FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
mpegaudioenc_template.c
Go to the documentation of this file.
1 /*
2  * The simplest mpeg audio layer 2 encoder
3  * Copyright (c) 2000, 2001 Fabrice Bellard
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * The simplest mpeg audio layer 2 encoder.
25  */
26 
28 
29 #include "avcodec.h"
30 #include "internal.h"
31 #include "put_bits.h"
32 
33 #define FRAC_BITS 15 /* fractional bits for sb_samples and dct */
34 #define WFRAC_BITS 14 /* fractional bits for window */
35 
36 #include "mpegaudio.h"
37 #include "mpegaudiodsp.h"
38 #include "mpegaudiodata.h"
39 #include "mpegaudiotab.h"
40 
41 /* currently, cannot change these constants (need to modify
42  quantization stage) */
43 #define MUL(a,b) (((int64_t)(a) * (int64_t)(b)) >> FRAC_BITS)
44 
45 #define SAMPLES_BUF_SIZE 4096
46 
47 typedef struct MpegAudioContext {
50  int lsf; /* 1 if mpeg2 low bitrate selected */
51  int bitrate_index; /* bit rate */
53  int frame_size; /* frame size, in bits, without padding */
54  /* padding computation */
56  short samples_buf[MPA_MAX_CHANNELS][SAMPLES_BUF_SIZE]; /* buffer for filter */
57  int samples_offset[MPA_MAX_CHANNELS]; /* offset in samples_buf */
59  unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3]; /* scale factors */
60  /* code to group 3 scale factors */
62  int sblimit; /* number of used subbands */
63  const unsigned char *alloc_table;
64  int16_t filter_bank[512];
66  unsigned char scale_diff_table[128];
67 #if USE_FLOATS
68  float scale_factor_inv_table[64];
69 #else
70  int8_t scale_factor_shift[64];
71  unsigned short scale_factor_mult[64];
72 #endif
73  unsigned short total_quant_bits[17]; /* total number of bits per allocation group */
75 
77 {
78  MpegAudioContext *s = avctx->priv_data;
79  int freq = avctx->sample_rate;
80  int bitrate = avctx->bit_rate;
81  int channels = avctx->channels;
82  int i, v, table;
83  float a;
84 
85  if (channels <= 0 || channels > 2){
86  av_log(avctx, AV_LOG_ERROR, "encoding %d channel(s) is not allowed in mp2\n", channels);
87  return AVERROR(EINVAL);
88  }
89  bitrate = bitrate / 1000;
90  s->nb_channels = channels;
91  avctx->frame_size = MPA_FRAME_SIZE;
92  avctx->initial_padding = 512 - 32 + 1;
93 
94  /* encoding freq */
95  s->lsf = 0;
96  for(i=0;i<3;i++) {
97  if (avpriv_mpa_freq_tab[i] == freq)
98  break;
99  if ((avpriv_mpa_freq_tab[i] / 2) == freq) {
100  s->lsf = 1;
101  break;
102  }
103  }
104  if (i == 3){
105  av_log(avctx, AV_LOG_ERROR, "Sampling rate %d is not allowed in mp2\n", freq);
106  return AVERROR(EINVAL);
107  }
108  s->freq_index = i;
109 
110  /* encoding bitrate & frequency */
111  for(i=1;i<15;i++) {
112  if (avpriv_mpa_bitrate_tab[s->lsf][1][i] == bitrate)
113  break;
114  }
115  if (i == 15 && !avctx->bit_rate) {
116  i = 14;
117  bitrate = avpriv_mpa_bitrate_tab[s->lsf][1][i];
118  avctx->bit_rate = bitrate * 1000;
119  }
120  if (i == 15){
121  av_log(avctx, AV_LOG_ERROR, "bitrate %d is not allowed in mp2\n", bitrate);
122  return AVERROR(EINVAL);
123  }
124  s->bitrate_index = i;
125 
126  /* compute total header size & pad bit */
127 
128  a = (float)(bitrate * 1000 * MPA_FRAME_SIZE) / (freq * 8.0);
129  s->frame_size = ((int)a) * 8;
130 
