36 0x00,0x80,0x40,0xC0,0x20,0xA0,0x60,0xE0,0x10,0x90,0x50,0xD0,0x30,0xB0,0x70,0xF0,
37 0x08,0x88,0x48,0xC8,0x28,0xA8,0x68,0xE8,0x18,0x98,0x58,0xD8,0x38,0xB8,0x78,0xF8,
38 0x04,0x84,0x44,0xC4,0x24,0xA4,0x64,0xE4,0x14,0x94,0x54,0xD4,0x34,0xB4,0x74,0xF4,
39 0x0C,0x8C,0x4C,0xCC,0x2C,0xAC,0x6C,0xEC,0x1C,0x9C,0x5C,0xDC,0x3C,0xBC,0x7C,0xFC,
40 0x02,0x82,0x42,0xC2,0x22,0xA2,0x62,0xE2,0x12,0x92,0x52,0xD2,0x32,0xB2,0x72,0xF2,
41 0x0A,0x8A,0x4A,0xCA,0x2A,0xAA,0x6A,0xEA,0x1A,0x9A,0x5A,0xDA,0x3A,0xBA,0x7A,0xFA,
42 0x06,0x86,0x46,0xC6,0x26,0xA6,0x66,0xE6,0x16,0x96,0x56,0xD6,0x36,0xB6,0x76,0xF6,
43 0x0E,0x8E,0x4E,0xCE,0x2E,0xAE,0x6E,0xEE,0x1E,0x9E,0x5E,0xDE,0x3E,0xBE,0x7E,0xFE,
44 0x01,0x81,0x41,0xC1,0x21,0xA1,0x61,0xE1,0x11,0x91,0x51,0xD1,0x31,0xB1,0x71,0xF1,
45 0x09,0x89,0x49,0xC9,0x29,0xA9,0x69,0xE9,0x19,0x99,0x59,0xD9,0x39,0xB9,0x79,0xF9,
46 0x05,0x85,0x45,0xC5,0x25,0xA5,0x65,0xE5,0x15,0x95,0x55,0xD5,0x35,0xB5,0x75,0xF5,
47 0x0D,0x8D,0x4D,0xCD,0x2D,0xAD,0x6D,0xED,0x1D,0x9D,0x5D,0xDD,0x3D,0xBD,0x7D,0xFD,
48 0x03,0x83,0x43,0xC3,0x23,0xA3,0x63,0xE3,0x13,0x93,0x53,0xD3,0x33,0xB3,0x73,0xF3,
49 0x0B,0x8B,0x4B,0xCB,0x2B,0xAB,0x6B,0xEB,0x1B,0x9B,0x5B,0xDB,0x3B,0xBB,0x7B,0xFB,
50 0x07,0x87,0x47,0xC7,0x27,0xA7,0x67,0xE7,0x17,0x97,0x57,0xD7,0x37,0xB7,0x77,0xF7,
51 0x0F,0x8F,0x4F,0xCF,0x2F,0xAF,0x6F,0xEF,0x1F,0x9F,0x5F,0xDF,0x3F,0xBF,0x7F,0xFF,
74 if (a == INT64_MIN || a == INT64_MAX)
79 if (a < 0 && a != INT64_MIN)
87 if (b <= INT_MAX && c <= INT_MAX) {
89 return (a * b + r) /
c;
91 return a / c * b + (a % c * b +
r) / c;
94 uint64_t
a0 = a & 0xFFFFFFFF;
95 uint64_t
a1 = a >> 32;
96 uint64_t b0 = b & 0xFFFFFFFF;
97 uint64_t b1 = b >> 32;
98 uint64_t
t1 = a0 * b1 + a1 * b0;
99 uint64_t t1a = t1 << 32;
103 a1 = a1 * b1 + (t1 >> 32) + (a0 < t1a);
107 for (i = 63; i >= 0; i--) {
108 a1 += a1 + ((a0 >> i) & 1);
135 int64_t
b = bq.
num * (int64_t)cq.
den;
136 int64_t
c = cq.
num * (int64_t)bq.
den;
147 int64_t
a = tb_a.
num * (int64_t)tb_b.
den;
148 int64_t
b = tb_b.
num * (int64_t)tb_a.
den;
150 return (ts_a*a > ts_b*
b) - (ts_a*a < ts_b*
b);
160 int64_t
c = (a -
b) & (mod - 1);
180 if (*last < 2*a - b || *last > 2*b - a)
183 this = av_clip64(*last, a, b);
196 m = inc_tb.
num * (int64_t)ts_tb.
den;
197 d = inc_tb.
den * (int64_t)ts_tb.
num;
207 return av_rescale_q(old + 1, inc_tb, ts_tb) + (ts - old_ts);
int64_t av_rescale_rnd(int64_t a, int64_t b, int64_t c, enum AVRounding rnd)
Rescale a 64-bit integer with specified rounding.
#define av_assert0(cond)
assert() equivalent, that is always enabled.
#define av_assert2(cond)
assert() equivalent, that does lie in speed critical code.
AVRational av_mul_q(AVRational b, AVRational c)
Multiply two rationals.
int64_t av_i2int(AVInteger a)
Convert the given AVInteger to an int64_t.
int64_t av_rescale_q(int64_t a, AVRational bq, AVRational cq)
Rescale a 64-bit integer by 2 rational numbers.
AVInteger av_int2i(int64_t a)
Convert the given int64_t to an AVInteger.
const uint8_t av_reverse[256]
Reverse the order of the bits of an 8-bits unsigned integer.
Round to nearest and halfway cases away from zero.
AVInteger av_mul_i(AVInteger a, AVInteger b)
simple assert() macros that are a bit more flexible than ISO C assert().
int64_t av_gcd(int64_t a, int64_t b)
Return the greatest common divisor of a and b.
Libavutil version macros.
int av_compare_ts(int64_t ts_a, AVRational tb_a, int64_t ts_b, AVRational tb_b)
Compare 2 timestamps each in its own timebases.
int64_t av_rescale_q_rnd(int64_t a, AVRational bq, AVRational cq, enum AVRounding rnd)
Rescale a 64-bit integer by 2 rational numbers with specified rounding.
int64_t av_rescale(int64_t a, int64_t b, int64_t c)
Rescale a 64-bit integer with rounding to nearest.
AVInteger av_add_i(AVInteger a, AVInteger b)
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
int64_t av_rescale_delta(AVRational in_tb, int64_t in_ts, AVRational fs_tb, int duration, int64_t *last, AVRational out_tb)
Rescale a timestamp while preserving known durations.
rational number numerator/denominator
common internal and external API header
int64_t av_add_stable(AVRational ts_tb, int64_t ts, AVRational inc_tb, int64_t inc)
Add a value to a timestamp.
AVInteger av_div_i(AVInteger a, AVInteger b)
Return a/b.
Flag to pass INT64_MIN/MAX through instead of rescaling, this avoids special cases for AV_NOPTS_VALUE...
#define AV_NOPTS_VALUE
Undefined timestamp value.
int64_t av_compare_mod(uint64_t a, uint64_t b, uint64_t mod)
Compare 2 integers modulo mod.