FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
h264_mb.c
Go to the documentation of this file.
1 /*
2  * H.26L/H.264/AVC/JVT/14496-10/... decoder
3  * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * H.264 / AVC / MPEG-4 part10 macroblock decoding
25  */
26 
27 #include <stdint.h>
28 
29 #include "config.h"
30 
31 #include "libavutil/common.h"
32 #include "libavutil/intreadwrite.h"
33 #include "avcodec.h"
34 #include "h264.h"
35 #include "qpeldsp.h"
36 #include "thread.h"
37 
39  int n, int height, int y_offset, int list)
40 {
41  int raw_my = sl->mv_cache[list][scan8[n]][1];
42  int filter_height_down = (raw_my & 3) ? 3 : 0;
43  int full_my = (raw_my >> 2) + y_offset;
44  int bottom = full_my + filter_height_down + height;
45 
46  av_assert2(height >= 0);
47 
48  return FFMAX(0, bottom);
49 }
50 
51 static inline void get_lowest_part_y(const H264Context *h, H264SliceContext *sl,
52  int16_t refs[2][48], int n,
53  int height, int y_offset, int list0,
54  int list1, int *nrefs)
55 {
56  int my;
57 
58  y_offset += 16 * (sl->mb_y >> MB_FIELD(sl));
59 
60  if (list0) {
61  int ref_n = sl->ref_cache[0][scan8[n]];
62  H264Ref *ref = &sl->ref_list[0][ref_n];
63 
64  // Error resilience puts the current picture in the ref list.
65  // Don't try to wait on these as it will cause a deadlock.
66  // Fields can wait on each other, though.
67  if (ref->parent->tf.progress->data != h->cur_pic.tf.progress->data ||
68  (ref->reference & 3) != h->picture_structure) {
69  my = get_lowest_part_list_y(sl, n, height, y_offset, 0);
70  if (refs[0][ref_n] < 0)
71  nrefs[0] += 1;
72  refs[0][ref_n] = FFMAX(refs[0][ref_n], my);
73  }
74  }
75 
76  if (list1) {
77  int ref_n = sl->ref_cache[1][scan8[n]];
78  H264Ref *ref = &sl->ref_list[1][ref_n];
79 
80  if (ref->parent->tf.progress->data != h->cur_pic.tf.progress->data ||
81  (ref->reference & 3) != h->picture_structure) {
82  my = get_lowest_part_list_y(sl, n, height, y_offset, 1);
83  if (refs[1][ref_n] < 0)
84  nrefs[1] += 1;
85  refs[1][ref_n] = FFMAX(refs[1][ref_n], my);
86  }
87  }
88 }
89 
90 /**
91  * Wait until all reference frames are available for MC operations.
92  *
93  * @param h the H.264 context
94  */
96 {
97  const int mb_xy = sl->mb_xy;
98  const int mb_type = h->cur_pic.mb_type[mb_xy];
99  int16_t refs[2][48];
100  int nrefs[2] = { 0 };
101  int ref, list;
102 
103  memset(refs, -1, sizeof(refs));
104 
105  if (IS_16X16(mb_type)) {
106  get_lowest_part_y(h, sl, refs, 0, 16, 0,
107  IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1), nrefs);
108  } else if (IS_16X8(mb_type)) {
109  get_lowest_part_y(h, sl, refs, 0, 8, 0,
110  IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1), nrefs);
111  get_lowest_part_y(h, sl, refs, 8, 8, 8,
112  IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1), nrefs);
113  } else if (IS_8X16(mb_type)) {
114  get_lowest_part_y(h, sl, refs, 0, 16, 0,
115  IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1), nrefs);
116  get_lowest_part_y(h, sl, refs, 4, 16, 0,
117  IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1), nrefs);
118  } else {
119  int i;
120 
121  av_assert2(IS_8X8(mb_type));
122 
123  for (i = 0; i < 4; i++) {
124  const int sub_mb_type = sl->sub_mb_type[i];
125  const int n = 4 * i;
126  int y_offset = (i & 2) << 2;
127 
128  if (IS_SUB_8X8(sub_mb_type)) {
129  get_lowest_part_y(h, sl, refs, n, 8, y_offset,
130  IS_DIR(sub_mb_type, 0, 0),
131  IS_DIR(sub_mb_type, 0, 1),
132  nrefs);
133  } else if (IS_SUB_8X4(sub_mb_type)) {
134  get_lowest_part_y(h, sl, refs, n, 4, y_offset,
135  IS_DIR(sub_mb_type, 0, 0),
136  IS_DIR(sub_mb_type, 0, 1),
137  nrefs);
138  get_lowest_part_y(h, sl, refs, n + 2, 4, y_offset + 4,
139  IS_DIR(sub_mb_type, 0, 0),
140  IS_DIR(sub_mb_type, 0, 1),
141  nrefs);
142  } else if (IS_SUB_4X8(sub_mb_type)) {
143  get_lowest_part_y(h, sl, refs, n, 8, y_offset,
144  IS_DIR(sub_mb_type, 0, 0),
145  IS_DIR(sub_mb_type, 0, 1),
146  nrefs);
147  get_lowest_part_y(h, sl, refs, n + 1, 8, y_offset,
148  IS_DIR(sub_mb_type, 0, 0),
149  IS_DIR(sub_mb_type, 0, 1),