131  /* frame fractional size to compute padding */
132  s->frame_frac = 0;
133  s->frame_frac_incr = (int)((a - floor(a)) * 65536.0);
134 
135  /* select the right allocation table */
136  table = ff_mpa_l2_select_table(bitrate, s->nb_channels, freq, s->lsf);
137 
138  /* number of used subbands */
141 
142  ff_dlog(avctx, "%d kb/s, %d Hz, frame_size=%d bits, table=%d, padincr=%x\n",
143  bitrate, freq, s->frame_size, table, s->frame_frac_incr);
144 
145  for(i=0;i<s->nb_channels;i++)
146  s->samples_offset[i] = 0;
147 
148  for(i=0;i<257;i++) {
149  int v;
150  v = ff_mpa_enwindow[i];
151 #if WFRAC_BITS != 16
152  v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
153 #endif
154  s->filter_bank[i] = v;
155  if ((i & 63) != 0)
156  v = -v;
157  if (i != 0)
158  s->filter_bank[512 - i] = v;
159  }
160 
161  for(i=0;i<64;i++) {
162  v = (int)(exp2((3 - i) / 3.0) * (1 << 20));
163  if (v <= 0)
164  v = 1;
165  s->scale_factor_table[i] = v;
166 #if USE_FLOATS
167  s->scale_factor_inv_table[i] = exp2(-(3 - i) / 3.0) / (float)(1 << 20);
168 #else
169 #define P 15
170  s->scale_factor_shift[i] = 21 - P - (i / 3);
171  s->scale_factor_mult[i] = (1 << P) * exp2((i % 3) / 3.0);
172 #endif
173  }
174  for(i=0;i<128;i++) {
175  v = i - 64;
176  if (v <= -3)
177  v = 0;
178  else if (v < 0)
179  v = 1;
180  else if (v == 0)
181  v = 2;
182  else if (v < 3)
183  v = 3;
184  else
185  v = 4;
186  s->scale_diff_table[i] = v;
187  }
188 
189  for(i=0;i<17;i++) {
190  v = ff_mpa_quant_bits[i];
191  if (v < 0)
192  v = -v;
193  else
194  v = v * 3;
195  s->total_quant_bits[i] = 12 * v;
196  }
197 
198  return 0;
199 }
200 
201 /* 32 point floating point IDCT without 1/sqrt(2) coef zero scaling */
202 static void idct32(int *out, int *tab)
203 {
204  int i, j;
205  int *t, *t1, xr;
206  const int *xp = costab32;
207 
208  for(j=31;j>=3;j-=2) tab[j] += tab[j - 2];
209 
210  t = tab + 30;
211  t1 = tab + 2;
212  do {
213  t[0] += t[-4];
214  t[1] += t[1 - 4];
215  t -= 4;
216  } while (t != t1);
217 
218  t = tab + 28;
219  t1 = tab + 4;
220  do {
221  t[0] += t[-8];
222  t[1] += t[1-8];
223  t[2] += t[2-8];
224  t[3] += t[3-8];
225  t -= 8;
226  } while (t != t1);
227 
228  t = tab;
229  t1 = tab + 32;
230  do {
231  t[ 3] = -t[ 3];
232  t[ 6] = -t[ 6];
233 
234  t[11] = -t[11];
235  t[12] = -t[12];
236  t[13] = -t[13];
237  t[15] = -t[15];
238  t += 16;
239  } while (t != t1);
240 
241 
242  t = tab;
243  t1 = tab + 8;
244  do {
245  int x1, x2, x3, x4;
246 
247  x3 = MUL(t[16], FIX(SQRT2*0.5));
248  x4 = t[0] - x3;
249  x3 = t[0] + x3;
250 
251  x2 = MUL(-(t[24] + t[8]), FIX(SQRT2*0.5));
252  x1 = MUL((t[8] - x2), xp[0]);
253  x2 = MUL((t[8] + x2), xp[1]);
254 
255  t[ 0] = x3 + x1;
256  t[ 8] = x4 - x2;
257  t[16] = x4 + x2;
258  t[24] = x3 - x1;
259  t++;
260  } while (t != t1);
261 
262  xp += 2;
263  t = tab;
264  t1 = tab + 4;
265  do {
266  xr = MUL(t[28],xp[0]);
267  t[28] = (t[0] - xr);
268  t[0] = (t[0] + xr);
269 
270  xr = MUL(t[4],xp[1]);
271  t[ 4] = (t[24] - xr);
272  t[24] = (t[24] + xr);
273 
274  xr = MUL(t[20],xp[2]);
275  t[20] = (t[8] - xr);
276  t[ 8] = (t[8] + xr);
277 
278  xr = MUL(t[12],xp[3]);
279  t[12] = (t[16] - xr);
280  t[16] = (t[16] + xr);
281  t++;
282  } while (t != t1);
