[FFmpeg-devel] [PATCH V2 7/8] lavfi/dnn_backend_common: Return specific error codes

Shubhanshu Saxena shubhanshu.e01 at gmail.com
Wed Mar 2 20:05:55 EET 2022


Switch to returning specific error codes or DNN_GENERIC_ERROR
when an error is encountered in the common DNN backend functions.

Signed-off-by: Shubhanshu Saxena <shubhanshu.e01 at gmail.com>
---
 libavfilter/dnn/dnn_backend_common.c | 35 ++++++++++++++--------------
 libavfilter/dnn/dnn_backend_common.h | 22 +++++++----------
 2 files changed, 27 insertions(+), 30 deletions(-)

diff --git a/libavfilter/dnn/dnn_backend_common.c b/libavfilter/dnn/dnn_backend_common.c
index 6a9c4cc87f..64ed441415 100644
--- a/libavfilter/dnn/dnn_backend_common.c
+++ b/libavfilter/dnn/dnn_backend_common.c
@@ -47,19 +47,19 @@ int ff_check_exec_params(void *ctx, DNNBackendType backend, DNNFunctionType func
         // currently, the filter does not need multiple outputs,
         // so we just pending the support until we really need it.
         avpriv_report_missing_feature(ctx, "multiple outputs");
-        return AVERROR(EINVAL);
+        return AVERROR(ENOSYS);
     }
 
     return 0;
 }
 
-DNNReturnType ff_dnn_fill_task(TaskItem *task, DNNExecBaseParams *exec_params, void *backend_model, int async, int do_ioproc) {
+int ff_dnn_fill_task(TaskItem *task, DNNExecBaseParams *exec_params, void *backend_model, int async, int do_ioproc) {
     if (task == NULL || exec_params == NULL || backend_model == NULL)
-        return DNN_ERROR;
+        return AVERROR(EINVAL);
     if (do_ioproc != 0 && do_ioproc != 1)
-        return DNN_ERROR;
+        return AVERROR(EINVAL);
     if (async != 0 && async != 1)
-        return DNN_ERROR;
+        return AVERROR(EINVAL);
 
     task->do_ioproc = do_ioproc;
     task->async = async;
@@ -89,17 +89,17 @@ static void *async_thread_routine(void *args)
     return DNN_ASYNC_SUCCESS;
 }
 
-DNNReturnType ff_dnn_async_module_cleanup(DNNAsyncExecModule *async_module)
+int ff_dnn_async_module_cleanup(DNNAsyncExecModule *async_module)
 {
     void *status = 0;
     if (!async_module) {
-        return DNN_ERROR;
+        return AVERROR(EINVAL);
     }
 #if HAVE_PTHREAD_CANCEL
     pthread_join(async_module->thread_id, &status);
     if (status == DNN_ASYNC_FAIL) {
         av_log(NULL, AV_LOG_ERROR, "Last Inference Failed.\n");
-        return DNN_ERROR;
+        return DNN_GENERIC_ERROR;
     }
 #endif
     async_module->start_inference = NULL;
@@ -108,30 +108,31 @@ DNNReturnType ff_dnn_async_module_cleanup(DNNAsyncExecModule *async_module)
     return DNN_SUCCESS;
 }
 
-DNNReturnType ff_dnn_start_inference_async(void *ctx, DNNAsyncExecModule *async_module)
+int ff_dnn_start_inference_async(void *ctx, DNNAsyncExecModule *async_module)
 {
     int ret;
     void *status = 0;
 
     if (!async_module) {
         av_log(ctx, AV_LOG_ERROR, "async_module is null when starting async inference.\n");
-        return DNN_ERROR;
+        return AVERROR(EINVAL);
     }
 
 #if HAVE_PTHREAD_CANCEL
     pthread_join(async_module->thread_id, &status);
     if (status == DNN_ASYNC_FAIL) {
         av_log(ctx, AV_LOG_ERROR, "Unable to start inference as previous inference failed.\n");
-        return DNN_ERROR;
+        return DNN_GENERIC_ERROR;
     }
     ret = pthread_create(&async_module->thread_id, NULL, async_thread_routine, async_module);
     if (ret != 0) {
         av_log(ctx, AV_LOG_ERROR, "Unable to start async inference.\n");
-        return DNN_ERROR;
+        return ret;
     }
 #else
-    if (async_module->start_inference(async_module->args) != DNN_SUCCESS) {
-        return DNN_ERROR;
+    ret = async_module->start_inference(async_module->args);
+    if (ret != DNN_SUCCESS) {
+        return ret;
     }
     async_module->callback(async_module->args);
 #endif
@@ -158,7 +159,7 @@ DNNAsyncStatusType ff_dnn_get_result_common(Queue *task_queue, AVFrame **in, AVF
     return DAST_SUCCESS;
 }
 