150  nrefs);
151  } else {
152  int j;
153  av_assert2(IS_SUB_4X4(sub_mb_type));
154  for (j = 0; j < 4; j++) {
155  int sub_y_offset = y_offset + 2 * (j & 2);
156  get_lowest_part_y(h, sl, refs, n + j, 4, sub_y_offset,
157  IS_DIR(sub_mb_type, 0, 0),
158  IS_DIR(sub_mb_type, 0, 1),
159  nrefs);
160  }
161  }
162  }
163  }
164 
165  for (list = sl->list_count - 1; list >= 0; list--)
166  for (ref = 0; ref < 48 && nrefs[list]; ref++) {
167  int row = refs[list][ref];
168  if (row >= 0) {
169  H264Ref *ref_pic = &sl->ref_list[list][ref];
170  int ref_field = ref_pic->reference - 1;
171  int ref_field_picture = ref_pic->parent->field_picture;
172  int pic_height = 16 * h->mb_height >> ref_field_picture;
173 
174  row <<= MB_MBAFF(sl);
175  nrefs[list]--;
176 
177  if (!FIELD_PICTURE(h) && ref_field_picture) { // frame referencing two fields
178  av_assert2((ref_pic->parent->reference & 3) == 3);
180  FFMIN((row >> 1) - !(row & 1),
181  pic_height - 1),
182  1);
184  FFMIN((row >> 1), pic_height - 1),
185  0);
186  } else if (FIELD_PICTURE(h) && !ref_field_picture) { // field referencing one field of a frame
188  FFMIN(row * 2 + ref_field,
189  pic_height - 1),
190  0);
191  } else if (FIELD_PICTURE(h)) {
193  FFMIN(row, pic_height - 1),
194  ref_field);
195  } else {
197  FFMIN(row, pic_height - 1),
198  0);
199  }
200  }
201  }
202 }
203 
205  H264Ref *pic,
206  int n, int square, int height,
207  int delta, int list,
208  uint8_t *dest_y, uint8_t *dest_cb,
209  uint8_t *dest_cr,
210  int src_x_offset, int src_y_offset,
211  const qpel_mc_func *qpix_op,
212  h264_chroma_mc_func chroma_op,
213  int pixel_shift, int chroma_idc)
214 {
215  const int mx = sl->mv_cache[list][scan8[n]][0] + src_x_offset * 8;
216  int my = sl->mv_cache[list][scan8[n]][1] + src_y_offset * 8;
217  const int luma_xy = (mx & 3) + ((my & 3) << 2);
218  ptrdiff_t offset = (mx >> 2) * (1 << pixel_shift) + (my >> 2) * sl->mb_linesize;
219  uint8_t *src_y = pic->data[0] + offset;
220  uint8_t *src_cb, *src_cr;
221  int extra_width = 0;
222  int extra_height = 0;
223  int emu = 0;
224  const int full_mx = mx >> 2;
225  const int full_my = my >> 2;
226  const int pic_width = 16 * h->mb_width;
227  const int pic_height = 16 * h->mb_height >> MB_FIELD(sl);
228  int ysh;
229 
230  if (mx & 7)
231  extra_width -= 3;
232  if (my & 7)
233  extra_height -= 3;
234 
235  if (full_mx < 0 - extra_width ||
236  full_my < 0 - extra_height ||
237  full_mx + 16 /*FIXME*/ > pic_width + extra_width ||
238  full_my + 16 /*FIXME*/ > pic_height + extra_height) {
240  src_y - (2 << pixel_shift) - 2 * sl->mb_linesize,
241  sl->mb_linesize, sl->mb_linesize,
242  16 + 5, 16 + 5 /*FIXME*/, full_mx - 2,
243  full_my - 2, pic_width, pic_height);
244  src_y = sl->edge_emu_buffer + (2 << pixel_shift) + 2 * sl->mb_linesize;
245  emu = 1;
246  }
247 
248  qpix_op[luma_xy](dest_y, src_y, sl->mb_linesize); // FIXME try variable height perhaps?
249  if (!square)
250  qpix_op[luma_xy](dest_y + delta, src_y + delta, sl->mb_linesize);
251 
252  if (CONFIG_GRAY && h->flags & AV_CODEC_FLAG_GRAY)
253  return;
254 
255  if (chroma_idc == 3 /* yuv444 */) {
256  src_cb = pic->data[1] + offset;
257  if (emu) {
259  src_cb - (2 << pixel_shift) - 2 * sl->mb_linesize,
260  sl->mb_linesize, sl->mb_linesize,
261  16 + 5, 16 + 5 /*FIXME*/,
262  full_mx - 2, full_my - 2,
263  pic_width, pic_height);
264  src_cb = sl->edge_emu_buffer + (2 << pixel_shift) + 2 * sl->mb_linesize;
265  }
266  qpix_op[luma_xy](dest_cb, src_cb, sl->mb_linesize); // FIXME try variable height perhaps?
267  if (!square)
268  qpix_op[luma_xy](dest_cb + delta, src_cb + delta, sl->mb_linesize);
269 
270  src_cr = pic->data[2] + offset;
271  if (emu) {
273  src_cr - (2 << pixel_shift) - 2 * sl->mb_linesize,
274  sl->mb_linesize, sl->mb_linesize,
275  16 + 5, 16 + 5 /*FIXME*/,
276  full_mx - 2, full_my - 2,
277  pic_width, pic_height);
278  src_cr = sl->edge_emu_buffer + (2 << pixel_shift) + 2 * sl->mb_linesize;
279  }
280  qpix_op[luma_xy](dest_cr, src_cr, sl->mb_linesize); // FIXME try variable height perhaps?