283  xp += 4;
284 
285  for (i = 0; i < 4; i++) {
286  xr = MUL(tab[30-i*4],xp[0]);
287  tab[30-i*4] = (tab[i*4] - xr);
288  tab[ i*4] = (tab[i*4] + xr);
289 
290  xr = MUL(tab[ 2+i*4],xp[1]);
291  tab[ 2+i*4] = (tab[28-i*4] - xr);
292  tab[28-i*4] = (tab[28-i*4] + xr);
293 
294  xr = MUL(tab[31-i*4],xp[0]);
295  tab[31-i*4] = (tab[1+i*4] - xr);
296  tab[ 1+i*4] = (tab[1+i*4] + xr);
297 
298  xr = MUL(tab[ 3+i*4],xp[1]);
299  tab[ 3+i*4] = (tab[29-i*4] - xr);
300  tab[29-i*4] = (tab[29-i*4] + xr);
301 
302  xp += 2;
303  }
304 
305  t = tab + 30;
306  t1 = tab + 1;
307  do {
308  xr = MUL(t1[0], *xp);
309  t1[0] = (t[0] - xr);
310  t[0] = (t[0] + xr);
311  t -= 2;
312  t1 += 2;
313  xp++;
314  } while (t >= tab);
315 
316  for(i=0;i<32;i++) {
317  out[i] = tab[bitinv32[i]];
318  }
319 }
320 
321 #define WSHIFT (WFRAC_BITS + 15 - FRAC_BITS)
322 
323 static void filter(MpegAudioContext *s, int ch, const short *samples, int incr)
324 {
325  short *p, *q;
326  int sum, offset, i, j;
327  int tmp[64];
328  int tmp1[32];
329  int *out;
330 
331  offset = s->samples_offset[ch];
332  out = &s->sb_samples[ch][0][0][0];
333  for(j=0;j<36;j++) {
334  /* 32 samples at once */
335  for(i=0;i<32;i++) {
336  s->samples_buf[ch][offset + (31 - i)] = samples[0];
337  samples += incr;
338  }
339 
340  /* filter */
341  p = s->samples_buf[ch] + offset;
342  q = s->filter_bank;
343  /* maxsum = 23169 */
344  for(i=0;i<64;i++) {
345  sum = p[0*64] * q[0*64];
346  sum += p[1*64] * q[1*64];
347  sum += p[2*64] * q[2*64];
348  sum += p[3*64] * q[3*64];
349  sum += p[4*64] * q[4*64];
350  sum += p[5*64] * q[5*64];
351  sum += p[6*64] * q[6*64];
352  sum += p[7*64] * q[7*64];
353  tmp[i] = sum;
354  p++;
355  q++;
356  }
357  tmp1[0] = tmp[16] >> WSHIFT;
358  for( i=1; i<=16; i++ ) tmp1[i] = (tmp[i+16]+tmp[16-i]) >> WSHIFT;
359  for( i=17; i<=31; i++ ) tmp1[i] = (tmp[i+16]-tmp[80-i]) >> WSHIFT;
360 
361  idct32(out, tmp1);
362 
363  /* advance of 32 samples */
364  offset -= 32;
365  out += 32;
366  /* handle the wrap around */
367  if (offset < 0) {
368  memmove(s->samples_buf[ch] + SAMPLES_BUF_SIZE - (512 - 32),
369  s->samples_buf[ch], (512 - 32) * 2);
370  offset = SAMPLES_BUF_SIZE - 512;
371  }
372  }
373  s->samples_offset[ch] = offset;
374 }
375 
377  unsigned char scale_code[SBLIMIT],
378  unsigned char scale_factors[SBLIMIT][3],
379  int sb_samples[3][12][SBLIMIT],
380  int sblimit)
381 {
382  int *p, vmax, v, n, i, j, k, code;
383  int index, d1, d2;
384  unsigned char *sf = &scale_factors[0][0];
385 
386  for(j=0;j<sblimit;j++) {
387  for(i=0;i<3;i++) {
388  /* find the max absolute value */
389  p = &sb_samples[i][0][j];
390  vmax = abs(*p);
391  for(k=1;k<12;k++) {
392  p += SBLIMIT;
393  v = abs(*p);
394  if (v > vmax)
395  vmax = v;
396  }
397  /* compute the scale factor index using log 2 computations */
398  if (vmax > 1) {
399  n = av_log2(vmax);
400  /* n is the position of the MSB of vmax. now
401  use at most 2 compares to find the index */
402  index = (21 - n) * 3 - 3;
403  if (index >= 0) {
404  while (vmax <= s->scale_factor_table[index+1])
405  index++;
406  } else {
407  index = 0; /* very unlikely case of overflow */
408  }
409  } else {
410  index = 62; /* value 63 is not allowed */