-DNNReturnType ff_dnn_fill_gettingoutput_task(TaskItem *task, DNNExecBaseParams *exec_params, void *backend_model, int input_height, int input_width, void *ctx)
+int ff_dnn_fill_gettingoutput_task(TaskItem *task, DNNExecBaseParams *exec_params, void *backend_model, int input_height, int input_width, void *ctx)
 {
     AVFrame *in_frame = NULL;
     AVFrame *out_frame = NULL;
@@ -166,14 +167,14 @@ DNNReturnType ff_dnn_fill_gettingoutput_task(TaskItem *task, DNNExecBaseParams *
     in_frame = av_frame_alloc();
     if (!in_frame) {
         av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for input frame\n");
-        return DNN_ERROR;
+        return AVERROR(ENOMEM);
     }
 
     out_frame = av_frame_alloc();
     if (!out_frame) {
         av_frame_free(&in_frame);
         av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for output frame\n");
-        return DNN_ERROR;
+        return AVERROR(ENOMEM);
     }
 
     in_frame->width = input_width;
diff --git a/libavfilter/dnn/dnn_backend_common.h b/libavfilter/dnn/dnn_backend_common.h
index 6b6a5e21ae..fa79caee1f 100644
--- a/libavfilter/dnn/dnn_backend_common.h
+++ b/libavfilter/dnn/dnn_backend_common.h
@@ -60,7 +60,7 @@ typedef struct DNNAsyncExecModule {
      * Synchronous inference function for the backend
      * with corresponding request item as the argument.
      */
-    DNNReturnType (*start_inference)(void *request);
+    int (*start_inference)(void *request);
 
     /**
      * Completion Callback for the backend.
@@ -92,20 +92,18 @@ int ff_check_exec_params(void *ctx, DNNBackendType backend, DNNFunctionType func
  * @param async flag for async execution. Must be 0 or 1
  * @param do_ioproc flag for IO processing. Must be 0 or 1
  *
- * @retval DNN_SUCCESS if successful
- * @retval DNN_ERROR if flags are invalid or any parameter is NULL
+ * @returns DNN_SUCCESS if successful or error code otherwise.
  */
-DNNReturnType ff_dnn_fill_task(TaskItem *task, DNNExecBaseParams *exec_params, void *backend_model, int async, int do_ioproc);
+int ff_dnn_fill_task(TaskItem *task, DNNExecBaseParams *exec_params, void *backend_model, int async, int do_ioproc);
 
 /**
  * Join the Async Execution thread and set module pointers to NULL.
  *
  * @param async_module pointer to DNNAsyncExecModule module
  *
- * @retval DNN_SUCCESS if successful
- * @retval DNN_ERROR if async_module is NULL
+ * @returns DNN_SUCCESS if successful or error code otherwise.
  */
-DNNReturnType ff_dnn_async_module_cleanup(DNNAsyncExecModule *async_module);
+int ff_dnn_async_module_cleanup(DNNAsyncExecModule *async_module);
 
 /**
  * Start asynchronous inference routine for the TensorFlow
@@ -119,10 +117,9 @@ DNNReturnType ff_dnn_async_module_cleanup(DNNAsyncExecModule *async_module);
  * @param ctx pointer to the backend context
  * @param async_module pointer to DNNAsyncExecModule module
  *
- * @retval DNN_SUCCESS on the start of async inference.
- * @retval DNN_ERROR in case async inference cannot be started
+ * @returns DNN_SUCCESS on the start of async inference or error code otherwise.
  */
-DNNReturnType ff_dnn_start_inference_async(void *ctx, DNNAsyncExecModule *async_module);
+int ff_dnn_start_inference_async(void *ctx, DNNAsyncExecModule *async_module);
 
 /**
  * Extract input and output frame from the Task Queue after
@@ -149,9 +146,8 @@ DNNAsyncStatusType ff_dnn_get_result_common(Queue *task_queue, AVFrame **in, AVF
  * @param input_width width of input frame
  * @param ctx pointer to the backend context
  *
- * @retval DNN_SUCCESS if successful
- * @retval DNN_ERROR if allocation fails
+ * @returns DNN_SUCCESS if successful or error code otherwise.
  */
-DNNReturnType ff_dnn_fill_gettingoutput_task(TaskItem *task, DNNExecBaseParams *exec_params, void *backend_model, int input_height, int input_width, void *ctx);
+int ff_dnn_fill_gettingoutput_task(TaskItem *task, DNNExecBaseParams *exec_params, void *backend_model, int input_height, int input_width, void *ctx);
 
 #endif
-- 
2.32.0



More information about the ffmpeg-devel mailing list