FFmpeg
 All Data Structures Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
snowenc.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2004 Michael Niedermayer <michaelni@gmx.at>
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 
21 #include "libavutil/intmath.h"
22 #include "libavutil/log.h"
23 #include "libavutil/opt.h"
24 #include "avcodec.h"
25 #include "internal.h"
26 #include "dsputil.h"
27 #include "internal.h"
28 #include "dwt.h"
29 #include "snow.h"
30 
31 #include "rangecoder.h"
32 #include "mathops.h"
33 
34 #include "mpegvideo.h"
35 #include "h263.h"
36 
37 #undef NDEBUG
38 #include <assert.h>
39 
40 #define QUANTIZE2 0
41 
42 #if QUANTIZE2==1
43 #define Q2_STEP 8
44 
45 static void find_sse(SnowContext *s, Plane *p, int *score, int score_stride, IDWTELEM *r0, IDWTELEM *r1, int level, int orientation){
46  SubBand *b= &p->band[level][orientation];
47  int x, y;
48  int xo=0;
49  int yo=0;
50  int step= 1 << (s->spatial_decomposition_count - level);
51 
52  if(orientation&1)
53  xo= step>>1;
54  if(orientation&2)
55  yo= step>>1;
56 
57  //FIXME bias for nonzero ?
58  //FIXME optimize
59  memset(score, 0, sizeof(*score)*score_stride*((p->height + Q2_STEP-1)/Q2_STEP));
60  for(y=0; y<p->height; y++){
61  for(x=0; x<p->width; x++){
62  int sx= (x-xo + step/2) / step / Q2_STEP;
63  int sy= (y-yo + step/2) / step / Q2_STEP;
64  int v= r0[x + y*p->width] - r1[x + y*p->width];
65  assert(sx>=0 && sy>=0 && sx < score_stride);
66  v= ((v+8)>>4)<<4;
67  score[sx + sy*score_stride] += v*v;
68  assert(score[sx + sy*score_stride] >= 0);
69  }
70  }
71 }
72 
73 static void dequantize_all(SnowContext *s, Plane *p, IDWTELEM *buffer, int width, int height){
74  int level, orientation;
75 
76  for(level=0; level<s->spatial_decomposition_count; level++){
77  for(orientation=level ? 1 : 0; orientation<4; orientation++){
78  SubBand *b= &p->band[level][orientation];
79  IDWTELEM *dst= buffer + (b->ibuf - s->spatial_idwt_buffer);
80 
81  dequantize(s, b, dst, b->stride);
82  }
83  }
84 }
85 
86 static void dwt_quantize(SnowContext *s, Plane *p, DWTELEM *buffer, int width, int height, int stride, int type){
87  int level, orientation, ys, xs, x, y, pass;
88  IDWTELEM best_dequant[height * stride];
89  IDWTELEM idwt2_buffer[height * stride];
90  const int score_stride= (width + 10)/Q2_STEP;
91  int best_score[(width + 10)/Q2_STEP * (height + 10)/Q2_STEP]; //FIXME size
92  int score[(width + 10)/Q2_STEP * (height + 10)/Q2_STEP]; //FIXME size
93  int threshold= (s->m.lambda * s->m.lambda) >> 6;
94 
95  //FIXME pass the copy cleanly ?
96 
97 // memcpy(dwt_buffer, buffer, height * stride * sizeof(DWTELEM));
98  ff_spatial_dwt(buffer, s->temp_dwt_buffer, width, height, stride, type, s->spatial_decomposition_count);
99 
100  for(level=0; level<s->spatial_decomposition_count; level++){
101  for(orientation=level ? 1 : 0; orientation<4; orientation++){
102  SubBand *b= &p->band[level][orientation];
103  IDWTELEM *dst= best_dequant + (b->ibuf - s->spatial_idwt_buffer);
104  DWTELEM *src= buffer + (b-> buf - s->spatial_dwt_buffer);
105  assert(src == b->buf); // code does not depend on this but it is true currently
106 
107  quantize(s, b, dst, src, b->stride, s->qbias);
108  }
109  }
110  for(pass=0; pass<1; pass++){
111  if(s->qbias == 0) //keyframe
112  continue;
113  for(level=0; level<s->spatial_decomposition_count; level++){
114  for(orientation=level ? 1 : 0; orientation<4; orientation++){
115  SubBand *b= &p->band[level][orientation];
116  IDWTELEM *dst= idwt2_buffer + (b->ibuf - s->spatial_idwt_buffer);
117  IDWTELEM *best_dst= best_dequant + (b->ibuf - s->spatial_idwt_buffer);
118 
119  for(ys= 0; ys<Q2_STEP; ys++){
120  for(xs= 0; xs<Q2_STEP; xs++){
121  memcpy(idwt2_buffer, best_dequant, height * stride * sizeof(IDWTELEM));
122  dequantize_all(s, p, idwt2_buffer, width, height);
123  ff_spatial_idwt(idwt2_buffer, s->temp_idwt_buffer, width, height, stride, type, s->spatial_decomposition_count);
124  find_sse(s, p, best_score, score_stride, idwt2_buffer, s->spatial_idwt_buffer, level, orientation);
125  memcpy(idwt2_buffer, best_dequant, height * stride * sizeof(IDWTELEM));
126  for(y=ys; y<b->height; y+= Q2_STEP){
127  for(x=xs; x<b->width; x+= Q2_STEP){
128  if(dst[x + y*b->stride]<0) dst[x + y*b->stride]++;
129  if(dst[x + y*b->stride]>0) dst[x + y*b->stride]--;
130  //FIXME try more than just --
131  }
132  }
133  dequantize_all(s, p, idwt2_buffer, width, height);
134  ff_spatial_idwt(idwt2_buffer, s->temp_idwt_buffer, width, height, stride, type, s->spatial_decomposition_count);
135  find_sse(s, p, score, score_stride, idwt2_buffer, s->spatial_idwt_buffer, level, orientation);
136  for(y=ys; y<b->height; y+= Q2_STEP){
137  for(x=xs; x<b->width; x+= Q2_STEP){
138  int score_idx= x/Q2_STEP + (y/Q2_STEP)*score_stride;
139  if(score[score_idx] <= best_score[score_idx] + threshold){
140  best_score[score_idx]= score[score_idx];
141  if(best_dst[x + y*b->stride]<0) best_dst[x + y*b->stride]++;
142  if(best_dst[x + y*b->stride]>0) best_dst[x + y*b->stride]--;
143  //FIXME copy instead
144  }
145  }
146  }
147  }
148  }
149  }
150  }
151  }
152  memcpy(s->spatial_idwt_buffer, best_dequant, height * stride * sizeof(IDWTELEM)); //FIXME work with that directly instead of copy at the end
153 }
154 
155 #endif /* QUANTIZE2==1 */
156 
158 {
159  SnowContext *s = avctx->priv_data;
160  int plane_index, ret;
161 
163  av_log(avctx, AV_LOG_ERROR, "This codec is under development, files encoded with it may not be decodable with future versions!!!\n"
164  "Use vstrict=-2 / -strict -2 to use it anyway.\n");
165  return -1;
166  }
167 
168  if(avctx->prediction_method == DWT_97
169  && (avctx->flags & CODEC_FLAG_QSCALE)
170  && avctx->global_quality == 0){
171  av_log(avctx, AV_LOG_ERROR, "The 9/7 wavelet is incompatible with lossless mode.\n");
172  return -1;
173  }
174 
175  s->spatial_decomposition_type= avctx->prediction_method; //FIXME add decorrelator type r transform_type
176 
177  s->mv_scale = (avctx->flags & CODEC_FLAG_QPEL) ? 2 : 4;
178  s->block_max_depth= (avctx->flags & CODEC_FLAG_4MV ) ? 1 : 0;
179 
180  for(plane_index=0; plane_index<3; plane_index++){
181  s->plane[plane_index].diag_mc= 1;
182  s->plane[plane_index].htaps= 6;
183  s->plane[plane_index].hcoeff[0]= 40;
184  s->plane[plane_index].hcoeff[1]= -10;
185  s->plane[plane_index].hcoeff[2]= 2;
186  s->plane[plane_index].fast_mc= 1;
187  }
188 
189  if ((ret = ff_snow_common_init(avctx)) < 0) {
191  return ret;
192  }
194 
195  s->version=0;
196 
197  s->m.avctx = avctx;
198  s->m.flags = avctx->flags;
199  s->m.bit_rate= avctx->bit_rate;
200 
201  s->m.me.temp =
202  s->m.me.scratchpad= av_mallocz((avctx->width+64)*2*16*2*sizeof(uint8_t));
203  s->m.me.map = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t));
204  s->m.me.score_map = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t));
205  s->m.obmc_scratchpad= av_mallocz(MB_SIZE*MB_SIZE*12*sizeof(uint32_t));
206  ff_h263_encode_init(&s->m); //mv_penalty
207 
208  s->max_ref_frames = FFMAX(FFMIN(avctx->refs, MAX_REF_FRAMES), 1);
209 
210  if(avctx->flags&CODEC_FLAG_PASS1){
211  if(!avctx->stats_out)
212  avctx->stats_out = av_mallocz(256);
213  }
214  if((avctx->flags&CODEC_FLAG_PASS2) || !(avctx->flags&CODEC_FLAG_QSCALE)){
215  if(ff_rate_control_init(&s->m) < 0)
216  return -1;
217  }
219 
220  avctx->coded_frame= &s->current_picture;
221  switch(avctx->pix_fmt){
222  case AV_PIX_FMT_YUV444P:
223 // case AV_PIX_FMT_YUV422P:
224  case AV_PIX_FMT_YUV420P:
225 // case AV_PIX_FMT_GRAY8:
226 // case AV_PIX_FMT_YUV411P:
227  case AV_PIX_FMT_YUV410P:
228  s->colorspace_type= 0;
229  break;
230 /* case AV_PIX_FMT_RGB32:
231  s->colorspace= 1;
232  break;*/
233  default:
234  av_log(avctx, AV_LOG_ERROR, "pixel format not supported\n");
235  return -1;
236  }
238 
239  ff_set_cmp(&s->dsp, s->dsp.me_cmp, s->avctx->me_cmp);
241 
242  if ((ret = ff_get_buffer(s->avctx, &s->input_picture)) < 0)
243  return ret;
244 
245  if(s->avctx->me_method == ME_ITER){
246  int i;
247  int size= s->b_width * s->b_height << 2*s->block_max_depth;
248  for(i=0; i<s->max_ref_frames; i++){
249  s->ref_mvs[i]= av_mallocz(size*sizeof(int16_t[2]));
250  s->ref_scores[i]= av_mallocz(size*sizeof(uint32_t));
251  }
252  }
253 
254  return 0;
255 }
256 
257 //near copy & paste from dsputil, FIXME
258 static int pix_sum(uint8_t * pix, int line_size, int w, int h)
259 {
260  int s, i, j;
261 
262  s = 0;
263  for (i = 0; i < h; i++) {
264  for (j = 0; j < w; j++) {
265  s += pix[0];
266  pix ++;
267  }
268  pix += line_size - w;
269  }
270  return s;
271 }
272 
273 //near copy & paste from dsputil, FIXME
274 static int pix_norm1(uint8_t * pix, int line_size, int w)
275 {
276  int s, i, j;
277  uint32_t *sq = ff_squareTbl + 256;
278 
279  s = 0;
280  for (i = 0; i < w; i++) {
281  for (j = 0; j < w; j ++) {
282  s += sq[pix[0]];
283  pix ++;
284  }
285  pix += line_size - w;
286  }
287  return s;
288 }
289 
290 //FIXME copy&paste
291 #define P_LEFT P[1]
292 #define P_TOP P[2]
293 #define P_TOPRIGHT P[3]
294 #define P_MEDIAN P[4]
295 #define P_MV1 P[9]
296 #define FLAG_QPEL 1 //must be 1
297 
298 static int encode_q_branch(SnowContext *s, int level, int x, int y){
299  uint8_t p_buffer[1024];
300  uint8_t i_buffer[1024];
301  uint8_t p_state[sizeof(s->block_state)];
302  uint8_t i_state[sizeof(s->block_state)];
303  RangeCoder pc, ic;
304  uint8_t *pbbak= s->c.bytestream;
305  uint8_t *pbbak_start= s->c.bytestream_start;
306  int score, score2, iscore, i_len, p_len, block_s, sum, base_bits;
307  const int w= s->b_width << s->block_max_depth;
308  const int h= s->b_height << s->block_max_depth;
309  const int rem_depth= s->block_max_depth - level;
310  const int index= (x + y*w) << rem_depth;
311  const int block_w= 1<<(LOG2_MB_SIZE - level);
312  int trx= (x+1)<<rem_depth;
313  int try= (y+1)<<rem_depth;
314  const BlockNode *left = x ? &s->block[index-1] : &null_block;
315  const BlockNode *top = y ? &s->block[index-w] : &null_block;
316  const BlockNode *right = trx<w ? &s->block[index+1] : &null_block;
317  const BlockNode *bottom= try<h ? &s->block[index+w] : &null_block;
318  const BlockNode *tl = y && x ? &s->block[index-w-1] : left;
319  const BlockNode *tr = y && trx<w && ((x&1)==0 || level==0) ? &s->block[index-w+(1<<rem_depth)] : tl; //FIXME use lt
320  int pl = left->color[0];
321  int pcb= left->color[1];
322  int pcr= left->color[2];
323  int pmx, pmy;
324  int mx=0, my=0;
325  int l,cr,cb;
326  const int stride= s->current_picture.linesize[0];
327  const int uvstride= s->current_picture.linesize[1];
328  uint8_t *current_data[3]= { s->input_picture.data[0] + (x + y* stride)*block_w,
329  s->input_picture.data[1] + ((x*block_w)>>s->chroma_h_shift) + ((y*uvstride*block_w)>>s->chroma_v_shift),
330  s->input_picture.data[2] + ((x*block_w)>>s->chroma_h_shift) + ((y*uvstride*block_w)>>s->chroma_v_shift)};
331  int P[10][2];
332  int16_t last_mv[3][2];
333  int qpel= !!(s->avctx->flags & CODEC_FLAG_QPEL); //unused
334  const int shift= 1+qpel;
335  MotionEstContext *c= &s->m.me;
336  int ref_context= av_log2(2*left->ref) + av_log2(2*top->ref);
337  int mx_context= av_log2(2*FFABS(left->mx - top->mx));
338  int my_context= av_log2(2*FFABS(left->my - top->my));
339  int s_context= 2*left->level + 2*top->level + tl->level + tr->level;
340  int ref, best_ref, ref_score, ref_mx, ref_my;
341 
342  assert(sizeof(s->block_state) >= 256);
343  if(s->keyframe){
344  set_blocks(s, level, x, y, pl, pcb, pcr, 0, 0, 0, BLOCK_INTRA);
345  return 0;
346  }
347 
348 // clip predictors / edge ?