411  }
412 
413  ff_dlog(NULL, "%2d:%d in=%x %x %d\n",
414  j, i, vmax, s->scale_factor_table[index], index);
415  /* store the scale factor */
416  av_assert2(index >=0 && index <= 63);
417  sf[i] = index;
418  }
419 
420  /* compute the transmission factor : look if the scale factors
421  are close enough to each other */
422  d1 = s->scale_diff_table[sf[0] - sf[1] + 64];
423  d2 = s->scale_diff_table[sf[1] - sf[2] + 64];
424 
425  /* handle the 25 cases */
426  switch(d1 * 5 + d2) {
427  case 0*5+0:
428  case 0*5+4:
429  case 3*5+4:
430  case 4*5+0:
431  case 4*5+4:
432  code = 0;
433  break;
434  case 0*5+1:
435  case 0*5+2:
436  case 4*5+1:
437  case 4*5+2:
438  code = 3;
439  sf[2] = sf[1];
440  break;
441  case 0*5+3:
442  case 4*5+3:
443  code = 3;
444  sf[1] = sf[2];
445  break;
446  case 1*5+0:
447  case 1*5+4:
448  case 2*5+4:
449  code = 1;
450  sf[1] = sf[0];
451  break;
452  case 1*5+1:
453  case 1*5+2:
454  case 2*5+0:
455  case 2*5+1:
456  case 2*5+2:
457  code = 2;
458  sf[1] = sf[2] = sf[0];
459  break;
460  case 2*5+3:
461  case 3*5+3:
462  code = 2;
463  sf[0] = sf[1] = sf[2];
464  break;
465  case 3*5+0:
466  case 3*5+1:
467  case 3*5+2:
468  code = 2;
469  sf[0] = sf[2] = sf[1];
470  break;
471  case 1*5+3:
472  code = 2;
473  if (sf[0] > sf[2])
474  sf[0] = sf[2];
475  sf[1] = sf[2] = sf[0];
476  break;
477  default:
478  av_assert2(0); //cannot happen
479  code = 0; /* kill warning */
480  }
481 
482  ff_dlog(NULL, "%d: %2d %2d %2d %d %d -> %d\n", j,
483  sf[0], sf[1], sf[2], d1, d2, code);
484  scale_code[j] = code;
485  sf += 3;
486  }
487 }
488 
489 /* The most important function : psycho acoustic module. In this
490  encoder there is basically none, so this is the worst you can do,
491  but also this is the simpler. */
493 {
494  int i;
495 
496  for(i=0;i<s->sblimit;i++) {
497  smr[i] = (int)(fixed_smr[i] * 10);
498  }
499 }
500 
501 
502 #define SB_NOTALLOCATED 0
503 #define SB_ALLOCATED 1
504 #define SB_NOMORE 2
505 
506 /* Try to maximize the smr while using a number of bits inferior to
507  the frame size. I tried to make the code simpler, faster and
508  smaller than other encoders :-) */
510  short smr1[MPA_MAX_CHANNELS][SBLIMIT],
511  unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT],
512  int *padding)
513 {
514  int i, ch, b, max_smr, max_ch, max_sb, current_frame_size, max_frame_size;
515  int incr;
516  short smr[MPA_MAX_CHANNELS][SBLIMIT];
517  unsigned char subband_status[MPA_MAX_CHANNELS][SBLIMIT];
518  const unsigned char *alloc;
519 
520  memcpy(smr, smr1, s->nb_channels * sizeof(short) * SBLIMIT);
521  memset(subband_status, SB_NOTALLOCATED, s->nb_channels * SBLIMIT);
522  memset(bit_alloc, 0, s->nb_channels * SBLIMIT);
523 
524  /* compute frame size and padding */
525  max_frame_size = s->frame_size;
526  s->frame_frac += s->frame_frac_incr;
527  if (s->frame_frac >= 65536) {
528  s->frame_frac -= 65536;
529  s->do_padding = 1;
530  max_frame_size += 8;
531  } else {
532  s->do_padding = 0;
533  }
534 
535  /* compute the header + bit alloc size */
536  current_frame_size = 32;
537  alloc = s->alloc_table;
538  for(i=0;i<s->sblimit;i++) {
539  incr = alloc[0];
540  current_frame_size += incr * s->nb_channels;
541  alloc += 1 << incr;