281  if (!square)
282  qpix_op[luma_xy](dest_cr + delta, src_cr + delta, sl->mb_linesize);
283  return;
284  }
285 
286  ysh = 3 - (chroma_idc == 2 /* yuv422 */);
287  if (chroma_idc == 1 /* yuv420 */ && MB_FIELD(sl)) {
288  // chroma offset when predicting from a field of opposite parity
289  my += 2 * ((sl->mb_y & 1) - (pic->reference - 1));
290  emu |= (my >> 3) < 0 || (my >> 3) + 8 >= (pic_height >> 1);
291  }
292 
293  src_cb = pic->data[1] + ((mx >> 3) * (1 << pixel_shift)) +
294  (my >> ysh) * sl->mb_uvlinesize;
295  src_cr = pic->data[2] + ((mx >> 3) * (1 << pixel_shift)) +
296  (my >> ysh) * sl->mb_uvlinesize;
297 
298  if (emu) {
299  h->vdsp.emulated_edge_mc(sl->edge_emu_buffer, src_cb,
300  sl->mb_uvlinesize, sl->mb_uvlinesize,
301  9, 8 * chroma_idc + 1, (mx >> 3), (my >> ysh),
302  pic_width >> 1, pic_height >> (chroma_idc == 1 /* yuv420 */));
303  src_cb = sl->edge_emu_buffer;
304  }
305  chroma_op(dest_cb, src_cb, sl->mb_uvlinesize,
306  height >> (chroma_idc == 1 /* yuv420 */),
307  mx & 7, ((unsigned)my << (chroma_idc == 2 /* yuv422 */)) & 7);
308 
309  if (emu) {
310  h->vdsp.emulated_edge_mc(sl->edge_emu_buffer, src_cr,
311  sl->mb_uvlinesize, sl->mb_uvlinesize,
312  9, 8 * chroma_idc + 1, (mx >> 3), (my >> ysh),
313  pic_width >> 1, pic_height >> (chroma_idc == 1 /* yuv420 */));
314  src_cr = sl->edge_emu_buffer;
315  }
316  chroma_op(dest_cr, src_cr, sl->mb_uvlinesize, height >> (chroma_idc == 1 /* yuv420 */),
317  mx & 7, ((unsigned)my << (chroma_idc == 2 /* yuv422 */)) & 7);
318 }
319 
321  int n, int square,
322  int height, int delta,
323  uint8_t *dest_y, uint8_t *dest_cb,
324  uint8_t *dest_cr,
325  int x_offset, int y_offset,
326  const qpel_mc_func *qpix_put,
327  h264_chroma_mc_func chroma_put,
328  const qpel_mc_func *qpix_avg,
329  h264_chroma_mc_func chroma_avg,
330  int list0, int list1,
331  int pixel_shift, int chroma_idc)
332 {
333  const qpel_mc_func *qpix_op = qpix_put;
334  h264_chroma_mc_func chroma_op = chroma_put;
335 
336  dest_y += (2 * x_offset << pixel_shift) + 2 * y_offset * sl->mb_linesize;
337  if (chroma_idc == 3 /* yuv444 */) {
338  dest_cb += (2 * x_offset << pixel_shift) + 2 * y_offset * sl->mb_linesize;
339  dest_cr += (2 * x_offset << pixel_shift) + 2 * y_offset * sl->mb_linesize;
340  } else if (chroma_idc == 2 /* yuv422 */) {
341  dest_cb += (x_offset << pixel_shift) + 2 * y_offset * sl->mb_uvlinesize;
342  dest_cr += (x_offset << pixel_shift) + 2 * y_offset * sl->mb_uvlinesize;
343  } else { /* yuv420 */
344  dest_cb += (x_offset << pixel_shift) + y_offset * sl->mb_uvlinesize;
345  dest_cr += (x_offset << pixel_shift) + y_offset * sl->mb_uvlinesize;
346  }
347  x_offset += 8 * sl->mb_x;
348  y_offset += 8 * (sl->mb_y >> MB_FIELD(sl));
349 
350  if (list0) {
351  H264Ref *ref = &sl->ref_list[0][sl->ref_cache[0][scan8[n]]];
352  mc_dir_part(h, sl, ref, n, square, height, delta, 0,
353  dest_y, dest_cb, dest_cr, x_offset, y_offset,
354  qpix_op, chroma_op, pixel_shift, chroma_idc);
355 
356  qpix_op = qpix_avg;
357  chroma_op = chroma_avg;
358  }
359 
360  if (list1) {
361  H264Ref *ref = &sl->ref_list[1][sl->ref_cache[1][scan8[n]]];
362  mc_dir_part(h, sl, ref, n, square, height, delta, 1,
363  dest_y, dest_cb, dest_cr, x_offset, y_offset,
364  qpix_op, chroma_op, pixel_shift, chroma_idc);
365  }
366 }
367 
369  int n, int square,
370  int height, int delta,
371  uint8_t *dest_y, uint8_t *dest_cb,
372  uint8_t *dest_cr,
373  int x_offset, int y_offset,
374  const qpel_mc_func *qpix_put,
375  h264_chroma_mc_func chroma_put,
376  h264_weight_func luma_weight_op,
377  h264_weight_func chroma_weight_op,
378  h264_biweight_func luma_weight_avg,
379  h264_biweight_func chroma_weight_avg,
380  int list0, int list1,
381  int pixel_shift, int chroma_idc)
382 {
383  int chroma_height;
384 
385  dest_y += (2 * x_offset << pixel_shift) + 2 * y_offset * sl->mb_linesize;
386  if (chroma_idc == 3 /* yuv444 */) {
387  chroma_height = height;
388  chroma_weight_avg = luma_weight_avg;
389  chroma_weight_op = luma_weight_op;
390  dest_cb += (2 * x_offset << pixel_shift) + 2 * y_offset * sl->mb_linesize;
391  dest_cr += (2 * x_offset << pixel_shift) + 2 * y_offset * sl->mb_linesize;
392  } else if (chroma_idc == 2 /* yuv422 */) {
393  chroma_height = height;
394  dest_cb += (x_offset << pixel_shift) + 2 * y_offset * sl->mb_uvlinesize;
395  dest_cr += (x_offset << pixel_shift) + 2 * y_offset * sl->mb_uvlinesize;
396  } else { /* yuv420 */
397  chroma_height = height >> 1;
398  dest_cb += (x_offset << pixel_shift) + y_offset * sl->mb_uvlinesize;
399  dest_cr += (x_offset << pixel_shift) + y_offset * sl->mb_uvlinesize;
400  }
401  x_offset += 8 * sl->mb_x;
