[FFmpeg-devel] [PATCH v5] libavfi/dnn: add LibTorch as one of DNN backend
Guo, Yejun
yejun.guo at intel.com
Thu Mar 14 13:38:25 EET 2024
> -----Original Message-----
> From: ffmpeg-devel <ffmpeg-devel-bounces at ffmpeg.org> On Behalf Of
> wenbin.chen-at-intel.com at ffmpeg.org
> Sent: Monday, March 11, 2024 1:02 PM
> To: ffmpeg-devel at ffmpeg.org
> Subject: [FFmpeg-devel] [PATCH v5] libavfi/dnn: add LibTorch as one of DNN
> backend
>
> From: Wenbin Chen <wenbin.chen at intel.com>
>
> PyTorch is an open source machine learning framework that accelerates
> the path from research prototyping to production deployment. Official
> website: https://pytorch.org/. We call the C++ library of PyTorch as
> LibTorch, the same below.
>
> To build FFmpeg with LibTorch, please take following steps as reference:
> 1. download LibTorch C++ library in https://pytorch.org/get-started/locally/,
> please select C++/Java for language, and other options as your need.
> Please download cxx11 ABI version (libtorch-cxx11-abi-shared-with-deps-
> *.zip).
> 2. unzip the file to your own dir, with command
> unzip libtorch-shared-with-deps-latest.zip -d your_dir
> 3. export libtorch_root/libtorch/include and
> libtorch_root/libtorch/include/torch/csrc/api/include to $PATH
> export libtorch_root/libtorch/lib/ to $LD_LIBRARY_PATH
> 4. config FFmpeg with ../configure --enable-libtorch --extra-cflag=-
> I/libtorch_root/libtorch/include --extra-cflag=-
> I/libtorch_root/libtorch/include/torch/csrc/api/include --extra-ldflags=-
> L/libtorch_root/libtorch/lib/
> 5. make
>
> To run FFmpeg DNN inference with LibTorch backend:
> ./ffmpeg -i input.jpg -vf
> dnn_processing=dnn_backend=torch:model=LibTorch_model.pt -y output.jpg
> The LibTorch_model.pt can be generated by Python with torch.jit.script() api.
> Please note, torch.jit.trace() is not recommanded, since it does not support
> ambiguous input size.
Can you provide more detail (maybe a link from pytorch) about the
libtorch_model.py generation and so we can have a try.
>
> Signed-off-by: Ting Fu <ting.fu at intel.com>
> Signed-off-by: Wenbin Chen <wenbin.chen at intel.com>
> ---
> configure | 5 +-
> libavfilter/dnn/Makefile | 1 +
> libavfilter/dnn/dnn_backend_torch.cpp | 597
> ++++++++++++++++++++++++++
> libavfilter/dnn/dnn_interface.c | 5 +
> libavfilter/dnn_filter_common.c | 15 +-
> libavfilter/dnn_interface.h | 2 +-
> libavfilter/vf_dnn_processing.c | 3 +
> 7 files changed, 624 insertions(+), 4 deletions(-)
> create mode 100644 libavfilter/dnn/dnn_backend_torch.cpp
>
> +static int fill_model_input_th(THModel *th_model, THRequestItem *request)
> +{
> + LastLevelTaskItem *lltask = NULL;
> + TaskItem *task = NULL;
> + THInferRequest *infer_request = NULL;
> + DNNData input = { 0 };
> + THContext *ctx = &th_model->ctx;
> + int ret, width_idx, height_idx, channel_idx;
> +
> + lltask = (LastLevelTaskItem *)ff_queue_pop_front(th_model-
> >lltask_queue);
> + if (!lltask) {
> + ret = AVERROR(EINVAL);
> + goto err;
> + }
> + request->lltask = lltask;
> + task = lltask->task;
> + infer_request = request->infer_request;
> +
> + ret = get_input_th(th_model, &input, NULL);
> + if ( ret != 0) {
> + goto err;
> + }
> + width_idx = dnn_get_width_idx_by_layout(input.layout);
> + height_idx = dnn_get_height_idx_by_layout(input.layout);
> + channel_idx = dnn_get_channel_idx_by_layout(input.layout);
> + input.dims[height_idx] = task->in_frame->height;
> + input.dims[width_idx] = task->in_frame->width;
> + input.data = av_malloc(input.dims[height_idx] * input.dims[width_idx] *
> + input.dims[channel_idx] * sizeof(float));
> + if (!input.data)
> + return AVERROR(ENOMEM);
> + infer_request->input_tensor = new torch::Tensor();
> + infer_request->output = new torch::Tensor();
> +
> + switch (th_model->model->func_type) {
> + case DFT_PROCESS_FRAME:
> + input.scale = 255;
> + if (task->do_ioproc) {
> + if (th_model->model->frame_pre_proc != NULL) {
> + th_model->model->frame_pre_proc(task->in_frame, &input,
> th_model->model->filter_ctx);
> + } else {
> + ff_proc_from_frame_to_dnn(task->in_frame, &input, ctx);
> + }
> + }
> + break;
> + default:
> + avpriv_report_missing_feature(NULL, "model function type %d",
> th_model->model->func_type);
> + break;
> + }
> + *infer_request->input_tensor = torch::from_blob(input.data,
> + {1, 1, input.dims[channel_idx], input.dims[height_idx],
> input.dims[width_idx]},
An extra dimension is added to support multiple frames for algorithms
such as VideoSuperResolution, besides batch size, channel, height and width.
Let's first support the regular dimension for NCHW/NHWC, and then
add support for multiple frames.
More information about the ffmpeg-devel
mailing list