349 
350  P_LEFT[0]= left->mx;
351  P_LEFT[1]= left->my;
352  P_TOP [0]= top->mx;
353  P_TOP [1]= top->my;
354  P_TOPRIGHT[0]= tr->mx;
355  P_TOPRIGHT[1]= tr->my;
356 
357  last_mv[0][0]= s->block[index].mx;
358  last_mv[0][1]= s->block[index].my;
359  last_mv[1][0]= right->mx;
360  last_mv[1][1]= right->my;
361  last_mv[2][0]= bottom->mx;
362  last_mv[2][1]= bottom->my;
363 
364  s->m.mb_stride=2;
365  s->m.mb_x=
366  s->m.mb_y= 0;
367  c->skip= 0;
368 
369  assert(c-> stride == stride);
370  assert(c->uvstride == uvstride);
371 
376 
377  c->xmin = - x*block_w - 16+3;
378  c->ymin = - y*block_w - 16+3;
379  c->xmax = - (x+1)*block_w + (w<<(LOG2_MB_SIZE - s->block_max_depth)) + 16-3;
380  c->ymax = - (y+1)*block_w + (h<<(LOG2_MB_SIZE - s->block_max_depth)) + 16-3;
381 
382  if(P_LEFT[0] > (c->xmax<<shift)) P_LEFT[0] = (c->xmax<<shift);
383  if(P_LEFT[1] > (c->ymax<<shift)) P_LEFT[1] = (c->ymax<<shift);
384  if(P_TOP[0] > (c->xmax<<shift)) P_TOP[0] = (c->xmax<<shift);
385  if(P_TOP[1] > (c->ymax<<shift)) P_TOP[1] = (c->ymax<<shift);
386  if(P_TOPRIGHT[0] < (c->xmin<<shift)) P_TOPRIGHT[0]= (c->xmin<<shift);
387  if(P_TOPRIGHT[0] > (c->xmax<<shift)) P_TOPRIGHT[0]= (c->xmax<<shift); //due to pmx no clip
388  if(P_TOPRIGHT[1] > (c->ymax<<shift)) P_TOPRIGHT[1]= (c->ymax<<shift);
389 
390  P_MEDIAN[0]= mid_pred(P_LEFT[0], P_TOP[0], P_TOPRIGHT[0]);
391  P_MEDIAN[1]= mid_pred(P_LEFT[1], P_TOP[1], P_TOPRIGHT[1]);
392 
393  if (!y) {
394  c->pred_x= P_LEFT[0];
395  c->pred_y= P_LEFT[1];
396  } else {
397  c->pred_x = P_MEDIAN[0];
398  c->pred_y = P_MEDIAN[1];
399  }
400 
401  score= INT_MAX;
402  best_ref= 0;
403  for(ref=0; ref<s->ref_frames; ref++){
404  init_ref(c, current_data, s->last_picture[ref].data, NULL, block_w*x, block_w*y, 0);
405 
406  ref_score= ff_epzs_motion_search(&s->m, &ref_mx, &ref_my, P, 0, /*ref_index*/ 0, last_mv,
407  (1<<16)>>shift, level-LOG2_MB_SIZE+4, block_w);
408 
409  assert(ref_mx >= c->xmin);
410  assert(ref_mx <= c->xmax);
411  assert(ref_my >= c->ymin);
412  assert(ref_my <= c->ymax);
413 
414  ref_score= c->sub_motion_search(&s->m, &ref_mx, &ref_my, ref_score, 0, 0, level-LOG2_MB_SIZE+4, block_w);
415  ref_score= ff_get_mb_score(&s->m, ref_mx, ref_my, 0, 0, level-LOG2_MB_SIZE+4, block_w, 0);
416  ref_score+= 2*av_log2(2*ref)*c->penalty_factor;
417  if(s->ref_mvs[ref]){
418  s->ref_mvs[ref][index][0]= ref_mx;
419  s->ref_mvs[ref][index][1]= ref_my;
420  s->ref_scores[ref][index]= ref_score;
421  }
422  if(score > ref_score){
423  score= ref_score;
424  best_ref= ref;
425  mx= ref_mx;
426  my= ref_my;
427  }
428  }
429  //FIXME if mb_cmp != SSE then intra cannot be compared currently and mb_penalty vs. lambda2
430 
431  // subpel search
432  base_bits= get_rac_count(&s->c) - 8*(s->c.bytestream - s->c.bytestream_start);
433  pc= s->c;
434  pc.bytestream_start=
435  pc.bytestream= p_buffer; //FIXME end/start? and at the other stoo
436  memcpy(p_state, s->block_state, sizeof(s->block_state));
437 
438  if(level!=s->block_max_depth)
439  put_rac(&pc, &p_state[4 + s_context], 1);
440  put_rac(&pc, &p_state[1 + left->type + top->type], 0);
441  if(s->ref_frames > 1)
442  put_symbol(&pc, &p_state[128 + 1024 + 32*ref_context], best_ref, 0);
443  pred_mv(s, &pmx, &pmy, best_ref, left, top, tr);
444  put_symbol(&pc, &p_state[128 + 32*(mx_context + 16*!!best_ref)], mx - pmx, 1);
445  put_symbol(&pc, &p_state[128 + 32*(my_context + 16*!!best_ref)], my - pmy, 1);
446  p_len= pc.bytestream - pc.bytestream_start;
447  score += (s->lambda2*(get_rac_count(&pc)-base_bits))>>FF_LAMBDA_SHIFT;
448 
449  block_s= block_w*block_w;
450  sum = pix_sum(current_data[0], stride, block_w, block_w);
451  l= (sum + block_s/2)/block_s;
452  iscore = pix_norm1(current_data[0], stride, block_w) - 2*l*sum + l*l*block_s;
453 
454  block_s= block_w*block_w>>(s->chroma_h_shift + s->chroma_v_shift);
455  sum = pix_sum(current_data[1], uvstride, block_w>>s->chroma_h_shift, block_w>>s->chroma_v_shift);
456  cb= (sum + block_s/2)/block_s;
457 // iscore += pix_norm1(&current_mb[1][0], uvstride, block_w>>1) - 2*cb*sum + cb*cb*block_s;
458  sum = pix_sum(current_data[2], uvstride, block_w>>s->chroma_h_shift, block_w>>s->chroma_v_shift);
459  cr= (sum + block_s/2)/block_s;
460 // iscore += pix_norm1(&current_mb[2][0], uvstride, block_w>>1) - 2*cr*sum + cr*cr*block_s;
461 
462  ic= s->c;
463  ic.bytestream_start=
464  ic.bytestream= i_buffer; //FIXME end/start? and at the other stoo
465  memcpy(i_state, s->block_state, sizeof(s->block_state));
466  if(level!=s->block_max_depth)
467  put_rac(&ic, &i_state[4 + s_context], 1);
468  put_rac(&ic, &i_state[1 + left->type + top->type], 1);
469  put_symbol(&ic, &i_state[32], l-pl , 1);
470  put_symbol(&ic, &i_state[64], cb-pcb, 1);
471  put_symbol(&ic, &i_state[96], cr-pcr, 1);
472  i_len= ic.bytestream - ic.bytestream_start;
473  iscore += (s->lambda2*(get_rac_count(&ic)-base_bits))>>FF_LAMBDA_SHIFT;
474 
475 // assert(score==256*256*256*64-1);
476  assert(iscore < 255*255*256 + s->lambda2*10);
477  assert(iscore >= 0);
478  assert(l>=0 && l<=255);
479  assert(pl>=0 && pl<=255);
480 
481  if(level==0){
482  int varc= iscore >> 8;
483  int vard= score >> 8;
484  if (vard <= 64 || vard < varc)
485  c->scene_change_score+= ff_sqrt(vard) - ff_sqrt(varc);
486  else
487  c->scene_change_score+= s->m.qscale;
488  }
489 
490  if(level!=s->block_max_depth){
491  put_rac(&s->c, &s->block_state[4 + s_context], 0);
492  score2 = encode_q_branch(s, level+1, 2*x+0, 2*y+0);
493  score2+= encode_q_branch(s, level+1, 2*x+1, 2*y+0);
494  score2+= encode_q_branch(s, level+1, 2*x+0, 2*y+1);
495  score2+= encode_q_branch(s, level+1, 2*x+1, 2*y+1);
496  score2+= s->lambda2>>FF_LAMBDA_SHIFT; //FIXME exact split overhead
497 
498  if(score2 < score && score2 < iscore)
499  return score2;
500  }
501 
502  if(iscore < score){
503  pred_mv(s, &pmx, &pmy, 0, left, top, tr);
504  memcpy(pbbak, i_buffer, i_len);
505  s->c= ic;
506  s->c.bytestream_start= pbbak_start;
507  s->c.bytestream= pbbak + i_len;
508  set_blocks(s, level, x, y, l, cb, cr, pmx, pmy, 0, BLOCK_INTRA);
509  memcpy(s->block_state, i_state, sizeof(s->block_state));
510  return iscore;
511  }else{
512  memcpy(pbbak, p_buffer, p_len);
513  s->c= pc;
514  s->c.bytestream_start= pbbak_start;
515  s->c.bytestream= pbbak + p_len;
516  set_blocks(s, level, x, y, pl, pcb, pcr, mx, my, best_ref, 0);
517  memcpy(s->block_state, p_state, sizeof(s->block_state));
518  return score;
519  }
520 }
521 
522 static void encode_q_branch2(SnowContext *s, int level, int x, int y){
523  const int w= s->b_width << s->block_max_depth;
524  const int rem_depth= s->block_max_depth - level;
525  const int index= (x + y*w) << rem_depth;
526  int trx= (x+1)<<rem_depth;
527  BlockNode *b= &s->block[index];
528  const BlockNode *left = x ? &s->block[index-1] : &null_block;
529  const BlockNode *top = y ? &s->block[index-w] : &null_block;
530  const BlockNode *tl = y && x ? &s->block[index-w-1] : left;
531  const BlockNode *tr = y && trx<w && ((x&1)==0 || level==0) ? &s->block[index-w+(1<<rem_depth)] : tl; //FIXME use lt
532  int pl = left->color[0];
533  int pcb= left->color[1];
534  int pcr= left->color[2];
535  int pmx, pmy;
536  int ref_context= av_log2(2*left->ref) + av_log2(2*top->ref);
537  int mx_context= av_log2(2*FFABS(left->mx - top->mx)) + 16*!!b->ref;
538  int my_context= av_log2(2*FFABS(left->my - top->my)) + 16*!!b->ref;
539  int s_context= 2*left->level + 2*top->level + tl->level + tr->level;
540 
541  if(s->keyframe){
542  set_blocks(s, level, x, y, pl, pcb, pcr, 0, 0, 0, BLOCK_INTRA);
543  return;
544  }
545 
546  if(level!=s->block_max_depth){
547  if(same_block(b,b+1) && same_block(b,b+w) && same_block(b,b+w+1)){
548  put_rac(&s->c, &s->block_state[4 + s_context], 1);
549  }else{
550  put_rac(&s->c, &s->block_state[4 + s_context], 0);
551  encode_q_branch2(s, level+1, 2*x+0, 2*y+0);
552  encode_q_branch2(s, level+1, 2*x+1, 2*y+0);