542  }
543  for(;;) {
544  /* look for the subband with the largest signal to mask ratio */
545  max_sb = -1;
546  max_ch = -1;
547  max_smr = INT_MIN;
548  for(ch=0;ch<s->nb_channels;ch++) {
549  for(i=0;i<s->sblimit;i++) {
550  if (smr[ch][i] > max_smr && subband_status[ch][i] != SB_NOMORE) {
551  max_smr = smr[ch][i];
552  max_sb = i;
553  max_ch = ch;
554  }
555  }
556  }
557  if (max_sb < 0)
558  break;
559  ff_dlog(NULL, "current=%d max=%d max_sb=%d max_ch=%d alloc=%d\n",
560  current_frame_size, max_frame_size, max_sb, max_ch,
561  bit_alloc[max_ch][max_sb]);
562 
563  /* find alloc table entry (XXX: not optimal, should use
564  pointer table) */
565  alloc = s->alloc_table;
566  for(i=0;i<max_sb;i++) {
567  alloc += 1 << alloc[0];
568  }
569 
570  if (subband_status[max_ch][max_sb] == SB_NOTALLOCATED) {
571  /* nothing was coded for this band: add the necessary bits */
572  incr = 2 + nb_scale_factors[s->scale_code[max_ch][max_sb]] * 6;
573  incr += s->total_quant_bits[alloc[1]];
574  } else {
575  /* increments bit allocation */
576  b = bit_alloc[max_ch][max_sb];
577  incr = s->total_quant_bits[alloc[b + 1]] -
578  s->total_quant_bits[alloc[b]];
579  }
580 
581  if (current_frame_size + incr <= max_frame_size) {
582  /* can increase size */
583  b = ++bit_alloc[max_ch][max_sb];
584  current_frame_size += incr;
585  /* decrease smr by the resolution we added */
586  smr[max_ch][max_sb] = smr1[max_ch][max_sb] - quant_snr[alloc[b]];
587  /* max allocation size reached ? */
588  if (b == ((1 << alloc[0]) - 1))
589  subband_status[max_ch][max_sb] = SB_NOMORE;
590  else
591  subband_status[max_ch][max_sb] = SB_ALLOCATED;
592  } else {
593  /* cannot increase the size of this subband */
594  subband_status[max_ch][max_sb] = SB_NOMORE;
595  }
596  }
597  *padding = max_frame_size - current_frame_size;
598  av_assert0(*padding >= 0);
599 }
600 
601 /*
602  * Output the mpeg audio layer 2 frame. Note how the code is small
603  * compared to other encoders :-)
604  */
606  unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT],
607  int padding)
608 {
609  int i, j, k, l, bit_alloc_bits, b, ch;
610  unsigned char *sf;
611  int q[3];
612  PutBitContext *p = &s->pb;
613 
614  /* header */
615 
616  put_bits(p, 12, 0xfff);
617  put_bits(p, 1, 1 - s->lsf); /* 1 = mpeg1 ID, 0 = mpeg2 lsf ID */
618  put_bits(p, 2, 4-2); /* layer 2 */
619  put_bits(p, 1, 1); /* no error protection */
620  put_bits(p, 4, s->bitrate_index);
621  put_bits(p, 2, s->freq_index);
622  put_bits(p, 1, s->do_padding); /* use padding */
623  put_bits(p, 1, 0); /* private_bit */
624  put_bits(p, 2, s->nb_channels == 2 ? MPA_STEREO : MPA_MONO);
625  put_bits(p, 2, 0); /* mode_ext */
626  put_bits(p, 1, 0); /* no copyright */
627  put_bits(p, 1, 1); /* original */
628  put_bits(p, 2, 0); /* no emphasis */
629 
630  /* bit allocation */
631  j = 0;
632  for(i=0;i<s->sblimit;i++) {
633  bit_alloc_bits = s->alloc_table[j];
634  for(ch=0;ch<s->nb_channels;ch++) {
635  put_bits(p, bit_alloc_bits, bit_alloc[ch][i]);
636  }
637  j += 1 << bit_alloc_bits;
638  }
639 
640  /* scale codes */
641  for(i=0;i<s->sblimit;i++) {
642  for(ch=0;ch<s->nb_channels;ch++) {
643  if (bit_alloc[ch][i])
644  put_bits(p, 2, s->scale_code[ch][i]);