402  y_offset += 8 * (sl->mb_y >> MB_FIELD(sl));
403 
404  if (list0 && list1) {
405  /* don't optimize for luma-only case, since B-frames usually
406  * use implicit weights => chroma too. */
407  uint8_t *tmp_cb = sl->bipred_scratchpad;
408  uint8_t *tmp_cr = sl->bipred_scratchpad + (16 << pixel_shift);
409  uint8_t *tmp_y = sl->bipred_scratchpad + 16 * sl->mb_uvlinesize;
410  int refn0 = sl->ref_cache[0][scan8[n]];
411  int refn1 = sl->ref_cache[1][scan8[n]];
412 
413  mc_dir_part(h, sl, &sl->ref_list[0][refn0], n, square, height, delta, 0,
414  dest_y, dest_cb, dest_cr,
415  x_offset, y_offset, qpix_put, chroma_put,
416  pixel_shift, chroma_idc);
417  mc_dir_part(h, sl, &sl->ref_list[1][refn1], n, square, height, delta, 1,
418  tmp_y, tmp_cb, tmp_cr,
419  x_offset, y_offset, qpix_put, chroma_put,
420  pixel_shift, chroma_idc);
421 
422  if (sl->pwt.use_weight == 2) {
423  int weight0 = sl->pwt.implicit_weight[refn0][refn1][sl->mb_y & 1];
424  int weight1 = 64 - weight0;
425  luma_weight_avg(dest_y, tmp_y, sl->mb_linesize,
426  height, 5, weight0, weight1, 0);
427  if (!CONFIG_GRAY || !(h->flags & AV_CODEC_FLAG_GRAY)) {
428  chroma_weight_avg(dest_cb, tmp_cb, sl->mb_uvlinesize,
429  chroma_height, 5, weight0, weight1, 0);
430  chroma_weight_avg(dest_cr, tmp_cr, sl->mb_uvlinesize,
431  chroma_height, 5, weight0, weight1, 0);
432  }
433  } else {
434  luma_weight_avg(dest_y, tmp_y, sl->mb_linesize, height,
436  sl->pwt.luma_weight[refn0][0][0],
437  sl->pwt.luma_weight[refn1][1][0],
438  sl->pwt.luma_weight[refn0][0][1] +
439  sl->pwt.luma_weight[refn1][1][1]);
440  if (!CONFIG_GRAY || !(h->flags & AV_CODEC_FLAG_GRAY)) {
441  chroma_weight_avg(dest_cb, tmp_cb, sl->mb_uvlinesize, chroma_height,
443  sl->pwt.chroma_weight[refn0][0][0][0],
444  sl->pwt.chroma_weight[refn1][1][0][0],
445  sl->pwt.chroma_weight[refn0][0][0][1] +
446  sl->pwt.chroma_weight[refn1][1][0][1]);
447  chroma_weight_avg(dest_cr, tmp_cr, sl->mb_uvlinesize, chroma_height,
449  sl->pwt.chroma_weight[refn0][0][1][0],
450  sl->pwt.chroma_weight[refn1][1][1][0],
451  sl->pwt.chroma_weight[refn0][0][1][1] +
452  sl->pwt.chroma_weight[refn1][1][1][1]);
453  }
454  }
455  } else {
456  int list = list1 ? 1 : 0;
457  int refn = sl->ref_cache[list][scan8[n]];
458  H264Ref *ref = &sl->ref_list[list][refn];
459  mc_dir_part(h, sl, ref, n, square, height, delta, list,
460  dest_y, dest_cb, dest_cr, x_offset, y_offset,
461  qpix_put, chroma_put, pixel_shift, chroma_idc);
462 
463  luma_weight_op(dest_y, sl->mb_linesize, height,
465  sl->pwt.luma_weight[refn][list][0],
466  sl->pwt.luma_weight[refn][list][1]);
467  if (!CONFIG_GRAY || !(h->flags & AV_CODEC_FLAG_GRAY)) {
468  if (sl->pwt.use_weight_chroma) {
469  chroma_weight_op(dest_cb, sl->mb_uvlinesize, chroma_height,
471  sl->pwt.chroma_weight[refn][list][0][0],
472  sl->pwt.chroma_weight[refn][list][0][1]);
473  chroma_weight_op(dest_cr, sl->mb_uvlinesize, chroma_height,
475  sl->pwt.chroma_weight[refn][list][1][0],
476  sl->pwt.chroma_weight[refn][list][1][1]);
477  }
478  }
479  }
480 }
481 
483  int list, int pixel_shift,
484  int chroma_idc)
485 {
486  /* fetch pixels for estimated mv 4 macroblocks ahead
487  * optimized for 64byte cache lines */
488  const int refn = sl->ref_cache[list][scan8[0]];
489  if (refn >= 0) {
490  const int mx = (sl->mv_cache[list][scan8[0]][0] >> 2) + 16 * sl->mb_x + 8;
491  const int my = (sl->mv_cache[list][scan8[0]][1] >> 2) + 16 * sl->mb_y;
492  uint8_t **src = sl->ref_list[list][refn].data;
493  int off = mx * (1<< pixel_shift) +
494  (my + (sl->mb_x & 3) * 4) * sl->mb_linesize +
495  (64 << pixel_shift);
496  h->vdsp.prefetch(src[0] + off, sl->linesize, 4);
497  if (chroma_idc == 3 /* yuv444 */) {
498  h->vdsp.prefetch(src[1] + off, sl->linesize, 4);
499  h->vdsp.prefetch(src[2] + off, sl->linesize, 4);
500  } else {
501  off= ((mx>>1)+64) * (1<<pixel_shift) + ((my>>1) + (sl->mb_x&7))*sl->uvlinesize;
502  h->vdsp.prefetch(src[1] + off, src[2] - src[1], 2);
503  }
504  }
505 }
506 
508  uint8_t *src_y,
509  uint8_t *src_cb, uint8_t *src_cr,
510  int linesize, int uvlinesize,
511  int xchg, int chroma444,
512  int simple, int pixel_shift)
513 {
514  int deblock_topleft;
515  int deblock_top;
516  int top_idx = 1;
517  uint8_t *top_border_m1;
518  uint8_t *top_border;
519 
520  if (!simple && FRAME_MBAFF(h)) {
521  if (sl->mb_y & 1) {
522  if (!MB_MBAFF(sl))
523  return;
524  } else {
525  top_idx = MB_MBAFF(sl) ? 0 : 1;
526  }
527  }
528 
529  if (sl->deblocking_filter == 2) {
530  deblock_topleft = h->slice_table[sl->mb_xy - 1 - h->mb_stride] == sl->slice_num;
531  deblock_top = sl->top_type;
532  } else {
533  deblock_topleft = (sl->mb_x > 0);
534  deblock_top = (sl->mb_y > !!MB_FIELD(sl));
