29,12 @@
>
> #include "dnn_interface.h"
>
> -DNNModel* ff_dnn_load_model_tf(const char* model_filename);
> +DNNModel *ff_dnn_load_model_tf(const char *model_filename);
>
> -DNNModel* ff_dnn_load_default_model_tf(DNNDefaultModel model_type);
> +DNNModel *ff_dnn_load_default_model_tf(DNNDefaultModel model_type);
>
> -DNNReturnType ff_dnn_execute_model_tf(const DNNModel* model);
> +DNNReturnType ff_dnn_execute_model_tf(const DNNModel *model);
>
> -void ff_dnn_free_model_tf(DNNModel** model);
> +void ff_dnn_free_model_tf(DNNModel **model);
>
> #endif
> diff --git a/libavfilter/dnn_espcn.h b/libavfilter/dnn_espcn.h
> index 315ecf031d..a0dd61cd0d 100644
> --- a/libavfilter/dnn_espcn.h
> +++ b/libavfilter/dnn_espcn.h
> @@ -5398,7 +5398,7 @@ static const long int espcn_conv3_bias_dims[] = {
> 4
> };
>
> -static const float* espcn_consts[] = {
> +static const float *espcn_consts[] = {
> espcn_conv1_kernel,
> espcn_conv1_bias,
> espcn_conv2_kernel,
> @@ -5407,7 +5407,7 @@ static const float* espcn_consts[] = {
> espcn_conv3_bias
> };
>
> -static const long int* espcn_consts_dims[] = {
> +static const long int *espcn_consts_dims[] = {
> espcn_conv1_kernel_dims,
> espcn_conv1_bias_dims,
> espcn_conv2_kernel_dims,
> @@ -5429,7 +5429,7 @@ static const char espcn_tanh[] = "Tanh";
>
> static const char espcn_sigmoid[] = "Sigmoid";
>
> -static const char* espcn_activations[] = {
> +static const char *espcn_activations[] = {
> espcn_tanh,
> espcn_tanh,
> espcn_sigmoid
> diff --git a/libavfilter/dnn_interface.c b/libavfilter/dnn_interface.c
> index 87c90526be..ca7d6d1ea5 100644
> --- a/libavfilter/dnn_interface.c
> +++ b/libavfilter/dnn_interface.c
> @@ -28,9 +28,9 @@
> #include "dnn_backend_tf.h"
> #include "libavutil/mem.h"
>
> -DNNModule* ff_get_dnn_module(DNNBackendType backend_type)
> +DNNModule *ff_get_dnn_module(DNNBackendType backend_type)
> {
> - DNNModule* dnn_module;
> + DNNModule *dnn_module;
>
> dnn_module = av_malloc(sizeof(DNNModule));
> if(!dnn_module){
> diff --git a/libavfilter/dnn_interface.h b/libavfilter/dnn_interface.h
> index 6b820d1d5b..a69717ae62 100644
> --- a/libavfilter/dnn_interface.h
> +++ b/libavfilter/dnn_interface.h
> @@ -33,31 +33,31 @@ typedef enum {DNN_NATIVE, DNN_TF} DNNBackendType;
> typedef enum {DNN_SRCNN, DNN_ESPCN} DNNDefaultModel;
>
> typedef struct DNNData{
> - float* data;
> + float *data;
> int width, height, channels;
> } DNNData;
>
> typedef struct DNNModel{
> // Stores model that can be different for different backends.
> - void* model;
> + void *model;
> // Sets model input and output, while allocating additional memory for intermediate calculations.
> // Should be called at least once before model execution.
> - DNNReturnType (*set_input_output)(void* model, DNNData* input, DNNData* output);
> + DNNReturnType (*set_input_output)(void *model, DNNData *input, DNNData *output);
> } DNNModel;
>
> // Stores pointers to functions for loading, executing, freeing DNN models for one of the backends.
> typedef struct DNNModule{
> // Loads model and parameters from given file. Returns NULL if it is not possible.
> - DNNModel* (*load_model)(const char* model_filename);
> + DNNModel *(*load_model)(const char *model_filename);
> // Loads one of the default models
> - DNNModel* (*load_default_model)(DNNDefaultModel model_type);
> + DNNModel *(*load_default_model)(DNNDefaultModel model_type);
> // Executes model with specified input and output. Returns DNN_ERROR otherwise.