645  }
646  }
647 
648  /* scale factors */
649  for(i=0;i<s->sblimit;i++) {
650  for(ch=0;ch<s->nb_channels;ch++) {
651  if (bit_alloc[ch][i]) {
652  sf = &s->scale_factors[ch][i][0];
653  switch(s->scale_code[ch][i]) {
654  case 0:
655  put_bits(p, 6, sf[0]);
656  put_bits(p, 6, sf[1]);
657  put_bits(p, 6, sf[2]);
658  break;
659  case 3:
660  case 1:
661  put_bits(p, 6, sf[0]);
662  put_bits(p, 6, sf[2]);
663  break;
664  case 2:
665  put_bits(p, 6, sf[0]);
666  break;
667  }
668  }
669  }
670  }
671 
672  /* quantization & write sub band samples */
673 
674  for(k=0;k<3;k++) {
675  for(l=0;l<12;l+=3) {
676  j = 0;
677  for(i=0;i<s->sblimit;i++) {
678  bit_alloc_bits = s->alloc_table[j];
679  for(ch=0;ch<s->nb_channels;ch++) {
680  b = bit_alloc[ch][i];
681  if (b) {
682  int qindex, steps, m, sample, bits;
683  /* we encode 3 sub band samples of the same sub band at a time */
684  qindex = s->alloc_table[j+b];
685  steps = ff_mpa_quant_steps[qindex];
686  for(m=0;m<3;m++) {
687  sample = s->sb_samples[ch][k][l + m][i];
688  /* divide by scale factor */
689 #if USE_FLOATS
690  {
691  float a;
692  a = (float)sample * s->scale_factor_inv_table[s->scale_factors[ch][i][k]];
693  q[m] = (int)((a + 1.0) * steps * 0.5);
694  }
695 #else
696  {
697  int q1, e, shift, mult;
698  e = s->scale_factors[ch][i][k];
699  shift = s->scale_factor_shift[e];
700  mult = s->scale_factor_mult[e];
701 
702  /* normalize to P bits */
703  if (shift < 0)
704  q1 = sample << (-shift);
705  else
706  q1 = sample >> shift;
707  q1 = (q1 * mult) >> P;
708  q1 += 1 << P;
709  if (q1 < 0)
710  q1 = 0;
711  q[m] = (q1 * (unsigned)steps) >> (P + 1);
712  }
713 #endif
714  if (q[m] >= steps)
715  q[m] = steps - 1;
716  av_assert2(q[m] >= 0 && q[m] < steps);
717  }
718  bits = ff_mpa_quant_bits[qindex];
719  if (bits < 0) {
720  /* group the 3 values to save bits */
721  put_bits(p, -bits,
722  q[0] + steps * (q[1] + steps * q[2]));
723  } else {
724  put_bits(p, bits, q[0]);
725  put_bits(p, bits, q[1]);
726  put_bits(p, bits, q[2]);
727  }
728  }
729  }
730  /* next subband in alloc table */
731  j += 1 << bit_alloc_bits;
732  }
733  }
734  }
735 
736  /* padding */
737  for(i=0;i<padding;i++)
738  put_bits(p, 1, 0);
739 
740  /* flush */
741  flush_put_bits(p);
742 }
743 
744 static int MPA_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
745  const AVFrame *frame, int *got_packet_ptr)
746 {
747  MpegAudioContext *s = avctx->priv_data;
748  const int16_t *samples = (const int16_t *)frame->data[0];
749  short smr[MPA_MAX_CHANNELS][SBLIMIT];
750  unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
751  int padding, i, ret;
752 
753  for(i=0;i<s->nb_channels;i++) {
754  filter(s, i, samples + i, s->nb_channels);
755  }
756 
757  for(i=0;i<s->nb_channels;i++) {
759  s->sb_samples[i], s->sblimit);
760  }
761  for(i=0;i<s->nb_channels;i++) {
762  psycho_acoustic_model(s, smr[i]);
763  }
764  compute_bit_allocation(s, smr, bit_alloc, &padding);
765 
766  if ((ret = ff_alloc_packet2(avctx, avpkt, MPA_MAX_CODED_FRAME_SIZE, 0)) < 0)
767  return ret;
768 
769  init_put_bits(&s->pb, avpkt->data, avpkt->size);
770 
771  encode_frame(s, bit_alloc, padding);
772 
773  if (frame->pts != AV_NOPTS_VALUE)