535  }
536 
537  src_y -= linesize + 1 + pixel_shift;
538  src_cb -= uvlinesize + 1 + pixel_shift;
539  src_cr -= uvlinesize + 1 + pixel_shift;
540 
541  top_border_m1 = sl->top_borders[top_idx][sl->mb_x - 1];
542  top_border = sl->top_borders[top_idx][sl->mb_x];
543 
544 #define XCHG(a, b, xchg) \
545  if (pixel_shift) { \
546  if (xchg) { \
547  AV_SWAP64(b + 0, a + 0); \
548  AV_SWAP64(b + 8, a + 8); \
549  } else { \
550  AV_COPY128(b, a); \
551  } \
552  } else if (xchg) \
553  AV_SWAP64(b, a); \
554  else \
555  AV_COPY64(b, a);
556 
557  if (deblock_top) {
558  if (deblock_topleft) {
559  XCHG(top_border_m1 + (8 << pixel_shift),
560  src_y - (7 << pixel_shift), 1);
561  }
562  XCHG(top_border + (0 << pixel_shift), src_y + (1 << pixel_shift), xchg);
563  XCHG(top_border + (8 << pixel_shift), src_y + (9 << pixel_shift), 1);
564  if (sl->mb_x + 1 < h->mb_width) {
565  XCHG(sl->top_borders[top_idx][sl->mb_x + 1],
566  src_y + (17 << pixel_shift), 1);
567  }
568  if (simple || !CONFIG_GRAY || !(h->flags & AV_CODEC_FLAG_GRAY)) {
569  if (chroma444) {
570  if (deblock_topleft) {
571  XCHG(top_border_m1 + (24 << pixel_shift), src_cb - (7 << pixel_shift), 1);
572  XCHG(top_border_m1 + (40 << pixel_shift), src_cr - (7 << pixel_shift), 1);
573  }
574  XCHG(top_border + (16 << pixel_shift), src_cb + (1 << pixel_shift), xchg);
575  XCHG(top_border + (24 << pixel_shift), src_cb + (9 << pixel_shift), 1);
576  XCHG(top_border + (32 << pixel_shift), src_cr + (1 << pixel_shift), xchg);
577  XCHG(top_border + (40 << pixel_shift), src_cr + (9 << pixel_shift), 1);
578  if (sl->mb_x + 1 < h->mb_width) {
579  XCHG(sl->top_borders[top_idx][sl->mb_x + 1] + (16 << pixel_shift), src_cb + (17 << pixel_shift), 1);
580  XCHG(sl->top_borders[top_idx][sl->mb_x + 1] + (32 << pixel_shift), src_cr + (17 << pixel_shift), 1);
581  }
582  } else {
583  if (deblock_topleft) {
584  XCHG(top_border_m1 + (16 << pixel_shift), src_cb - (7 << pixel_shift), 1);
585  XCHG(top_border_m1 + (24 << pixel_shift), src_cr - (7 << pixel_shift), 1);
586  }
587  XCHG(top_border + (16 << pixel_shift), src_cb + 1 + pixel_shift, 1);
588  XCHG(top_border + (24 << pixel_shift), src_cr + 1 + pixel_shift, 1);
589  }
590  }
591  }
592 }
593 
594 static av_always_inline int dctcoef_get(int16_t *mb, int high_bit_depth,
595  int index)
596 {
597  if (high_bit_depth) {
598  return AV_RN32A(((int32_t *)mb) + index);
599  } else
600  return AV_RN16A(mb + index);
601 }
602 
603 static av_always_inline void dctcoef_set(int16_t *mb, int high_bit_depth,
604  int index, int value)
605 {
606  if (high_bit_depth) {
607  AV_WN32A(((int32_t *)mb) + index, value);
608  } else
609  AV_WN16A(mb + index, value);
610 }
611 
613  H264SliceContext *sl,
614  int mb_type, int simple,
615  int transform_bypass,
616  int pixel_shift,
617  const int *block_offset,
618  int linesize,
619  uint8_t *dest_y, int p)
620 {
621  void (*idct_add)(uint8_t *dst, int16_t *block, int stride);
622  void (*idct_dc_add)(uint8_t *dst, int16_t *block, int stride);
623  int i;
624  int qscale = p == 0 ? sl->qscale : sl->chroma_qp[p - 1];
625  block_offset += 16 * p;
626  if (IS_INTRA4x4(mb_type)) {
627  if (IS_8x8DCT(mb_type)) {
628  if (transform_bypass) {
629  idct_dc_add =
630  idct_add = h->h264dsp.h264_add_pixels8_clear;
631  } else {
632  idct_dc_add = h->h264dsp.h264_idct8_dc_add;
633  idct_add = h->h264dsp.h264_idct8_add;
634  }
635  for (i = 0; i < 16; i += 4) {
636  uint8_t *const ptr = dest_y + block_offset[i];
637  const int dir = sl->intra4x4_pred_mode_cache[scan8[i]];
638  if (transform_bypass && h->ps.sps->profile_idc == 244 && dir <= 1) {
639  if (h->sei.unregistered.x264_build != -1) {
640  h->hpc.pred8x8l_add[dir](ptr, sl->mb + (i * 16 + p * 256 << pixel_shift), linesize);
641  } else
642  h->hpc.pred8x8l_filter_add[dir](ptr, sl->mb + (i * 16 + p * 256 << pixel_shift),
643  (sl-> topleft_samples_available << i) & 0x8000,
644  (sl->topright_samples_available << i) & 0x4000, linesize);
645  } else {
646  const int nnz = sl->non_zero_count_cache[scan8[i + p * 16]];
647  h->hpc.pred8x8l[dir](ptr, (sl->topleft_samples_available << i) & 0x8000,
648  (sl->topright_samples_available << i) & 0x4000, linesize);
649  if (nnz) {
650  if (nnz == 1 && dctcoef_get(sl->mb, pixel_shift, i * 16 + p * 256))
651  idct_dc_add(ptr, sl->mb + (i * 16 + p * 256 << pixel_shift), linesize);
652  else
653  idct_add(ptr, sl->mb + (i * 16 + p * 256 << pixel_shift), linesize);
654  }
655  }
656  }
657  } else {
658  if (transform_bypass) {
659  idct_dc_add =
660  idct_add = h->h264dsp.h264_add_pixels4_clear;
661  } else {
662  idct_dc_add = h->h264dsp.h264_idct_dc_add;
663  idct_add = h->h264dsp.h264_idct_add;
664  }