553  encode_q_branch2(s, level+1, 2*x+0, 2*y+1);
554  encode_q_branch2(s, level+1, 2*x+1, 2*y+1);
555  return;
556  }
557  }
558  if(b->type & BLOCK_INTRA){
559  pred_mv(s, &pmx, &pmy, 0, left, top, tr);
560  put_rac(&s->c, &s->block_state[1 + (left->type&1) + (top->type&1)], 1);
561  put_symbol(&s->c, &s->block_state[32], b->color[0]-pl , 1);
562  put_symbol(&s->c, &s->block_state[64], b->color[1]-pcb, 1);
563  put_symbol(&s->c, &s->block_state[96], b->color[2]-pcr, 1);
564  set_blocks(s, level, x, y, b->color[0], b->color[1], b->color[2], pmx, pmy, 0, BLOCK_INTRA);
565  }else{
566  pred_mv(s, &pmx, &pmy, b->ref, left, top, tr);
567  put_rac(&s->c, &s->block_state[1 + (left->type&1) + (top->type&1)], 0);
568  if(s->ref_frames > 1)
569  put_symbol(&s->c, &s->block_state[128 + 1024 + 32*ref_context], b->ref, 0);
570  put_symbol(&s->c, &s->block_state[128 + 32*mx_context], b->mx - pmx, 1);
571  put_symbol(&s->c, &s->block_state[128 + 32*my_context], b->my - pmy, 1);
572  set_blocks(s, level, x, y, pl, pcb, pcr, b->mx, b->my, b->ref, 0);
573  }
574 }
575 
576 static int get_dc(SnowContext *s, int mb_x, int mb_y, int plane_index){
577  int i, x2, y2;
578  Plane *p= &s->plane[plane_index];
579  const int block_size = MB_SIZE >> s->block_max_depth;
580  const int block_w = plane_index ? block_size>>s->chroma_h_shift : block_size;
581  const int block_h = plane_index ? block_size>>s->chroma_v_shift : block_size;
582  const uint8_t *obmc = plane_index ? ff_obmc_tab[s->block_max_depth+s->chroma_h_shift] : ff_obmc_tab[s->block_max_depth];
583  const int obmc_stride= plane_index ? (2*block_size)>>s->chroma_h_shift : 2*block_size;
584  const int ref_stride= s->current_picture.linesize[plane_index];
585  uint8_t *src= s-> input_picture.data[plane_index];
586  IDWTELEM *dst= (IDWTELEM*)s->m.obmc_scratchpad + plane_index*block_size*block_size*4; //FIXME change to unsigned
587  const int b_stride = s->b_width << s->block_max_depth;
588  const int w= p->width;
589  const int h= p->height;
590  int index= mb_x + mb_y*b_stride;
591  BlockNode *b= &s->block[index];
592  BlockNode backup= *b;
593  int ab=0;
594  int aa=0;
595 
596  av_assert2(s->chroma_h_shift == s->chroma_v_shift); //obmc stuff above
597 
598  b->type|= BLOCK_INTRA;
599  b->color[plane_index]= 0;
600  memset(dst, 0, obmc_stride*obmc_stride*sizeof(IDWTELEM));
601 
602  for(i=0; i<4; i++){
603  int mb_x2= mb_x + (i &1) - 1;
604  int mb_y2= mb_y + (i>>1) - 1;
605  int x= block_w*mb_x2 + block_w/2;
606  int y= block_h*mb_y2 + block_h/2;
607 
608  add_yblock(s, 0, NULL, dst + (i&1)*block_w + (i>>1)*obmc_stride*block_h, NULL, obmc,
609  x, y, block_w, block_h, w, h, obmc_stride, ref_stride, obmc_stride, mb_x2, mb_y2, 0, 0, plane_index);
610 
611  for(y2= FFMAX(y, 0); y2<FFMIN(h, y+block_h); y2++){
612  for(x2= FFMAX(x, 0); x2<FFMIN(w, x+block_w); x2++){
613  int index= x2-(block_w*mb_x - block_w/2) + (y2-(block_h*mb_y - block_h/2))*obmc_stride;
614  int obmc_v= obmc[index];
615  int d;
616  if(y<0) obmc_v += obmc[index + block_h*obmc_stride];
617  if(x<0) obmc_v += obmc[index + block_w];
618  if(y+block_h>h) obmc_v += obmc[index - block_h*obmc_stride];
619  if(x+block_w>w) obmc_v += obmc[index - block_w];
620  //FIXME precalculate this or simplify it somehow else
621 
622  d = -dst[index] + (1<<(FRAC_BITS-1));
623  dst[index] = d;
624  ab += (src[x2 + y2*ref_stride] - (d>>FRAC_BITS)) * obmc_v;
625  aa += obmc_v * obmc_v; //FIXME precalculate this
626  }
627  }
628  }
629  *b= backup;
630 
631  return av_clip( ROUNDED_DIV(ab<<LOG2_OBMC_MAX, aa), 0, 255); //FIXME we should not need clipping
632 }
633 
634 static inline int get_block_bits(SnowContext *s, int x, int y, int w){
635  const int b_stride = s->b_width << s->block_max_depth;
636  const int b_height = s->b_height<< s->block_max_depth;
637  int index= x + y*b_stride;
638  const BlockNode *b = &s->block[index];
639  const BlockNode *left = x ? &s->block[index-1] : &null_block;
640  const BlockNode *top = y ? &s->block[index-b_stride] : &null_block;
641  const BlockNode *tl = y && x ? &s->block[index-b_stride-1] : left;
642  const BlockNode *tr = y && x+w<b_stride ? &s->block[index-b_stride+w] : tl;
643  int dmx, dmy;
644 // int mx_context= av_log2(2*FFABS(left->mx - top->mx));
645 // int my_context= av_log2(2*FFABS(left->my - top->my));
646 
647  if(x<0 || x>=b_stride || y>=b_height)
648  return 0;
649 /*
650 1 0 0
651 01X 1-2 1
652 001XX 3-6 2-3
653 0001XXX 7-14 4-7
654 00001XXXX 15-30 8-15
655 */
656 //FIXME try accurate rate
657 //FIXME intra and inter predictors if surrounding blocks are not the same type
658  if(b->type & BLOCK_INTRA){
659  return 3+2*( av_log2(2*FFABS(left->color[0] - b->color[0]))
660  + av_log2(2*FFABS(left->color[1] - b->color[1]))
661  + av_log2(2*FFABS(left->color[2] - b->color[2])));
662  }else{
663  pred_mv(s, &dmx, &dmy, b->ref, left, top, tr);
664  dmx-= b->mx;
665  dmy-= b->my;
666  return 2*(1 + av_log2(2*FFABS(dmx)) //FIXME kill the 2* can be merged in lambda
667  + av_log2(2*FFABS(dmy))
668  + av_log2(2*b->ref));
669  }
670 }
671 
672 static int get_block_rd(SnowContext *s, int mb_x, int mb_y, int plane_index, uint8_t (*obmc_edged)[MB_SIZE * 2]){
673  Plane *p= &s->plane[plane_index];
674  const int block_size = MB_SIZE >> s->block_max_depth;
675  const int block_w = plane_index ? block_size>>s->chroma_h_shift : block_size;
676  const int block_h = plane_index ? block_size>>s->chroma_v_shift : block_size;
677  const int obmc_stride= plane_index ? (2*block_size)>>s->chroma_h_shift : 2*block_size;
678  const int ref_stride= s->current_picture.linesize[plane_index];
679  uint8_t *dst= s->current_picture.data[plane_index];
680  uint8_t *src= s-> input_picture.data[plane_index];
681  IDWTELEM *pred= (IDWTELEM*)s->m.obmc_scratchpad + plane_index*block_size*block_size*4;
682  uint8_t *cur = s->scratchbuf;
683  uint8_t *tmp = s->emu_edge_buffer;
684  const int b_stride = s->b_width << s->block_max_depth;
685  const int b_height = s->b_height<< s->block_max_depth;
686  const int w= p->width;
687  const int h= p->height;
688  int distortion;
689  int rate= 0;
690  const int penalty_factor= get_penalty_factor(s->lambda, s->lambda2, s->avctx->me_cmp);
691  int sx= block_w*mb_x - block_w/2;
692  int sy= block_h*mb_y - block_h/2;
693  int x0= FFMAX(0,-sx);
694  int y0= FFMAX(0,-sy);
695  int x1= FFMIN(block_w*2, w-sx);
696  int y1= FFMIN(block_h*2, h-sy);
697  int i,x,y;
698 
699  av_assert2(s->chroma_h_shift == s->chroma_v_shift); //obmc and square assumtions below chckinhg only block_w
700 
701  ff_snow_pred_block(s, cur, tmp, ref_stride, sx, sy, block_w*2, block_h*2, &s->block[mb_x + mb_y*b_stride], plane_index, w, h);
702 
703  for(y=y0; y<y1; y++){
704  const uint8_t *obmc1= obmc_edged[y];
705  const IDWTELEM *pred1 = pred + y*obmc_stride;
706  uint8_t *cur1 = cur + y*ref_stride;
707  uint8_t *dst1 = dst + sx + (sy+y)*ref_stride;
708  for(x=x0; x<x1; x++){
709 #if FRAC_BITS >= LOG2_OBMC_MAX
710  int v = (cur1[x] * obmc1[x]) << (FRAC_BITS - LOG2_OBMC_MAX);
711 #else
712  int v = (cur1[x] * obmc1[x] + (1<<(LOG2_OBMC_MAX - FRAC_BITS-1))) >> (LOG2_OBMC_MAX - FRAC_BITS);
713 #endif
714  v = (v + pred1[x]) >> FRAC_BITS;
715  if(v&(~255)) v= ~(v>>31);
716  dst1[x] = v;
717  }
718  }
719 
720  /* copy the regions where obmc[] = (uint8_t)256 */
721  if(LOG2_OBMC_MAX == 8
722  && (mb_x == 0 || mb_x == b_stride-1)
723  && (mb_y == 0 || mb_y == b_height-1)){
724  if(mb_x == 0)
725  x1 = block_w;
726  else
727  x0 = block_w;
728  if(mb_y == 0)
729  y1 = block_h;
730  else
731  y0 = block_h;
732  for(y=y0; y<y1; y++)
733  memcpy(dst + sx+x0 + (sy+y)*ref_stride, cur + x0 + y*ref_stride, x1-x0);
734  }
735 
736  if(block_w==16){
737  /* FIXME rearrange dsputil to fit 32x32 cmp functions */
738  /* FIXME check alignment of the cmp wavelet vs the encoding wavelet */
739  /* FIXME cmps overlap but do not cover the wavelet's whole support.