774  avpkt->pts = frame->pts - ff_samples_to_time_base(avctx, avctx->initial_padding);
775 
776  avpkt->size = put_bits_count(&s->pb) / 8;
777  *got_packet_ptr = 1;
778  return 0;
779 }
780 
781 static const AVCodecDefault mp2_defaults[] = {
782  { "b", "0" },
783  { NULL },
784 };
785 
#define MPA_STEREO
Definition: mpegaudio.h:45
#define MPA_MAX_CODED_FRAME_SIZE
Definition: mpegaudio.h:39
#define NULL
Definition: coverity.c:32
#define WFRAC_BITS
float v
const char * s
Definition: avisynth_c.h:631
#define P
static int shift(int a, int b)
Definition: sonic.c:82
#define SBLIMIT
Definition: mpegaudio.h:43
This structure describes decoded (raw) audio or video data.
Definition: frame.h:171
static void put_bits(Jpeg2000EncoderContext *s, int val, int n)
put n times val bit
Definition: j2kenc.c:167
unsigned char scale_diff_table[128]
static const unsigned char nb_scale_factors[4]
Definition: mpegaudiotab.h:102
unsigned short scale_factor_mult[64]
#define SB_NOMORE
int size
Definition: avcodec.h:1424
const char * b
Definition: vf_curves.c:109
unsigned short total_quant_bits[17]
const int ff_mpa_quant_bits[17]
Definition: mpegaudiodata.c:55
static const uint8_t q1[256]
Definition: twofish.c:96
#define sample
mpeg audio layer common tables.
const int32_t ff_mpa_enwindow[257]
static int MPA_encode_frame(AVCodecContext *avctx, AVPacket *avpkt, const AVFrame *frame, int *got_packet_ptr)
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
uint8_t bits
Definition: crc.c:295
#define av_cold
Definition: attributes.h:74
static const AVCodecDefault mp2_defaults[]
#define av_assert2(cond)
assert() equivalent, that does lie in speed critical code.
Definition: avassert.h:63
static const int costab32[30]
Definition: mpegaudiotab.h:38
const int ff_mpa_quant_steps[17]
Definition: mpegaudiodata.c:47
const uint16_t avpriv_mpa_freq_tab[3]
Definition: mpegaudiodata.c:40
const unsigned char *const ff_mpa_alloc_tables[5]
int64_t pts
Presentation timestamp in time_base units (time when frame should be shown to user).
Definition: frame.h:257
unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3]
mpeg audio layer 2 tables.
static AVFrame * frame
#define SQRT2
Definition: mpegaudiotab.h:36
uint8_t * data
Definition: avcodec.h:1423
#define ff_dlog(a,...)
static void compute_bit_allocation(MpegAudioContext *s, short smr1[MPA_MAX_CHANNELS][SBLIMIT], unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT], int *padding)
#define FIX(x)
Definition: jrevdct.c:145
unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT]
static int bit_alloc(AC3EncodeContext *s, int snr_offset)
Run the bit allocation with a given SNR offset.
Definition: ac3enc.c:1064
static const unsigned short quant_snr[17]
Definition: mpegaudiotab.h:85
#define av_log(a,...)
unsigned m
Definition: audioconvert.c:187
static av_cold int MPA_encode_init(AVCodecContext *avctx)
#define SB_NOTALLOCATED
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
#define AVERROR(e)
Definition: error.h:43
static void compute_scale_factors(MpegAudioContext *s, unsigned char scale_code[SBLIMIT], unsigned char scale_factors[SBLIMIT][3], int sb_samples[3][12][SBLIMIT], int sblimit)
#define SB_ALLOCATED
static const struct endianess table[]
int initial_padding
Audio only.