> - DNNReturnType (*execute_model)(const DNNModel* model);
> + DNNReturnType (*execute_model)(const DNNModel *model);
> // Frees memory allocated for model.
> - void (*free_model)(DNNModel** model);
> + void (*free_model)(DNNModel **model);
> } DNNModule;
>
> // Initializes DNNModule depending on chosen backend.
> -DNNModule* ff_get_dnn_module(DNNBackendType backend_type);
> +DNNModule *ff_get_dnn_module(DNNBackendType backend_type);
>
> #endif
> diff --git a/libavfilter/dnn_srcnn.h b/libavfilter/dnn_srcnn.h
> index 7ec11654b3..26143654b8 100644
> --- a/libavfilter/dnn_srcnn.h
> +++ b/libavfilter/dnn_srcnn.h
> @@ -2110,7 +2110,7 @@ static const long int srcnn_conv3_bias_dims[] = {
> 1
> };
>
> -static const float* srcnn_consts[] = {
> +static const float *srcnn_consts[] = {
> srcnn_conv1_kernel,
> srcnn_conv1_bias,
> srcnn_conv2_kernel,
> @@ -2119,7 +2119,7 @@ static const float* srcnn_consts[] = {
> srcnn_conv3_bias
> };
>
> -static const long int* srcnn_consts_dims[] = {
> +static const long int *srcnn_consts_dims[] = {
> srcnn_conv1_kernel_dims,
> srcnn_conv1_bias_dims,
> srcnn_conv2_kernel_dims,
> @@ -2139,7 +2139,7 @@ static const int srcnn_consts_dims_len[] = {
>
> static const char srcnn_relu[] = "Relu";
>
> -static const char* srcnn_activations[] = {
> +static const char *srcnn_activations[] = {
> srcnn_relu,
> srcnn_relu,
> srcnn_relu
> diff --git a/libavfilter/vf_sr.c b/libavfilter/vf_sr.c
> index f3ca9a09a8..944a0e28e7 100644
> --- a/libavfilter/vf_sr.c
> +++ b/libavfilter/vf_sr.c
> @@ -39,13 +39,13 @@ typedef struct SRContext {
> const AVClass *class;
>
> SRModel model_type;
> - char* model_filename;
> + char *model_filename;
> DNNBackendType backend_type;
> - DNNModule* dnn_module;
> - DNNModel* model;
> + DNNModule *dnn_module;
> + DNNModel *model;
> DNNData input, output;
> int scale_factor;
> - struct SwsContext* sws_context;
> + struct SwsContext *sws_context;
> int sws_slice_h;
> } SRContext;
>
> @@ -67,9 +67,9 @@ static const AVOption sr_options[] = {
>
> AVFILTER_DEFINE_CLASS(sr);
>
> -static av_cold int init(AVFilterContext* context)
> +static av_cold int init(AVFilterContext *context)
> {
> - SRContext* sr_context = context->priv;
> + SRContext *sr_context = context->priv;
>
> sr_context->dnn_module = ff_get_dnn_module(sr_context->backend_type);
> if (!sr_context->dnn_module){
> @@ -98,12 +98,12 @@ static av_cold int init(AVFilterContext* context)
> return 0;
> }
>
> -static int query_formats(AVFilterContext* context)
> +static int query_formats(AVFilterContext *context)
> {
> const enum AVPixelFormat pixel_formats[] = {AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV444P,
> AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P, AV_PIX_FMT_GRAY8,
> AV_PIX_FMT_NONE};
> - AVFilterFormats* formats_list;
> + AVFilterFormats *formats_list;
>
> formats_list = ff_make_format_list(pixel_formats);
> if (!formats_list){
> @@ -113,11 +113,11 @@ static int query_formats(AVFilterContext* context)
> return ff_set_common_formats(context, formats_list);
> }
>
> -static int config_props(AVFilterLink* inlink)
> +static int config_props(AVFilterLink *inlink)
> {
> - AVFilterContext* context = inlink->dst;
> - SRContext* sr_context = context->priv;
> - AVFilterLink* outlink = context->outputs[0];
> + AVFilterContext *context = inlink->dst;
> + SRContext *sr_context = context->priv;
> + AVFilterLink *outlink = context->outputs[0];