665  for (i = 0; i < 16; i++) {
666  uint8_t *const ptr = dest_y + block_offset[i];
667  const int dir = sl->intra4x4_pred_mode_cache[scan8[i]];
668 
669  if (transform_bypass && h->ps.sps->profile_idc == 244 && dir <= 1) {
670  h->hpc.pred4x4_add[dir](ptr, sl->mb + (i * 16 + p * 256 << pixel_shift), linesize);
671  } else {
672  uint8_t *topright;
673  int nnz, tr;
674  uint64_t tr_high;
675  if (dir == DIAG_DOWN_LEFT_PRED || dir == VERT_LEFT_PRED) {
676  const int topright_avail = (sl->topright_samples_available << i) & 0x8000;
677  av_assert2(sl->mb_y || linesize <= block_offset[i]);
678  if (!topright_avail) {
679  if (pixel_shift) {
680  tr_high = ((uint16_t *)ptr)[3 - linesize / 2] * 0x0001000100010001ULL;
681  topright = (uint8_t *)&tr_high;
682  } else {
683  tr = ptr[3 - linesize] * 0x01010101u;
684  topright = (uint8_t *)&tr;
685  }
686  } else
687  topright = ptr + (4 << pixel_shift) - linesize;
688  } else
689  topright = NULL;
690 
691  h->hpc.pred4x4[dir](ptr, topright, linesize);
692  nnz = sl->non_zero_count_cache[scan8[i + p * 16]];
693  if (nnz) {
694  if (nnz == 1 && dctcoef_get(sl->mb, pixel_shift, i * 16 + p * 256))
695  idct_dc_add(ptr, sl->mb + (i * 16 + p * 256 << pixel_shift), linesize);
696  else
697  idct_add(ptr, sl->mb + (i * 16 + p * 256 << pixel_shift), linesize);
698  }
699  }
700  }
701  }
702  } else {
703  h->hpc.pred16x16[sl->intra16x16_pred_mode](dest_y, linesize);
705  if (!transform_bypass)
706  h->h264dsp.h264_luma_dc_dequant_idct(sl->mb + (p * 256 << pixel_shift),
707  sl->mb_luma_dc[p],
708  h->ps.pps->dequant4_coeff[p][qscale][0]);
709  else {
710  static const uint8_t dc_mapping[16] = {
711  0 * 16, 1 * 16, 4 * 16, 5 * 16,
712  2 * 16, 3 * 16, 6 * 16, 7 * 16,
713  8 * 16, 9 * 16, 12 * 16, 13 * 16,
714  10 * 16, 11 * 16, 14 * 16, 15 * 16
715  };
716  for (i = 0; i < 16; i++)
717  dctcoef_set(sl->mb + (p * 256 << pixel_shift),
718  pixel_shift, dc_mapping[i],
719  dctcoef_get(sl->mb_luma_dc[p],
720  pixel_shift, i));
721  }
722  }
723  }
724 }
725 
727  int mb_type, int simple,
728  int transform_bypass,
729  int pixel_shift,
730  const int *block_offset,
731  int linesize,
732  uint8_t *dest_y, int p)
733 {
734  void (*idct_add)(uint8_t *dst, int16_t *block, int stride);
735  int i;
736  block_offset += 16 * p;
737  if (!IS_INTRA4x4(mb_type)) {
738  if (IS_INTRA16x16(mb_type)) {
739  if (transform_bypass) {
740  if (h->ps.sps->profile_idc == 244 &&
743  h->hpc.pred16x16_add[sl->intra16x16_pred_mode](dest_y, block_offset,
744  sl->mb + (p * 256 << pixel_shift),
745  linesize);
746  } else {
747  for (i = 0; i < 16; i++)
748  if (sl->non_zero_count_cache[scan8[i + p * 16]] ||
749  dctcoef_get(sl->mb, pixel_shift, i * 16 + p * 256))
750  h->h264dsp.h264_add_pixels4_clear(dest_y + block_offset[i],
751  sl->mb + (i * 16 + p * 256 << pixel_shift),
752  linesize);
753  }
754  } else {
755  h->h264dsp.h264_idct_add16intra(dest_y, block_offset,
756  sl->mb + (p * 256 << pixel_shift),
757  linesize,
758  sl->non_zero_count_cache + p * 5 * 8);
759  }
760  } else if (sl->cbp & 15) {
761  if (transform_bypass) {
762  const int di = IS_8x8DCT(mb_type) ? 4 : 1;
763  idct_add = IS_8x8DCT(mb_type) ? h->h264dsp.h264_add_pixels8_clear
765  for (i = 0; i < 16; i += di)
766  if (sl->non_zero_count_cache[scan8[i + p * 16]])
767  idct_add(dest_y + block_offset[i],
768  sl->mb + (i * 16 + p * 256 << pixel_shift),
769  linesize);
770  } else {
771  if (IS_8x8DCT(mb_type))
772  h->h264dsp.h264_idct8_add4(dest_y, block_offset,
773  sl->mb + (p * 256 << pixel_shift),
774  linesize,
775  sl->non_zero_count_cache + p * 5 * 8);
776  else
777  h->h264dsp.h264_idct_add16(dest_y, block_offset,
778  sl->mb + (p * 256 << pixel_shift),
779  linesize,
780  sl->non_zero_count_cache + p * 5 * 8);
781  }
782  }
783  }
784 }
785 
786 #define BITS 8
787 #define SIMPLE 1
788 #include "h264_mb_template.c"
789 
790 #undef BITS
791 #define BITS 16
792 #include "h264_mb_template.c"
793 
794 #undef SIMPLE
795 #define SIMPLE 0
796 #include "h264_mb_template.c"
797 
799 {
800  const int mb_xy = sl->mb_xy;
801  const int mb_type = h->cur_pic.mb_type[mb_xy];
802  int is_complex = CONFIG_SMALL || sl->is_complex ||
803  IS_INTRA_PCM(mb_type) || sl->qscale == 0;
804 
805  if (CHROMA444(h)) {
806  if (is_complex || h->pixel_shift)
807  hl_decode_mb_444_complex(h, sl);
808  else
809  hl_decode_mb_444_simple_8(h, sl);
810  } else if (is_complex) {
811  hl_decode_mb_complex(h, sl);
812  } else if (h->pixel_shift) {
813  hl_decode_mb_simple_16(h, sl);
814  } else
815  hl_decode_mb_simple_8(h, sl);
816 }
static void await_references(const H264Context *h, H264SliceContext *sl)
Wait until all reference frames are available for MC operations.