740  * So improving the score of one block is not strictly guaranteed
741  * to improve the score of the whole frame, thus iterative motion
742  * estimation does not always converge. */
743  if(s->avctx->me_cmp == FF_CMP_W97)
744  distortion = ff_w97_32_c(&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, 32);
745  else if(s->avctx->me_cmp == FF_CMP_W53)
746  distortion = ff_w53_32_c(&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, 32);
747  else{
748  distortion = 0;
749  for(i=0; i<4; i++){
750  int off = sx+16*(i&1) + (sy+16*(i>>1))*ref_stride;
751  distortion += s->dsp.me_cmp[0](&s->m, src + off, dst + off, ref_stride, 16);
752  }
753  }
754  }else{
755  assert(block_w==8);
756  distortion = s->dsp.me_cmp[0](&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, block_w*2);
757  }
758 
759  if(plane_index==0){
760  for(i=0; i<4; i++){
761 /* ..RRr
762  * .RXx.
763  * rxx..
764  */
765  rate += get_block_bits(s, mb_x + (i&1) - (i>>1), mb_y + (i>>1), 1);
766  }
767  if(mb_x == b_stride-2)
768  rate += get_block_bits(s, mb_x + 1, mb_y + 1, 1);
769  }
770  return distortion + rate*penalty_factor;
771 }
772 
773 static int get_4block_rd(SnowContext *s, int mb_x, int mb_y, int plane_index){
774  int i, y2;
775  Plane *p= &s->plane[plane_index];
776  const int block_size = MB_SIZE >> s->block_max_depth;
777  const int block_w = plane_index ? block_size>>s->chroma_h_shift : block_size;
778  const int block_h = plane_index ? block_size>>s->chroma_v_shift : block_size;
779  const uint8_t *obmc = plane_index ? ff_obmc_tab[s->block_max_depth+s->chroma_h_shift] : ff_obmc_tab[s->block_max_depth];
780  const int obmc_stride= plane_index ? (2*block_size)>>s->chroma_h_shift : 2*block_size;
781  const int ref_stride= s->current_picture.linesize[plane_index];
782  uint8_t *dst= s->current_picture.data[plane_index];
783  uint8_t *src= s-> input_picture.data[plane_index];
784  //FIXME zero_dst is const but add_yblock changes dst if add is 0 (this is never the case for dst=zero_dst
785  // const has only been removed from zero_dst to suppress a warning
786  static IDWTELEM zero_dst[4096]; //FIXME
787  const int b_stride = s->b_width << s->block_max_depth;
788  const int w= p->width;
789  const int h= p->height;
790  int distortion= 0;
791  int rate= 0;
792  const int penalty_factor= get_penalty_factor(s->lambda, s->lambda2, s->avctx->me_cmp);
793 
794  av_assert2(s->chroma_h_shift == s->chroma_v_shift); //obmc and square assumtions below
795 
796  for(i=0; i<9; i++){
797  int mb_x2= mb_x + (i%3) - 1;
798  int mb_y2= mb_y + (i/3) - 1;
799  int x= block_w*mb_x2 + block_w/2;
800  int y= block_h*mb_y2 + block_h/2;
801 
802  add_yblock(s, 0, NULL, zero_dst, dst, obmc,
803  x, y, block_w, block_h, w, h, /*dst_stride*/0, ref_stride, obmc_stride, mb_x2, mb_y2, 1, 1, plane_index);
804 
805  //FIXME find a cleaner/simpler way to skip the outside stuff
806  for(y2= y; y2<0; y2++)
807  memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, block_w);
808  for(y2= h; y2<y+block_h; y2++)
809  memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, block_w);
810  if(x<0){
811  for(y2= y; y2<y+block_h; y2++)
812  memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, -x);
813  }
814  if(x+block_w > w){
815  for(y2= y; y2<y+block_h; y2++)
816  memcpy(dst + w + y2*ref_stride, src + w + y2*ref_stride, x+block_w - w);
817  }
818 
819  assert(block_w== 8 || block_w==16);
820  distortion += s->dsp.me_cmp[block_w==8](&s->m, src + x + y*ref_stride, dst + x + y*ref_stride, ref_stride, block_h);
821  }
822 
823  if(plane_index==0){
824  BlockNode *b= &s->block[mb_x+mb_y*b_stride];
825  int merged= same_block(b,b+1) && same_block(b,b+b_stride) && same_block(b,b+b_stride+1);
826 
827 /* ..RRRr
828  * .RXXx.
829  * .RXXx.
830  * rxxx.
831  */
832  if(merged)
833  rate = get_block_bits(s, mb_x, mb_y, 2);
834  for(i=merged?4:0; i<9; i++){
835  static const int dxy[9][2] = {{0,0},{1,0},{0,1},{1,1},{2,0},{2,1},{-1,2},{0,2},{1,2}};
836  rate += get_block_bits(s, mb_x + dxy[i][0], mb_y + dxy[i][1], 1);
837  }
838  }
839  return distortion + rate*penalty_factor;
840 }
841 
842 static int encode_subband_c0run(SnowContext *s, SubBand *b, const IDWTELEM *src, const IDWTELEM *parent, int stride, int orientation){
843  const int w= b->width;
844  const int h= b->height;
845  int x, y;
846 
847  if(1){
848  int run=0;
849  int *runs = s->run_buffer;
850  int run_index=0;
851  int max_index;
852 
853  for(y=0; y<h; y++){
854  for(x=0; x<w; x++){
855  int v, p=0;
856  int /*ll=0, */l=0, lt=0, t=0, rt=0;
857  v= src[x + y*stride];
858 
859  if(y){
860  t= src[x + (y-1)*stride];
861  if(x){
862  lt= src[x - 1 + (y-1)*stride];
863  }
864  if(x + 1 < w){
865  rt= src[x + 1 + (y-1)*stride];
866  }
867  }
868  if(x){
869  l= src[x - 1 + y*stride];
870  /*if(x > 1){
871  if(orientation==1) ll= src[y + (x-2)*stride];
872  else ll= src[x - 2 + y*stride];
873  }*/
874  }
875  if(parent){
876  int px= x>>1;
877  int py= y>>1;
878  if(px<b->parent->width && py<b->parent->height)
879  p= parent[px + py*2*stride];
880  }
881  if(!(/*ll|*/l|lt|t|rt|p)){
882  if(v){
883  runs[run_index++]= run;
884  run=0;
885  }else{
886  run++;
887  }
888  }
889  }
890  }
891  max_index= run_index;
892  runs[run_index++]= run;
893  run_index=0;
894  run= runs[run_index++];
895 
896  put_symbol2(&s->c, b->state[30], max_index, 0);
897  if(run_index <= max_index)
898  put_symbol2(&s->c, b->state[1], run, 3);
899 
900  for(y=0; y<h; y++){
901  if(s->c.bytestream_end - s->c.bytestream < w*40){
902  av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
903  return -1;
904  }
905  for(x=0; x<w; x++){
906  int v, p=0;
907  int /*ll=0, */l=0, lt=0, t=0, rt=0;
908  v= src[x + y*stride];
909 
910  if(y){
911  t= src[x + (y-1)*stride];
912  if(x){
913  lt= src[x - 1 + (y-1)*stride];
914  }
915  if(x + 1 < w){
916  rt= src[x + 1 + (y-1)*stride];
917  }
918  }
919  if(x){
920  l= src[x - 1 + y*stride];
921  /*if(x > 1){
922  if(orientation==1) ll= src[y + (x-2)*stride];
923  else ll= src[x - 2 + y*stride];
924  }*/
925  }
926  if(parent){
927  int px= x>>1;
928  int py= y>>1;
929  if(px<b->parent->width && py<b->parent->height)
930  p= parent[px + py*2*stride];
931  }
932  if(/*ll|*/l|lt|t|rt|p){
933  int context= av_log2(/*FFABS(ll) + */3*FFABS(l) + FFABS(lt) + 2*FFABS(t) + FFABS(rt) + FFABS(p));
934 
935  put_rac(&s->c, &b->state[0][context], !!v);
936  }else{
937  if(!run){
938  run= runs[run_index++];
939 
940  if(run_index <= max_index)
941  put_symbol2(&s->c, b->state[1], run, 3);
942  assert(v);
943  }else{
944  run--;
945  assert(!v);
946  }
947  }
948  if(v){
949  int context= av_log2(/*FFABS(ll) + */3*FFABS(l) + FFABS(lt) + 2*FFABS(t) + FFABS(rt) + FFABS(p));
950  int l2= 2*FFABS(l) + (l<0);
951  int t2= 2*FFABS(t) + (t<0);
952 
953  put_symbol2(&s->c, b->state[context + 2], FFABS(v)-1, context-4);
954  put_rac(&s->c, &b->state[0][16 + 1 + 3 + ff_quant3bA[l2&0xFF] + 3*ff_quant3bA[t2&0xFF]], v<0);
955  }
956  }
957  }
958  }
959  return 0;
960 }
961 
962 static int encode_subband(SnowContext *s, SubBand *b, const IDWTELEM *src, const IDWTELEM *parent, int stride, int orientation){
963 // encode_subband_qtree(s, b, src, parent, stride, orientation);
964 // encode_subband_z0run(s, b, src, parent, stride, orientation);
965  return encode_subband_c0run(s, b, src, parent, stride, orientation);
966 // encode_subband_dzr(s, b, src, parent, stride, orientation);
967 }
968 
969 static av_always_inline int check_block(SnowContext *s, int mb_x, int mb_y, int p[3], int intra, uint8_t (*obmc_edged)[MB_SIZE * 2], int *best_rd){
970  const int b_stride= s->b_width << s->block_max_depth;
971  BlockNode *block= &s->block[mb_x + mb_y * b_stride];
972  BlockNode backup= *block;
973  unsigned value;
974  int rd, index;
975 
976  assert(mb_x>=0 && mb_y>=0);
977  assert(mb_x<b_stride);
978 
979  if(intra){
980  block->color[0] = p[0];
981  block->color[1] = p[1];
982  block->color[2] = p[2];
983  block->type |= BLOCK_INTRA;
984  }else{
985  index= (p[0] + 31*p[1]) & (ME_CACHE_SIZE-1);
986  value= s->me_cache_generation + (p[0]>>10) + (p[1]<<6) + (block->ref<<12);
987  if(s->me_cache[index] == value)
988  return 0;
989  s->me_cache[index]= value;
990 
991  block->mx= p[0];
992  block->my= p[1];
993  block->type &= ~BLOCK_INTRA;
994  }
995 
996  rd= get_block_rd(s, mb_x, mb_y, 0, obmc_edged);
997 
998 //FIXME chroma
999  if(rd < *best_rd){
1000  *best_rd= rd;
1001  return 1;
1002  }else{
1003  *block= backup;
1004  return 0;
1005  }
1006 }
1007 
1008 /* special case for int[2] args we discard afterwards,
1009  * fixes compilation problem with gcc 2.95 */
1010 static av_always_inline int check_block_inter(SnowContext *s, int mb_x, int mb_y, int p0, int p1, uint8_t (*obmc_edged)[MB_SIZE * 2], int *best_rd){
1011  int p[2] = {p0, p1};
1012  return check_block(s, mb_x, mb_y, p, 0, obmc_edged, best_rd);
1013 }
1014 
1015 static av_always_inline int check_4block_inter(SnowContext *s, int mb_x, int mb_y, int p0, int p1, int ref, int *best_rd){