Definition: avcodec.h:3294
#define t1
Definition: regdef.h:29
static const int bitinv32[32]
Definition: mpegaudiotab.h:74
static const uint8_t offset[127][2]
Definition: vf_spp.c:92
Libavcodec external API header.
static int put_bits_count(PutBitContext *s)
Definition: put_bits.h:85
const unsigned char * alloc_table
#define MPA_MAX_CHANNELS
Definition: mpegaudio.h:41
int bit_rate
the average bitrate
Definition: avcodec.h:1567
audio channel layout utility functions
int n
Definition: avisynth_c.h:547
static void encode_frame(MpegAudioContext *s, unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT], int padding)
#define av_log2
Definition: intmath.h:100
#define MUL(a, b)
int frame_size
Number of samples per channel in an audio frame.
Definition: avcodec.h:2282
int samples_offset[MPA_MAX_CHANNELS]
int sample_rate
samples per second
Definition: avcodec.h:2262
static const float fixed_smr[SBLIMIT]
Definition: mpegaudiotab.h:95
main external API structure.
Definition: avcodec.h:1502
static int16_t mult(Float11 *f1, Float11 *f2)
Definition: g726.c:55
int index
Definition: gxfenc.c:89
#define WSHIFT
#define MPA_MONO
Definition: mpegaudio.h:48
int ff_alloc_packet2(AVCodecContext *avctx, AVPacket *avpkt, int64_t size, int64_t min_size)
Check AVPacket size and/or allocate data.
Definition: utils.c:1782
short samples_buf[MPA_MAX_CHANNELS][SAMPLES_BUF_SIZE]
static void idct32(int *out, int *tab)
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:182
static void filter(MpegAudioContext *s, int ch, const short *samples, int incr)
common internal api header.
static void flush_put_bits(PutBitContext *s)
Pad the end of the output stream with zeros.
Definition: put_bits.h:101
#define exp2(x)
Definition: libm.h:77
mpeg audio declarations for both encoder and decoder.
static void init_put_bits(PutBitContext *s, uint8_t *buffer, int buffer_size)
Initialize the PutBitContext s.
Definition: put_bits.h:48
const int ff_mpa_sblimit_table[5]
Definition: mpegaudiodata.c:45
static void psycho_acoustic_model(MpegAudioContext *s, short smr[SBLIMIT])
void * priv_data
Definition: avcodec.h:1544
int ff_mpa_l2_select_table(int bitrate, int nb_channels, int freq, int lsf)
Definition: mpegaudio.c:31
int channels
number of audio channels
Definition: avcodec.h:2263
static const struct twinvq_data tab
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(constint16_t *) pi >>8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(constint32_t *) pi >>24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(constfloat *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(constfloat *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(constfloat *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(constdouble *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(constdouble *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(constdouble *) pi *(1U<< 31))))#defineSET_CONV_FUNC_GROUP(ofmt, ifmt) staticvoidset_generic_function(AudioConvert *ac){}voidff_audio_convert_free(AudioConvert **ac){if(!*ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);}AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enumAVSampleFormatout_fmt, enumAVSampleFormatin_fmt, intchannels, intsample_rate, intapply_map){AudioConvert *ac;intin_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) returnNULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method!=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt)>2){ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc){av_free(ac);returnNULL;}returnac;}in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar){ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar?ac->channels:1;}elseif(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;elseac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);returnac;}intff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in){intuse_generic=1;intlen=in->nb_samples;intp;if(ac->dc){av_log(ac->avr, AV_LOG_TRACE,"%dsamples-audio_convert:%sto%s(dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));returnff_convert_dither(ac-> out
const uint16_t avpriv_mpa_bitrate_tab[2][3][15]
Definition: mpegaudiodata.c:30
static av_always_inline int64_t ff_samples_to_time_base(AVCodecContext *avctx, int64_t samples)
Rescale from sample rate to AVCodecContext.time_base.
Definition: internal.h:232
int nb_channels
int sb_samples[MPA_MAX_CHANNELS][3][12][SBLIMIT]
#define MPA_FRAME_SIZE
Definition: mpegaudio.h:36
This structure stores compressed data.
Definition: avcodec.h:1400
int64_t pts
Presentation timestamp in AVStream->time_base units; the time at which the decompressed packet will b...
Definition: avcodec.h:1416
#define AV_NOPTS_VALUE
Undefined timestamp value.
Definition: avutil.h:240
#define SAMPLES_BUF_SIZE
bitstream writer API