> DNNReturnType result;
> int sws_src_h, sws_src_w, sws_dst_h, sws_dst_w;
>
> @@ -202,18 +202,18 @@ static int config_props(AVFilterLink* inlink)
> }
>
> typedef struct ThreadData{
> - uint8_t* data;
> + uint8_t *data;
> int data_linesize, height, width;
> } ThreadData;
>
> -static int uint8_to_float(AVFilterContext* context, void* arg, int jobnr, int nb_jobs)
> +static int uint8_to_float(AVFilterContext *context, void *arg, int jobnr, int nb_jobs)
> {
> - SRContext* sr_context = context->priv;
> - const ThreadData* td = arg;
> + SRContext *sr_context = context->priv;
> + const ThreadData *td = arg;
> const int slice_start = (td->height * jobnr ) / nb_jobs;
> const int slice_end = (td->height * (jobnr + 1)) / nb_jobs;
> - const uint8_t* src = td->data + slice_start * td->data_linesize;
> - float* dst = sr_context->input.data + slice_start * td->width;
> + const uint8_t *src = td->data + slice_start * td->data_linesize;
> + float *dst = sr_context->input.data + slice_start * td->width;
> int y, x;
>
> for (y = slice_start; y < slice_end; ++y){
> @@ -227,14 +227,14 @@ static int uint8_to_float(AVFilterContext* context, void* arg, int jobnr, int nb
> return 0;
> }
>
> -static int float_to_uint8(AVFilterContext* context, void* arg, int jobnr, int nb_jobs)
> +static int float_to_uint8(AVFilterContext *context, void *arg, int jobnr, int nb_jobs)
> {
> - SRContext* sr_context = context->priv;
> - const ThreadData* td = arg;
> + SRContext *sr_context = context->priv;
> + const ThreadData *td = arg;
> const int slice_start = (td->height * jobnr ) / nb_jobs;
> const int slice_end = (td->height * (jobnr + 1)) / nb_jobs;
> - const float* src = sr_context->output.data + slice_start * td->width;
> - uint8_t* dst = td->data + slice_start * td->data_linesize;
> + const float *src = sr_context->output.data + slice_start * td->width;
> + uint8_t *dst = td->data + slice_start * td->data_linesize;
> int y, x;
>
> for (y = slice_start; y < slice_end; ++y){
> @@ -248,12 +248,12 @@ static int float_to_uint8(AVFilterContext* context, void* arg, int jobnr, int nb
> return 0;
> }
>
> -static int filter_frame(AVFilterLink* inlink, AVFrame* in)
> +static int filter_frame(AVFilterLink *inlink, AVFrame *in)
> {
> - AVFilterContext* context = inlink->dst;
> - SRContext* sr_context = context->priv;
> - AVFilterLink* outlink = context->outputs[0];
> - AVFrame* out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
> + AVFilterContext *context = inlink->dst;
> + SRContext *sr_context = context->priv;
> + AVFilterLink *outlink = context->outputs[0];
> + AVFrame *out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
> ThreadData td;
> int nb_threads;
> DNNReturnType dnn_result;
> @@ -307,9 +307,9 @@ static int filter_frame(AVFilterLink* inlink, AVFrame* in)
> return ff_filter_frame(outlink, out);
> }
>
> -static av_cold void uninit(AVFilterContext* context)
> +static av_cold void uninit(AVFilterContext *context)
> {
> - SRContext* sr_context = context->priv;
> + SRContext *sr_context = context->priv;
>
> if (sr_context->dnn_module){
> (sr_context->dnn_module->free_model)(&sr_context->model);
> --
> 2.14.1
>
> _______________________________________________
> ffmpeg-devel mailing list
> ffmpeg-devel at ffmpeg.org
> http://ffmpeg.org/mailman/listinfo/ffmpeg-devel
LGTM.
I intend to push it by tomorrow.
More information about the ffmpeg-devel
mailing list