Definition: h264_mb.c:95
void(* h264_idct_add)(uint8_t *dst, int16_t *block, int stride)
Definition: h264dsp.h:80
#define VERT_PRED8x8
Definition: h264pred.h:70
#define NULL
Definition: coverity.c:32
void(* prefetch)(uint8_t *buf, ptrdiff_t stride, int h)
Prefetch memory into cache (if supported by hardware).
Definition: videodsp.h:76
int16_t mb[16 *48 *2]
Definition: h264.h:437
#define IS_SUB_4X4(a)
Definition: mpegutils.h:95
void(* pred8x8l_add[2])(uint8_t *pix, int16_t *block, ptrdiff_t stride)
Definition: h264pred.h:102
int16_t mv_cache[2][5 *8][2]
Motion vector cache.
Definition: h264.h:429
static av_always_inline void prefetch_motion(const H264Context *h, H264SliceContext *sl, int list, int pixel_shift, int chroma_idc)
Definition: h264_mb.c:482
#define CHROMA444(h)
Definition: h264.h:103
unsigned int topleft_samples_available
Definition: h264.h:360
int chroma_weight[48][2][2][2]
Definition: h264_parse.h:38
int flags
Definition: h264.h:493
int mb_height
Definition: h264.h:555
#define IS_SUB_8X8(a)
Definition: mpegutils.h:92
void(* qpel_mc_func)(uint8_t *dst, const uint8_t *src, ptrdiff_t stride)
Definition: qpeldsp.h:65
void(* pred8x8l_filter_add[2])(uint8_t *pix, int16_t *block, int topleft, int topright, ptrdiff_t stride)
Definition: h264pred.h:104
H264Context.
Definition: h264.h:456
void ff_thread_await_progress(ThreadFrame *f, int n, int field)
Wait for earlier decoding threads to finish reference pictures.
#define HOR_PRED8x8
Definition: h264pred.h:69
int picture_structure
Definition: h264.h:528
#define AV_WN32A(p, v)
Definition: intreadwrite.h:538
int profile_idc
Definition: h264.h:138
void(* h264_add_pixels4_clear)(uint8_t *dst, int16_t *block, int stride)
Definition: h264dsp.h:107
void(* pred16x16_add[3])(uint8_t *pix, const int *block_offset, int16_t *block, ptrdiff_t stride)
Definition: h264pred.h:109
H264SEIContext sei
Definition: h264.h:683
#define AV_RN32A(p)
Definition: intreadwrite.h:526
static int16_t block[64]
Definition: dct.c:113
void(* h264_idct_add16)(uint8_t *dst, const int *blockoffset, int16_t *block, int stride, const uint8_t nnzc[15 *8])
Definition: h264dsp.h:89
int is_complex
Definition: h264.h:376
#define IS_8x8DCT(a)
Definition: h264.h:110
void(* emulated_edge_mc)(uint8_t *dst, const uint8_t *src, ptrdiff_t dst_linesize, ptrdiff_t src_linesize, int block_w, int block_h, int src_x, int src_y, int w, int h)
Copy a rectangular area of samples to a temporary buffer and replicate the border samples...
Definition: videodsp.h:63
uint16_t sub_mb_type[4]
as a DCT coefficient is int32_t in high depth, we need to reserve twice the space.
Definition: h264.h:434
#define MB_FIELD(sl)
Definition: h264.h:76
Definition: h264.h:305
const PPS * pps
Definition: h264.h:236
uint8_t
#define mb
#define av_assert2(cond)
assert() equivalent, that does lie in speed critical code.
Definition: avassert.h:63
float delta
int field_picture
whether or not picture was encoded in separate fields
Definition: h264.h:293
void ff_h264_hl_decode_mb(const H264Context *h, H264SliceContext *sl)
Definition: h264_mb.c:798
Multithreading support functions.
#define LUMA_DC_BLOCK_INDEX
Definition: h264.h:797
uint8_t(*[2] top_borders)[(16 *3)*2]
Definition: h264.h:415
#define IS_DIR(a, part, list)
Definition: mpegutils.h:98
uint32_t(*[6] dequant4_coeff)[16]
Definition: h264.h:225
quarterpel DSP functions
#define height
void(* h264_add_pixels8_clear)(uint8_t *dst, int16_t *block, int stride)
Definition: h264dsp.h:106
int luma_weight[48][2][2]
Definition: h264_parse.h:37
void(* pred4x4[9+3+3])(uint8_t *src, const uint8_t *topright, ptrdiff_t stride)
Definition: h264pred.h:93
H264Picture * parent
Definition: h264.h:313
static av_always_inline void mc_part_weighted(const H264Context *h, H264SliceContext *sl, int n, int square, int height, int delta, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr, int x_offset, int y_offset, const qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put, h264_weight_func luma_weight_op, h264_weight_func chroma_weight_op, h264_biweight_func luma_weight_avg, h264_biweight_func chroma_weight_avg, int list0, int list1, int pixel_shift, int chroma_idc)
Definition: h264_mb.c:368
#define AV_CODEC_FLAG_GRAY
Only decode/encode grayscale.
