[FFmpeg-devel] [PATCH v2 3/4] libavfilter/vf_dnn_detect: Add yolov3 support
wenbin.chen at intel.com
wenbin.chen at intel.com
Tue Dec 12 04:33:33 EET 2023
From: Wenbin Chen <wenbin.chen at intel.com>
Add yolov3 support. The difference of yolov3 is that it has multiple
outputs in different scale to perform better on both large and small
object.
The model detail refer to: https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/yolo-v3-tf
Signed-off-by: Wenbin Chen <wenbin.chen at intel.com>
---
libavfilter/vf_dnn_detect.c | 28 +++++++++++++++++++++++++++-
1 file changed, 27 insertions(+), 1 deletion(-)
diff --git a/libavfilter/vf_dnn_detect.c b/libavfilter/vf_dnn_detect.c
index 86f61c9907..7a32b191c3 100644
--- a/libavfilter/vf_dnn_detect.c
+++ b/libavfilter/vf_dnn_detect.c
@@ -35,6 +35,7 @@
typedef enum {
DDMT_SSD,
DDMT_YOLOV1V2,
+ DDMT_YOLOV3
} DNNDetectionModelType;
typedef struct DnnDetectContext {
@@ -73,6 +74,7 @@ static const AVOption dnn_detect_options[] = {
{ "model_type", "DNN detection model type", OFFSET2(model_type), AV_OPT_TYPE_INT, { .i64 = DDMT_SSD }, INT_MIN, INT_MAX, FLAGS, "model_type" },
{ "ssd", "output shape [1, 1, N, 7]", 0, AV_OPT_TYPE_CONST, { .i64 = DDMT_SSD }, 0, 0, FLAGS, "model_type" },
{ "yolo", "output shape [1, N*Cx*Cy*DetectionBox]", 0, AV_OPT_TYPE_CONST, { .i64 = DDMT_YOLOV1V2 }, 0, 0, FLAGS, "model_type" },
+ { "yolov3", "outputs shape [1, N*D, Cx, Cy]", 0, AV_OPT_TYPE_CONST, { .i64 = DDMT_YOLOV3 }, 0, 0, FLAGS, "model_type" },
{ "cell_w", "cell width", OFFSET2(cell_w), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, INTMAX_MAX, FLAGS },
{ "cell_h", "cell height", OFFSET2(cell_h), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, INTMAX_MAX, FLAGS },
{ "nb_classes", "The number of class", OFFSET2(nb_classes), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, INTMAX_MAX, FLAGS },
@@ -146,6 +148,11 @@ static int dnn_detect_parse_yolo_output(AVFrame *frame, DNNData *output, int out
cell_h = ctx->cell_h;
scale_w = cell_w;
scale_h = cell_h;
+ } else {
+ cell_w = output[output_index].width;
+ cell_h = output[output_index].height;
+ scale_w = ctx->scale_width;
+ scale_h = ctx->scale_height;
}
box_size = nb_classes + 5;
@@ -173,6 +180,7 @@ static int dnn_detect_parse_yolo_output(AVFrame *frame, DNNData *output, int out
output[output_index].height *
output[output_index].width / box_size / cell_w / cell_h;
+ anchors = anchors + (detection_boxes * output_index * 2);
/**
* find all candidate bbox
* yolo output can be reshaped to [B, N*D, Cx, Cy]
@@ -284,6 +292,21 @@ static int dnn_detect_post_proc_yolo(AVFrame *frame, DNNData *output, AVFilterCo
return 0;
}
+static int dnn_detect_post_proc_yolov3(AVFrame *frame, DNNData *output,
+ AVFilterContext *filter_ctx, int nb_outputs)
+{
+ int ret = 0;
+ for (int i = 0; i < nb_outputs; i++) {
+ ret = dnn_detect_parse_yolo_output(frame, output, i, filter_ctx);
+ if (ret < 0)
+ return ret;
+ }
+ ret = dnn_detect_fill_side_data(frame, filter_ctx);
+ if (ret < 0)
+ return ret;
+ return 0;
+}
+
static int dnn_detect_post_proc_ssd(AVFrame *frame, DNNData *output, AVFilterContext *filter_ctx)
{
DnnDetectContext *ctx = filter_ctx->priv;
@@ -380,8 +403,11 @@ static int dnn_detect_post_proc_ov(AVFrame *frame, DNNData *output, int nb_outpu
ret = dnn_detect_post_proc_yolo(frame, output, filter_ctx);
if (ret < 0)
return ret;
+ case DDMT_YOLOV3:
+ ret = dnn_detect_post_proc_yolov3(frame, output, filter_ctx, nb_outputs);
+ if (ret < 0)
+ return ret;
}
-
return 0;
}
--
2.34.1
More information about the ffmpeg-devel
mailing list