1016  const int b_stride= s->b_width << s->block_max_depth;
1017  BlockNode *block= &s->block[mb_x + mb_y * b_stride];
1018  BlockNode backup[4];
1019  unsigned value;
1020  int rd, index;
1021 
1022  /* We don't initialize backup[] during variable declaration, because
1023  * that fails to compile on MSVC: "cannot convert from 'BlockNode' to
1024  * 'int16_t'". */
1025  backup[0] = block[0];
1026  backup[1] = block[1];
1027  backup[2] = block[b_stride];
1028  backup[3] = block[b_stride + 1];
1029 
1030  assert(mb_x>=0 && mb_y>=0);
1031  assert(mb_x<b_stride);
1032  assert(((mb_x|mb_y)&1) == 0);
1033 
1034  index= (p0 + 31*p1) & (ME_CACHE_SIZE-1);
1035  value= s->me_cache_generation + (p0>>10) + (p1<<6) + (block->ref<<12);
1036  if(s->me_cache[index] == value)
1037  return 0;
1038  s->me_cache[index]= value;
1039 
1040  block->mx= p0;
1041  block->my= p1;
1042  block->ref= ref;
1043  block->type &= ~BLOCK_INTRA;
1044  block[1]= block[b_stride]= block[b_stride+1]= *block;
1045 
1046  rd= get_4block_rd(s, mb_x, mb_y, 0);
1047 
1048 //FIXME chroma
1049  if(rd < *best_rd){
1050  *best_rd= rd;
1051  return 1;
1052  }else{
1053  block[0]= backup[0];
1054  block[1]= backup[1];
1055  block[b_stride]= backup[2];
1056  block[b_stride+1]= backup[3];
1057  return 0;
1058  }
1059 }
1060 
1061 static void iterative_me(SnowContext *s){
1062  int pass, mb_x, mb_y;
1063  const int b_width = s->b_width << s->block_max_depth;
1064  const int b_height= s->b_height << s->block_max_depth;
1065  const int b_stride= b_width;
1066  int color[3];
1067 
1068  {
1069  RangeCoder r = s->c;
1070  uint8_t state[sizeof(s->block_state)];
1071  memcpy(state, s->block_state, sizeof(s->block_state));
1072  for(mb_y= 0; mb_y<s->b_height; mb_y++)
1073  for(mb_x= 0; mb_x<s->b_width; mb_x++)
1074  encode_q_branch(s, 0, mb_x, mb_y);
1075  s->c = r;
1076  memcpy(s->block_state, state, sizeof(s->block_state));
1077  }
1078 
1079  for(pass=0; pass<25; pass++){
1080  int change= 0;
1081 
1082  for(mb_y= 0; mb_y<b_height; mb_y++){
1083  for(mb_x= 0; mb_x<b_width; mb_x++){
1084  int dia_change, i, j, ref;
1085  int best_rd= INT_MAX, ref_rd;
1086  BlockNode backup, ref_b;
1087  const int index= mb_x + mb_y * b_stride;
1088  BlockNode *block= &s->block[index];
1089  BlockNode *tb = mb_y ? &s->block[index-b_stride ] : NULL;
1090  BlockNode *lb = mb_x ? &s->block[index -1] : NULL;
1091  BlockNode *rb = mb_x+1<b_width ? &s->block[index +1] : NULL;
1092  BlockNode *bb = mb_y+1<b_height ? &s->block[index+b_stride ] : NULL;
1093  BlockNode *tlb= mb_x && mb_y ? &s->block[index-b_stride-1] : NULL;
1094  BlockNode *trb= mb_x+1<b_width && mb_y ? &s->block[index-b_stride+1] : NULL;
1095  BlockNode *blb= mb_x && mb_y+1<b_height ? &s->block[index+b_stride-1] : NULL;
1096  BlockNode *brb= mb_x+1<b_width && mb_y+1<b_height ? &s->block[index+b_stride+1] : NULL;
1097  const int b_w= (MB_SIZE >> s->block_max_depth);
1098  uint8_t obmc_edged[MB_SIZE * 2][MB_SIZE * 2];
1099 
1100  if(pass && (block->type & BLOCK_OPT))
1101  continue;
1102  block->type |= BLOCK_OPT;
1103 
1104  backup= *block;
1105 
1106  if(!s->me_cache_generation)
1107  memset(s->me_cache, 0, sizeof(s->me_cache));
1108  s->me_cache_generation += 1<<22;
1109 
1110  //FIXME precalculate
1111  {
1112  int x, y;
1113  for (y = 0; y < b_w * 2; y++)
1114  memcpy(obmc_edged[y], ff_obmc_tab[s->block_max_depth] + y * b_w * 2, b_w * 2);
1115  if(mb_x==0)
1116  for(y=0; y<b_w*2; y++)
1117  memset(obmc_edged[y], obmc_edged[y][0] + obmc_edged[y][b_w-1], b_w);
1118  if(mb_x==b_stride-1)
1119  for(y=0; y<b_w*2; y++)
1120  memset(obmc_edged[y]+b_w, obmc_edged[y][b_w] + obmc_edged[y][b_w*2-1], b_w);
1121  if(mb_y==0){
1122  for(x=0; x<b_w*2; x++)
1123  obmc_edged[0][x] += obmc_edged[b_w-1][x];
1124  for(y=1; y<b_w; y++)
1125  memcpy(obmc_edged[y], obmc_edged[0], b_w*2);
1126  }
1127  if(mb_y==b_height-1){
1128  for(x=0; x<b_w*2; x++)
1129  obmc_edged[b_w*2-1][x] += obmc_edged[b_w][x];
1130  for(y=b_w; y<b_w*2-1; y++)
1131  memcpy(obmc_edged[y], obmc_edged[b_w*2-1], b_w*2);
1132  }
1133  }
1134 
1135  //skip stuff outside the picture
1136  if(mb_x==0 || mb_y==0 || mb_x==b_width-1 || mb_y==b_height-1){
1137  uint8_t *src= s-> input_picture.data[0];
1138  uint8_t *dst= s->current_picture.data[0];
1139  const int stride= s->current_picture.linesize[0];
1140  const int block_w= MB_SIZE >> s->block_max_depth;
1141  const int block_h= MB_SIZE >> s->block_max_depth;
1142  const int sx= block_w*mb_x - block_w/2;
1143  const int sy= block_h*mb_y - block_h/2;
1144  const int w= s->plane[0].width;
1145  const int h= s->plane[0].height;
1146  int y;
1147 
1148  for(y=sy; y<0; y++)
1149  memcpy(dst + sx + y*stride, src + sx + y*stride, block_w*2);
1150  for(y=h; y<sy+block_h*2; y++)
1151  memcpy(dst + sx + y*stride, src + sx + y*stride, block_w*2);
1152  if(sx<0){
1153  for(y=sy; y<sy+block_h*2; y++)
1154  memcpy(dst + sx + y*stride, src + sx + y*stride, -sx);
1155  }
1156  if(sx+block_w*2 > w){
1157  for(y=sy; y<sy+block_h*2; y++)
1158  memcpy(dst + w + y*stride, src + w + y*stride, sx+block_w*2 - w);
1159  }
1160  }
1161 
1162  // intra(black) = neighbors' contribution to the current block
1163  for(i=0; i<3; i++)
1164  color[i]= get_dc(s, mb_x, mb_y, i);
1165 
1166  // get previous score (cannot be cached due to OBMC)
1167  if(pass > 0 && (block->type&BLOCK_INTRA)){
1168  int color0[3]= {block->color[0], block->color[1], block->color[2]};
1169  check_block(s, mb_x, mb_y, color0, 1, obmc_edged, &best_rd);
1170  }else
1171  check_block_inter(s, mb_x, mb_y, block->mx, block->my, obmc_edged, &best_rd);
1172 
1173  ref_b= *block;
1174  ref_rd= best_rd;
1175  for(ref=0; ref < s->ref_frames; ref++){
1176  int16_t (*mvr)[2]= &s->ref_mvs[ref][index];
1177  if(s->ref_scores[ref][index] > s->ref_scores[ref_b.ref][index]*3/2) //FIXME tune threshold
1178  continue;
1179  block->ref= ref;
1180  best_rd= INT_MAX;
1181 
1182  check_block_inter(s, mb_x, mb_y, mvr[0][0], mvr[0][1], obmc_edged, &best_rd);
1183  check_block_inter(s, mb_x, mb_y, 0, 0, obmc_edged, &best_rd);
1184  if(tb)
1185  check_block_inter(s, mb_x, mb_y, mvr[-b_stride][0], mvr[-b_stride][1], obmc_edged, &best_rd);
1186  if(lb)
1187  check_block_inter(s, mb_x, mb_y, mvr[-1][0], mvr[-1][1], obmc_edged, &best_rd);
1188  if(rb)
1189  check_block_inter(s, mb_x, mb_y, mvr[1][0], mvr[1][1], obmc_edged, &best_rd);
1190  if(bb)
1191  check_block_inter(s, mb_x, mb_y, mvr[b_stride][0], mvr[b_stride][1], obmc_edged, &best_rd);
1192 
1193  /* fullpel ME */
1194  //FIXME avoid subpel interpolation / round to nearest integer
1195  do{
1196  dia_change=0;
1197  for(i=0; i<FFMAX(s->avctx->dia_size, 1); i++){
1198  for(j=0; j<i; j++){
1199  dia_change |= check_block_inter(s, mb_x, mb_y, block->mx+4*(i-j), block->my+(4*j), obmc_edged, &best_rd);
1200  dia_change |= check_block_inter(s, mb_x, mb_y, block->mx-4*(i-j), block->my-(4*j), obmc_edged, &best_rd);
1201  dia_change |= check_block_inter(s, mb_x, mb_y, block->mx+4*(i-j), block->my-(4*j), obmc_edged, &best_rd);
1202  dia_change |= check_block_inter(s, mb_x, mb_y, block->mx-4*(i-j), block->my+(4*j), obmc_edged, &best_rd);
1203  }
1204  }
1205  }while(dia_change);
1206  /* subpel ME */
1207  do{
1208  static const int square[8][2]= {{+1, 0},{-1, 0},{ 0,+1},{ 0,-1},{+1,+1},{-1,-1},{+1,-1},{-1,+1},};
1209  dia_change=0;
1210  for(i=0; i<8; i++)
1211  dia_change |= check_block_inter(s, mb_x, mb_y, block->mx+square[i][0], block->my+square[i][1], obmc_edged, &best_rd);
1212  }while(dia_change);
1213  //FIXME or try the standard 2 pass qpel or similar
1214 
1215  mvr[0][0]= block->mx;
1216  mvr[0][1]= block->my;
1217  if(ref_rd > best_rd){
1218  ref_rd= best_rd;
1219  ref_b= *block;
1220  }
1221  }
1222  best_rd= ref_rd;
1223  *block= ref_b;
1224  check_block(s, mb_x, mb_y, color, 1, obmc_edged, &best_rd);
1225  //FIXME RD style color selection
1226  if(!same_block(block, &backup)){
1227  if(tb ) tb ->type &= ~BLOCK_OPT;
1228  if(lb ) lb ->type &= ~BLOCK_OPT;
1229  if(rb ) rb ->type &= ~BLOCK_OPT;
1230  if(bb ) bb ->type &= ~BLOCK_OPT;
1231  if(tlb) tlb->type &= ~BLOCK_OPT;
1232  if(trb) trb->type &= ~BLOCK_OPT;
1233  if(blb) blb->type &= ~BLOCK_OPT;
1234  if(brb) brb->type &= ~BLOCK_OPT;
1235  change ++;
1236  }
1237  }
1238  }
1239  av_log(s->avctx, AV_LOG_ERROR, "pass:%d changed:%d\n", pass, change);
1240  if(!change)
1241  break;
1242  }
1243 
1244  if(s->block_max_depth == 1){
1245  int change= 0;
1246  for(mb_y= 0; mb_y<b_height; mb_y+=2){
1247  for(mb_x= 0; mb_x<b_width; mb_x+=2){
1248  int i;
1249  int best_rd, init_rd;
1250  const int index= mb_x + mb_y * b_stride;
1251  BlockNode *b[4];
1252 
1253  b[0]= &s->block[index];
1254  b[1]= b[0]+1;
1255  b[2]= b[0]+b_stride;
1256  b[3]= b[2]+1;
1257  if(same_block(b[0], b[1]) &&
1258  same_block(b[0], b[2]) &&
1259  same_block(b[0], b[3]))
1260  continue;
1261 
1262  if(!s->me_cache_generation)
1263  memset(s->me_cache, 0, sizeof(s->me_cache));
1264  s->me_cache_generation += 1<<22;
1265 
1266  init_rd= best_rd= get_4block_rd(s, mb_x, mb_y, 0);
1267 
1268  //FIXME more multiref search?
1269  check_4block_inter(s, mb_x, mb_y,
1270  (b[0]->mx + b[1]->mx + b[2]->mx + b[3]->mx + 2) >> 2,
1271  (b[0]->my + b[1]->my + b[2]->my + b[3]->my + 2) >> 2, 0, &best_rd);
1272 
1273  for(i=0; i<4; i++)
1274  if(!(b[i]->type&BLOCK_INTRA))
1275  check_4block_inter(s, mb_x, mb_y, b[i]->mx, b[i]->my, b[i]->ref, &best_rd);
1276 
1277  if(init_rd != best_rd)
1278  change++;
1279  }
1280  }
1281  av_log(s->avctx, AV_LOG_ERROR, "pass:4mv changed:%d\n", change*4);
1282  }
1283 }
1284 
1285 static void encode_blocks(SnowContext *s, int search){
1286  int x, y;
1287  int w= s->b_width;
1288  int h= s->b_height;
1289 
1290  if(s->avctx->me_method == ME_ITER && !s->keyframe && search)
1291  iterative_me(s);
1292 
1293  for(y=0; y<h; y++){
1294  if(s->c.bytestream_end - s->c.bytestream < w*MB_SIZE*MB_SIZE*3){ //FIXME nicer limit
1295  av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
1296  return;
1297  }
1298  for(x=0; x<w; x++){
1299  if(s->avctx->me_method == ME_ITER || !search)
1300  encode_q_branch2(s, 0, x, y);
1301  else
1302  encode_q_branch (s, 0, x, y);
1303  }
1304  }
1305 }
1306 
1307 static void quantize(SnowContext *s, SubBand *b, IDWTELEM *dst, DWTELEM *src, int stride, int bias){
1308  const int w= b->width;
1309  const int h= b->height;
1310  const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16);
1311  const int qmul= ff_qexp[qlog&(QROOT-1)]<<((qlog>>QSHIFT) + ENCODER_EXTRA_BITS);
1312  int x,y, thres1, thres2;
1313 
1314  if(s->qlog == LOSSLESS_QLOG){
1315  for(y=0; y<h; y++)
1316  for(x=0; x<w; x++)
1317  dst[x + y*stride]= src[x + y*stride];
1318  return;
1319  }
1320 
1321  bias= bias ? 0 : (3*qmul)>>3;
1322  thres1= ((qmul - bias)>>QEXPSHIFT) - 1;
1323  thres2= 2*thres1;
1324 
1325  if(!bias){
1326  for(y=0; y<h; y++){
1327  for(x=0; x<w; x++){
1328  int i= src[x + y*stride];
1329 
1330  if((unsigned)(i+thres1) > thres2){
1331  if(i>=0){
1332  i<<= QEXPSHIFT;
1333  i/= qmul; //FIXME optimize
1334  dst[x + y*stride]= i;
1335  }else{
1336  i= -i;
1337  i<<= QEXPSHIFT;
1338  i/= qmul; //FIXME optimize
1339  dst[x + y*stride]= -i;
1340  }
1341  }else
1342  dst[x + y*stride]= 0;
1343  }
1344  }
1345  }else{
1346  for(y=0; y<h; y++){
1347  for(x=0; x<w; x++){
1348  int i= src[x + y*stride];
1349 
1350  if((unsigned)(i+thres1) > thres2){
1351  if(i>=0){
1352  i<<= QEXPSHIFT;
1353  i= (i + bias) / qmul; //FIXME optimize
1354  dst[x + y*stride]= i;
1355  }else{
1356  i= -i;
1357  i<<= QEXPSHIFT;
1358  i= (i + bias) / qmul; //FIXME optimize
1359  dst[x + y*stride]= -i;
1360  }
1361  }else
1362  dst[x + y*stride]= 0;
1363  }
1364  }
1365  }
1366 }
1367 
1368 static void dequantize(SnowContext *s, SubBand *b, IDWTELEM *src, int stride){
1369  const int w= b->width;
1370  const int h= b->height;
1371  const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16);
1372  const int qmul= ff_qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT);
1373  const int qadd= (s->qbias*qmul)>>QBIAS_SHIFT;
1374  int x,y;
1375 
1376  if(s->qlog == LOSSLESS_QLOG) return;
1377 
1378  for(y=0; y<h; y++){
1379  for(x=0; x<w; x++){
1380  int i= src[x + y*stride];
1381  if(i<0){
1382  src[x + y*stride]= -((-i*qmul + qadd)>>(QEXPSHIFT)); //FIXME try different bias
1383  }else if(i>0){
1384  src[x + y*stride]= (( i*qmul + qadd)>>(QEXPSHIFT));
1385  }
1386  }
1387  }
1388 }
1389 
1390 static void decorrelate(SnowContext *s, SubBand *b, IDWTELEM *src, int stride, int inverse, int use_median){
1391  const int w= b->width;
1392  const int h= b->height;
1393  int x,y;
1394 
1395  for(y=h-1; y>=0; y--){
1396  for(x=w-1; x>=0; x--){
1397  int i= x + y*stride;
1398 
1399  if(x){
1400  if(use_median){
1401  if(y && x+1<w) src[i] -= mid_pred(src[i - 1], src[i - stride], src[i - stride + 1]);
1402  else src[i] -= src[i - 1];
1403  }else{
1404  if(y) src[i] -= mid_pred(src[i - 1], src[i - stride], src[i - 1] + src[i - stride] - src[i - 1 - stride]);
1405  else src[i] -= src[i - 1];
1406  }
1407  }else{
1408  if(y) src[i] -= src[i - stride];
1409  }
1410  }
1411  }
1412 }
1413 
1414 static void correlate(SnowContext *s, SubBand *b, IDWTELEM *src, int stride, int inverse, int use_median){
1415  const int w= b->width;
1416  const int h= b->height;
1417  int x,y;
1418 
1419  for(y=0; y<h; y++){
1420  for(x=0; x<w; x++){
1421  int i= x + y*stride;
1422 
1423  if(x){
1424  if(use_median){
1425  if(y && x+1<w) src[i] += mid_pred(src[i - 1], src[i - stride], src[i - stride + 1]);
1426  else src[i] += src[i - 1];
1427  }else{
1428  if(y) src[i] += mid_pred(src[i - 1], src[i - stride], src[i - 1] + src[i - stride] - src[i - 1 - stride]);
1429  else src[i] += src[i - 1];
1430  }
1431  }else{
1432  if(y) src[i] += src[i - stride];
1433  }
1434  }
1435  }
1436 }
1437 
1438 static void encode_qlogs(SnowContext *s){
1439  int plane_index, level, orientation;
1440 
1441  for(plane_index=0; plane_index<2; plane_index++){
1442  for(level=0; level<s->spatial_decomposition_count; level++){
1443  for(orientation=level ? 1:0; orientation<4; orientation++){
1444  if(orientation==2) continue;
1445  put_symbol(&s->c, s->header_state, s->plane[plane_index].band[level][orientation].qlog, 1);
1446  }
1447  }
1448  }
1449 }
1450 
1451 static void encode_header(SnowContext *s){
1452  int plane_index, i;
1453  uint8_t kstate[32];
1454 
1455  memset(kstate, MID_STATE, sizeof(kstate));
1456 
1457  put_rac(&s->c, kstate, s->keyframe);
1458  if(s->keyframe || s->always_reset){
1461  s->last_qlog=
1462  s->last_qbias=
1463  s->last_mv_scale=
1464  s->last_block_max_depth= 0;
1465  for(plane_index=0; plane_index<2; plane_index++){
1466  Plane *p= &s->plane[plane_index];
1467  p->last_htaps=0;
1468  p->last_diag_mc=0;
1469  memset(p->last_hcoeff, 0, sizeof(p->last_hcoeff));
1470  }
1471  }
1472  if(s->keyframe){
1473  put_symbol(&s->c, s->header_state, s->version, 0);
1474  put_rac(&s->c, s->header_state, s->always_reset);
1478  put_symbol(&s->c, s->header_state, s->colorspace_type, 0);
1479  put_symbol(&s->c, s->header_state, s->chroma_h_shift, 0);
1480  put_symbol(&s->c, s->header_state, s->chroma_v_shift, 0);
1482 // put_rac(&s->c, s->header_state, s->rate_scalability);
1483  put_symbol(&s->c, s->header_state, s->max_ref_frames-1, 0);
1484 
1485  encode_qlogs(s);
1486  }
1487 
1488  if(!s->keyframe){
1489  int update_mc=0;
1490  for(plane_index=0; plane_index<2; plane_index++){
1491  Plane *p= &s->plane[plane_index];
1492  update_mc |= p->last_htaps != p->htaps;
1493  update_mc |= p->last_diag_mc != p->diag_mc;
1494  update_mc |= !!memcmp(p->last_hcoeff, p->hcoeff, sizeof(p->hcoeff));
1495  }
1496  put_rac(&s->c, s->header_state, update_mc);
1497  if(update_mc){
1498  for(plane_index=0; plane_index<2; plane_index++){
1499  Plane *p= &s->plane[plane_index];
1500  put_rac(&s->c, s->header_state, p->diag_mc);
1501  put_symbol(&s->c, s->header_state, p->htaps/2-1, 0);
1502  for(i= p->htaps/2; i; i--)
1503  put_symbol(&s->c, s->header_state, FFABS(p->hcoeff[i]), 0);
1504  }
1505  }
1507  put_rac(&s->c, s->header_state, 1);
1509  encode_qlogs(s);
1510  }else
1511  put_rac(&s->c, s->header_state, 0);
1512  }
1513 
1515  put_symbol(&s->c, s->header_state, s->qlog - s->last_qlog , 1);
1516  put_symbol(&s->c, s->header_state, s->mv_scale - s->last_mv_scale, 1);
1517  put_symbol(&s->c, s->header_state, s->qbias - s->last_qbias , 1);
1519 
1520 }
1521 
1523  int plane_index;
1524 
1525  if(!s->keyframe){
1526  for(plane_index=0; plane_index<2; plane_index++){
1527  Plane *p= &s->plane[plane_index];
1528  p->last_diag_mc= p->diag_mc;
1529  p->last_htaps = p->htaps;
1530  memcpy(p->last_hcoeff, p->hcoeff, sizeof(p->hcoeff));
1531  }
1532  }
1533 
1535  s->last_qlog = s->qlog;
1536  s->last_qbias = s->qbias;
1537  s->last_mv_scale = s->mv_scale;
1540 }
1541 
1542 static int qscale2qlog(int qscale){
1543  return rint(QROOT*log2(qscale / (float)FF_QP2LAMBDA))
1544  + 61*QROOT/8; ///< 64 > 60
1545 }
1546 
1548 {
1549  /* Estimate the frame's complexity as a sum of weighted dwt coefficients.
1550  * FIXME we know exact mv bits at this point,
1551  * but ratecontrol isn't set up to include them. */
1552  uint32_t coef_sum= 0;
1553  int level, orientation, delta_qlog;
1554 
1555  for(level=0; level<s->spatial_decomposition_count; level++){
1556  for(orientation=level ? 1 : 0; orientation<4; orientation++){
1557  SubBand *b= &s->plane[0].band[level][orientation];
1558  IDWTELEM *buf= b->ibuf;
1559  const int w= b->width;
1560  const int h= b->height;
1561  const int stride= b->stride;
1562  const int qlog= av_clip(2*QROOT + b->qlog, 0, QROOT*16);
1563  const int qmul= ff_qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT);
1564  const int qdiv= (1<<16)/qmul;
1565  int x, y;
1566  //FIXME this is ugly
1567  for(y=0; y<h; y++)
1568  for(x=0; x<w; x++)
1569  buf[x+y*stride]= b->buf[x+y*stride];
1570  if(orientation==0)
1571  decorrelate(s, b, buf, stride, 1, 0);
1572  for(y=0; y<h; y++)
1573  for(x=0; x<w; x++)
1574  coef_sum+= abs(buf[x+y*stride]) * qdiv >> 16;
1575  }
1576  }
1577 
1578  /* ugly, ratecontrol just takes a sqrt again */
1579  coef_sum = (uint64_t)coef_sum * coef_sum >> 16;
1580  assert(coef_sum < INT_MAX);
1581 
1582  if(pict->pict_type == AV_PICTURE_TYPE_I){
1583  s->m.current_picture.mb_var_sum= coef_sum;
1585  }else{
1586  s->m.current_picture.mc_mb_var_sum= coef_sum;
1588  }
1589 
1590  pict->quality= ff_rate_estimate_qscale(&s->m, 1);
1591  if (pict->quality < 0)
1592  return INT_MIN;
1593  s->lambda= pict->quality * 3/2;
1594  delta_qlog= qscale2qlog(pict->quality) - s->qlog;
1595  s->qlog+= delta_qlog;
1596  return delta_qlog;
1597 }
1598 
1600  int width = p->width;
1601  int height= p->height;
1602  int level, orientation, x, y;
1603 
1604  for(level=0; level<s->spatial_decomposition_count; level++){
1605  for(orientation=level ? 1 : 0; orientation<4; orientation++){
1606  SubBand *b= &p->band[level][orientation];
1607  IDWTELEM *ibuf= b->ibuf;
1608  int64_t error=0;
1609 
1610  memset(s->spatial_idwt_buffer, 0, sizeof(*s->spatial_idwt_buffer)*width*height);
1611  ibuf[b->width/2 + b->height/2*b->stride]= 256*16;
1613  for(y=0; y<height; y++){
1614  for(x=0; x<width; x++){
1615  int64_t d= s->spatial_idwt_buffer[x + y*width]*16;
1616  error += d*d;
1617  }
1618  }
1619 
1620  b->qlog= (int)(log(352256.0/sqrt(error)) / log(pow(2.0, 1.0/QROOT))+0.5);
1621  }
1622  }
1623 }
1624 
1626  const AVFrame *pict, int *got_packet)
1627 {
1628  SnowContext *s = avctx->priv_data;
1629  RangeCoder * const c= &s->c;
1630  AVFrame *pic = &s->new_picture;
1631  const int width= s->avctx->width;
1632  const int height= s->avctx->height;
1633  int level, orientation, plane_index, i, y, ret;
1634  uint8_t rc_header_bak[sizeof(s->header_state)];
1635  uint8_t rc_block_bak[sizeof(s->block_state)];
1636 
1637  if ((ret = ff_alloc_packet2(avctx, pkt, s->b_width*s->b_height*MB_SIZE*MB_SIZE*3 + FF_MIN_BUFFER_SIZE)) < 0)
1638  return ret;
1639 
1640  ff_init_range_encoder(c, pkt->data, pkt->size);
1641  ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
1642 
1643  for(i=0; i<3; i++){
1644  int hshift= i ? s->chroma_h_shift : 0;
1645  int vshift= i ? s->chroma_v_shift : 0;
1646  for(y=0; y<(height>>vshift); y++)
1647  memcpy(&s->input_picture.data[i][y * s->input_picture.linesize[i]],
1648  &pict->data[i][y * pict->linesize[i]],
1649  width>>hshift);
1650  }
1651  s->new_picture = *pict;
1652 
1653  s->m.picture_number= avctx->frame_number;
1654  if(avctx->flags&CODEC_FLAG_PASS2){
1656  s->keyframe = pic->pict_type == AV_PICTURE_TYPE_I;
1657  if(!(avctx->flags&CODEC_FLAG_QSCALE)) {
1658  pic->quality = ff_rate_estimate_qscale(&s->m, 0);
1659  if (pic->quality < 0)
1660  return -1;
1661  }
1662  }else{
1663  s->keyframe= avctx->gop_size==0 || avctx->frame_number % avctx->gop_size == 0;
1665  }
1666 
1667  if(s->pass1_rc && avctx->frame_number == 0)
1668  pic->quality = 2*FF_QP2LAMBDA;
1669  if (pic->quality) {
1670  s->qlog = qscale2qlog(pic->quality);
1671  s->lambda = pic->quality * 3/2;
1672  }
1673  if (s->qlog < 0 || (!pic->quality && (avctx->flags & CODEC_FLAG_QSCALE))) {
1674  s->qlog= LOSSLESS_QLOG;
1675  s->lambda = 0;
1676  }//else keep previous frame's qlog until after motion estimation
1677 
1679 
1682  s->m.current_picture.f.pts = pict->pts;
1683  if(pic->pict_type == AV_PICTURE_TYPE_P){
1684  int block_width = (width +15)>>4;
1685  int block_height= (height+15)>>4;
1686  int stride= s->current_picture.linesize[0];
1687 
1688  assert(s->current_picture.data[0]);
1689  assert(s->last_picture[0].data[0]);
1690 
1691  s->m.avctx= s->avctx;
1692  s->m.current_picture.f.data[0] = s->current_picture.data[0];
1693  s->m. last_picture.f.data[0] = s->last_picture[0].data[0];
1694  s->m. new_picture.f.data[0] = s-> input_picture.data[0];
1695  s->m. last_picture_ptr= &s->m. last_picture;
1696  s->m.linesize=
1697  s->m. last_picture.f.linesize[0] =
1698  s->m. new_picture.f.linesize[0] =
1699  s->m.current_picture.f.linesize[0] = stride;
1701  s->m.width = width;
1702  s->m.height= height;
1703  s->m.mb_width = block_width;
1704  s->m.mb_height= block_height;
1705  s->m.mb_stride= s->m.mb_width+1;
1706  s->m.b8_stride= 2*s->m.mb_width+1;
1707  s->m.f_code=1;
1708  s->m.pict_type = pic->pict_type;
1709  s->m.me_method= s->avctx->me_method;
1710  s->m.me.scene_change_score=0;
1711  s->m.flags= s->avctx->flags;
1712  s->m.quarter_sample= (s->avctx->flags & CODEC_FLAG_QPEL)!=0;
1713  s->m.out_format= FMT_H263;
1714  s->m.unrestricted_mv= 1;
1715 
1716  s->m.lambda = s->lambda;
1717  s->m.qscale= (s->m.lambda*139 + FF_LAMBDA_SCALE*64) >> (FF_LAMBDA_SHIFT + 7);
1718  s->lambda2= s->m.lambda2= (s->m.lambda*s->m.lambda + FF_LAMBDA_SCALE/2) >> FF_LAMBDA_SHIFT;
1719 
1720  s->m.dsp= s->dsp; //move
1721  ff_init_me(&s->m);
1722  s->dsp= s->m.dsp;
1723  }
1724 
1725  if(s->pass1_rc){
1726  memcpy(rc_header_bak, s->header_state, sizeof(s->header_state));
1727  memcpy(rc_block_bak, s->block_state, sizeof(s->block_state));
1728  }
1729 
1730 redo_frame:
1731 
1732  if (pic->pict_type == AV_PICTURE_TYPE_I)
1734  else
1736 
1737  while( !(width >>(s->chroma_h_shift + s->spatial_decomposition_count))
1738  || !(height>>(s->chroma_v_shift + s->spatial_decomposition_count)))
1740 
1741  s->m.pict_type = pic->pict_type;
1742  s->qbias = pic->pict_type == AV_PICTURE_TYPE_P ? 2 : 0;
1743 
1745 
1747  for(plane_index=0; plane_index<3; plane_index++){
1748  calculate_visual_weight(s, &s->plane[plane_index]);
1749  }
1750  }
1751 
1752  encode_header(s);
1753  s->m.misc_bits = 8*(s->c.bytestream - s->c.bytestream_start);
1754  encode_blocks(s, 1);
1755  s->m.mv_bits = 8*(s->c.bytestream - s->c.bytestream_start) - s->m.misc_bits;
1756 
1757  for(plane_index=0; plane_index<3; plane_index++){
1758  Plane *p= &s->plane[plane_index];
1759  int w= p->width;
1760  int h= p->height;
1761  int x, y;
1762 // int bits= put_bits_count(&s->c.pb);
1763 
1764  if (!s->memc_only) {
1765  //FIXME optimize
1766  if(pict->data[plane_index]) //FIXME gray hack
1767  for(y=0; y<h; y++){
1768  for(x=0; x<w; x++){
1769  s->spatial_idwt_buffer[y*w + x]= pict->data[plane_index][y*pict->linesize[plane_index] + x]<<FRAC_BITS;
1770  }
1771  }
1772  predict_plane(s, s->spatial_idwt_buffer, plane_index, 0);
1773 
1774  if( plane_index==0
1775  && pic->pict_type == AV_PICTURE_TYPE_P
1776  && !(avctx->flags&CODEC_FLAG_PASS2)
1778  ff_init_range_encoder(c, pkt->data, pkt->size);
1779  ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
1781  s->keyframe=1;
1783  goto redo_frame;
1784  }
1785 
1786  if(s->qlog == LOSSLESS_QLOG){
1787  for(y=0; y<h; y++){
1788  for(x=0; x<w; x++){
1789  s->spatial_dwt_buffer[y*w + x]= (s->spatial_idwt_buffer[y*w + x] + (1<<(FRAC_BITS-1))-1)>>FRAC_BITS;
1790  }
1791  }
1792  }else{
1793  for(y=0; y<h; y++){
1794  for(x=0; x<w; x++){
1796  }
1797  }
1798  }
1799 
1800  /* if(QUANTIZE2)
1801  dwt_quantize(s, p, s->spatial_dwt_buffer, w, h, w, s->spatial_decomposition_type);
1802  else*/
1804 
1805  if(s->pass1_rc && plane_index==0){
1806  int delta_qlog = ratecontrol_1pass(s, pic);
1807  if (delta_qlog <= INT_MIN)
1808  return -1;
1809  if(delta_qlog){
1810  //reordering qlog in the bitstream would eliminate this reset
1811  ff_init_range_encoder(c, pkt->data, pkt->size);
1812  memcpy(s->header_state, rc_header_bak, sizeof(s->header_state));
1813  memcpy(s->block_state, rc_block_bak, sizeof(s->block_state));
1814  encode_header(s);
1815  encode_blocks(s, 0);
1816  }
1817  }
1818 
1819  for(level=0; level<s->spatial_decomposition_count; level++){
1820  for(orientation=level ? 1 : 0; orientation<4; orientation++){
1821  SubBand *b= &p->band[level][orientation];
1822 
1823  if(!QUANTIZE2)
1824  quantize(s, b, b->ibuf, b->buf, b->stride, s->qbias);
1825  if(orientation==0)
1826  decorrelate(s, b, b->ibuf, b->stride, pic->pict_type == AV_PICTURE_TYPE_P, 0);
1827  if (!s->no_bitstream)
1828  encode_subband(s, b, b->ibuf, b->parent ? b->parent->ibuf : NULL, b->stride, orientation);
1829  assert(b->parent==NULL || b->parent->stride == b->stride*2);
1830  if(orientation==0)
1831  correlate(s, b, b->ibuf, b->stride, 1, 0);
1832  }
1833  }
1834 
1835  for(level=0; level<s->spatial_decomposition_count; level++){
1836  for(orientation=level ? 1 : 0; orientation<4; orientation++){
1837  SubBand *b= &p->band[level][orientation];
1838 
1839  dequantize(s, b, b->ibuf, b->stride);
1840  }
1841  }
1842 
1844  if(s->qlog == LOSSLESS_QLOG){
1845  for(y=0; y<h; y++){
1846  for(x=0; x<w; x++){
1847  s->spatial_idwt_buffer[y*w + x]<<=FRAC_BITS;
1848  }
1849  }
1850  }
1851  predict_plane(s, s->spatial_idwt_buffer, plane_index, 1);
1852  }else{
1853  //ME/MC only
1854  if(pic->pict_type == AV_PICTURE_TYPE_I){
1855  for(y=0; y<h; y++){
1856  for(x=0; x<w; x++){
1857  s->current_picture.data[plane_index][y*s->current_picture.linesize[plane_index] + x]=
1858  pict->data[plane_index][y*pict->linesize[plane_index] + x];
1859  }
1860  }
1861  }else{
1862  memset(s->spatial_idwt_buffer, 0, sizeof(IDWTELEM)*w*h);
1863  predict_plane(s, s->spatial_idwt_buffer, plane_index, 1);
1864  }
1865  }
1866  if(s->avctx->flags&CODEC_FLAG_PSNR){
1867  int64_t error= 0;
1868 
1869  if(pict->data[plane_index]) //FIXME gray hack
1870  for(y=0; y<h; y++){
1871  for(x=0; x<w; x++){
1872  int d= s->current_picture.data[plane_index][y*s->current_picture.linesize[plane_index] + x] - pict->data[plane_index][y*pict->linesize[plane_index] + x];
1873  error += d*d;
1874  }
1875  }
1876  s->avctx->error[plane_index] += error;
1877  s->current_picture.error[plane_index] = error;
1878  }
1879 
1880  }
1881 
1883 
1884  ff_snow_release_buffer(avctx);
1885 
1887  s->current_picture.pict_type = pict->pict_type;
1888  s->current_picture.quality = pict->quality;
1889  s->m.frame_bits = 8*(s->c.bytestream - s->c.bytestream_start);
1890  s->m.p_tex_bits = s->m.frame_bits - s->m.misc_bits - s->m.mv_bits;
1893  s->m.current_picture.f.quality = pic->quality;
1894  s->m.total_bits += 8*(s->c.bytestream - s->c.bytestream_start);
1895  if(s->pass1_rc)
1896  if (ff_rate_estimate_qscale(&s->m, 0) < 0)
1897  return -1;
1898  if(avctx->flags&CODEC_FLAG_PASS1)
1899  ff_write_pass1_stats(&s->m);
1900  s->m.last_pict_type = s->m.pict_type;
1901  avctx->frame_bits = s->m.frame_bits;
1902  avctx->mv_bits = s->m.mv_bits;
1903  avctx->misc_bits = s->m.misc_bits;
1904  avctx->p_tex_bits = s->m.p_tex_bits;
1905 
1906  emms_c();
1907 
1908  pkt->size = ff_rac_terminate(c);
1909  if (avctx->coded_frame->key_frame)
1910  pkt->flags |= AV_PKT_FLAG_KEY;
1911  *got_packet = 1;
1912 
1913  return 0;
1914 }
1915 
1917 {
1918  SnowContext *s = avctx->priv_data;
1919 
1920  ff_snow_common_end(s);
1921  if (s->input_picture.data[0])
1922  avctx->release_buffer(avctx, &s->input_picture);
1923  av_free(avctx->stats_out);
1924 
1925  return 0;
1926 }
1927 
1928 #define OFFSET(x) offsetof(SnowContext, x)
1929 #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
1930 static const AVOption options[] = {
1931  { "memc_only", "Only do ME/MC (I frames -> ref, P frame -> ME+MC).", OFFSET(memc_only), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, VE },
1932  { "no_bitstream", "Skip final bitstream writeout.", OFFSET(no_bitstream), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, VE },
1933  { NULL },
1934 };
1935 
1936 static const AVClass snowenc_class = {
1937  .class_name = "snow encoder",
1938  .item_name = av_default_item_name,
1939  .option = options,
1940  .version = LIBAVUTIL_VERSION_INT,
1941 };
1942 
1944  .name = "snow",
1945  .type = AVMEDIA_TYPE_VIDEO,
1946  .id = AV_CODEC_ID_SNOW,
1947  .priv_data_size = sizeof(SnowContext),
1948  .init = encode_init,
1949  .encode2 = encode_frame,
1950  .close = encode_end,
1951  .pix_fmts = (const enum AVPixelFormat[]){
1954  },
1955  .long_name = NULL_IF_CONFIG_SMALL("Snow"),
1956  .priv_class = &snowenc_class,
1957 };
1958 
1959 
1960 #ifdef TEST
1961 #undef malloc
1962 #undef free
1963 #undef printf
1964 
1965 #include "libavutil/lfg.h"
1966 #include "libavutil/mathematics.h"
1967 
1968 int main(void){
1969 #define width 256
1970 #define height 256
1971  int buffer[2][width*height];
1972  SnowContext s;
1973  int i;
1974  AVLFG prng;
1977 
1978  s.temp_dwt_buffer = av_mallocz(width * sizeof(DWTELEM));
1979  s.temp_idwt_buffer = av_mallocz(width * sizeof(IDWTELEM));
1980 
1981  av_lfg_init(&prng, 1);
1982 
1983  printf("testing 5/3 DWT\n");
1984  for(i=0; i<width*height; i++)
1985  buffer[0][i] = buffer[1][i] = av_lfg_get(&prng) % 54321 - 12345;
1986 
1989 
1990  for(i=0; i<width*height; i++)
1991  if(buffer[0][i]!= buffer[1][i]) printf("fsck: %6d %12d %7d\n",i, buffer[0][i], buffer[1][i]);
1992 
1993  printf("testing 9/7 DWT\n");
1995  for(i=0; i<width*height; i++)
1996  buffer[0][i] = buffer[1][i] = av_lfg_get(&prng) % 54321 - 12345;
1997 
2000 
2001  for(i=0; i<width*height; i++)
2002  if(FFABS(buffer[0][i] - buffer[1][i])>20) printf("fsck: %6d %12d %7d\n",i, buffer[0][i], buffer[1][i]);
2003 
2004  {
2005  int level, orientation, x, y;
2006  int64_t errors[8][4];
2007  int64_t g=0;
2008 
2009  memset(errors, 0, sizeof(errors));
2012  for(level=0; level<s.spatial_decomposition_count; level++){
2013  for(orientation=level ? 1 : 0; orientation<4; orientation++){
2014  int w= width >> (s.spatial_decomposition_count-level);
2015  int h= height >> (s.spatial_decomposition_count-level);
2016  int stride= width << (s.spatial_decomposition_count-level);
2017  DWTELEM *buf= buffer[0];
2018  int64_t error=0;
2019 
2020  if(orientation&1) buf+=w;
2021  if(orientation>1) buf+=stride>>1;
2022 
2023  memset(buffer[0], 0, sizeof(int)*width*height);
2024  buf[w/2 + h/2*stride]= 256*256;
2026  for(y=0; y<height; y++){
2027  for(x=0; x<width; x++){
2028  int64_t d= buffer[0][x + y*width];
2029  error += d*d;
2030  if(FFABS(width/2-x)<9 && FFABS(height/2-y)<9 && level==2) printf("%8"PRId64" ", d);
2031  }
2032  if(FFABS(height/2-y)<9 && level==2) printf("\n");
2033  }
2034  error= (int)(sqrt(error)+0.5);
2035  errors[level][orientation]= error;
2036  if(g) g=av_gcd(g, error);
2037  else g= error;
2038  }
2039  }
2040  printf("static int const visual_weight[][4]={\n");
2041  for(level=0; level<s.spatial_decomposition_count; level++){
2042  printf(" {");
2043  for(orientation=0; orientation<4; orientation++){
2044  printf("%8"PRId64",", errors[level][orientation]/g);
2045  }
2046  printf("},\n");
2047  }
2048  printf("};\n");
2049  {
2050  int level=2;
2051  int w= width >> (s.spatial_decomposition_count-level);
2052  //int h= height >> (s.spatial_decomposition_count-level);
2053  int stride= width << (s.spatial_decomposition_count-level);
2054  DWTELEM *buf= buffer[0];
2055  int64_t error=0;
2056 
2057  buf+=w;
2058  buf+=stride>>1;
2059 
2060  memset(buffer[0], 0, sizeof(int)*width*height);
2061  for(y=0; y<height; y++){
2062  for(x=0; x<width; x++){
2063  int tab[4]={0,2,3,1};
2064  buffer[0][x+width*y]= 256*256*tab[(x&1) + 2*(y&1)];
2065  }
2066  }
2068  for(y=0; y<height; y++){
2069  for(x=0; x<width; x++){
2070  int64_t d= buffer[0][x + y*width];
2071  error += d*d;
2072  if(FFABS(width/2-x)<9 && FFABS(height/2-y)<9) printf("%8"PRId64" ", d);
2073  }
2074  if(FFABS(height/2-y)<9) printf("\n");
2075  }
2076  }
2077 
2078  }
2079  return 0;
2080 }
2081 #endif /* TEST */