Definition: avcodec.h:858
int chroma_qp[2]
Definition: h264.h:327
H.264 / AVC / MPEG-4 part10 codec.
int slice_num
Definition: h264.h:321
unsigned int topright_samples_available
Definition: h264.h:362
H264PredContext hpc
Definition: h264.h:502
int chroma_log2_weight_denom
Definition: h264_parse.h:33
void(* h264_biweight_func)(uint8_t *dst, uint8_t *src, int stride, int height, int log2_denom, int weightd, int weights, int offset)
Definition: h264dsp.h:34
int8_t intra4x4_pred_mode_cache[5 *8]
Definition: h264.h:344
void(* h264_idct8_add)(uint8_t *dst, int16_t *block, int stride)
Definition: h264dsp.h:82
int deblocking_filter
disable_deblocking_filter_idc with 1 <-> 0
Definition: h264.h:332
void(* h264_luma_dc_dequant_idct)(int16_t *output, int16_t *input, int qmul)
Definition: h264dsp.h:101
ThreadFrame tf
Definition: h264.h:265
H264SEIUnregistered unregistered
Definition: h264_sei.h:150
static int square(int x)
Definition: roqvideoenc.c:113
static const uint8_t offset[127][2]
Definition: vf_spp.c:92
#define FFMAX(a, b)
Definition: common.h:94
static const uint8_t scan8[16 *3+3]
Definition: h264.h:801
int16_t mb_luma_dc[3][16 *2]
as mb is addressed by scantable[i] and scantable is uint8_t we can either check that i is not too lar...
Definition: h264.h:438
uint8_t * data[3]
Definition: h264.h:306
#define IS_INTRA_PCM(a)
Definition: mpegutils.h:84
#define IS_16X8(a)
Definition: mpegutils.h:89
static av_always_inline void mc_part_std(const H264Context *h, H264SliceContext *sl, int n, int square, int height, int delta, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr, int x_offset, int y_offset, const qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put, const qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg, int list0, int list1, int pixel_shift, int chroma_idc)
Definition: h264_mb.c:320
#define IS_SUB_4X8(a)
Definition: mpegutils.h:94
#define FFMIN(a, b)
Definition: common.h:96
uint16_t * slice_table
slice_table_base + 2*mb_stride + 1
Definition: h264.h:524
int reference
Definition: h264.h:295
#define FIELD_PICTURE(h)
Definition: h264.h:78
typedef void(APIENTRY *FF_PFNGLACTIVETEXTUREPROC)(GLenum texture)
H264PredWeightTable pwt
Definition: h264.h:336
GLsizei GLboolean const GLfloat * value
Definition: opengl_enc.c:109
void(* h264_idct_dc_add)(uint8_t *dst, int16_t *block, int stride)
Definition: h264dsp.h:84
uint32_t * mb_type
Definition: h264.h:274
int32_t
static av_always_inline void hl_decode_mb_idct_luma(const H264Context *h, H264SliceContext *sl, int mb_type, int simple, int transform_bypass, int pixel_shift, const int *block_offset, int linesize, uint8_t *dest_y, int p)
Definition: h264_mb.c:726
int n
Definition: avisynth_c.h:547
int reference
Definition: h264.h:309
void(* pred4x4_add[2])(uint8_t *pix, int16_t *block, ptrdiff_t stride)
Definition: h264pred.h:100
#define AV_WN16A(p, v)
Definition: intreadwrite.h:534
#define src
Definition: vp9dsp.c:530
#define MB_MBAFF(h)
Definition: h264.h:75
#define IS_INTRA16x16(a)
Definition: mpegutils.h:78
uint8_t * edge_emu_buffer
Definition: h264.h:414
int top_type
Definition: h264.h:353
static av_always_inline void dctcoef_set(int16_t *mb, int high_bit_depth, int index, int value)
Definition: h264_mb.c:603
AVBufferRef * progress
Definition: thread.h:40
VideoDSPContext vdsp
Definition: h264.h:459
int intra16x16_pred_mode
Definition: h264.h:342
int mb_stride
Definition: h264.h:556
#define IS_SUB_8X4(a)
Definition: mpegutils.h:93
Libavcodec external API header.
uint8_t * data
The data buffer.
Definition: buffer.h:89
int implicit_weight[48][48][2]
Definition: h264_parse.h:39
static av_always_inline int dctcoef_get(int16_t *mb, int high_bit_depth, int index)
Definition: h264_mb.c:594
void(* pred16x16[4+3+2])(uint8_t *src, ptrdiff_t stride)
Definition: h264pred.h:98
void(* h264_idct8_add4)(uint8_t *dst, const int *blockoffset, int16_t *block, int stride, const uint8_t nnzc[15 *8])
Definition: h264dsp.h:92
#define IS_16X16(a)
Definition: mpegutils.h:88
uint8_t non_zero_count_cache[15 *8]
non zero coeff count cache.
Definition: h264.h:424
int index
Definition: gxfenc.c:89
#define IS_8X16(a)
Definition: mpegutils.h:90
int pixel_shift
0 for 8-bit H.264, 1 for high-bit-depth H.264
Definition: h264.h:475
ptrdiff_t mb_uvlinesize
Definition: h264.h:367
void(* h264_weight_func)(uint8_t *block, int stride, int height, int log2_denom, int weight, int offset)
Definition: h264dsp.h:32
#define u(width,...)
ptrdiff_t mb_linesize
may be equal to s->linesize or s->linesize * 2, for mbaff
Definition: h264.h:366
void(* h264_idct8_dc_add)(uint8_t *dst, int16_t *block, int stride)
Definition: h264dsp.h:86
ptrdiff_t linesize
Definition: h264.h:365
static int get_lowest_part_list_y(H264SliceContext *sl, int n, int height, int y_offset, int list)
Definition: h264_mb.c:38
ptrdiff_t uvlinesize
Definition: h264.h:365
static av_always_inline void xchg_mb_border(const H264Context *h, H264SliceContext *sl, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int xchg, int chroma444, int simple, int pixel_shift)
Definition: h264_mb.c:507
unsigned int list_count
Definition: h264.h:405
static av_always_inline void hl_decode_mb_predict_luma(const H264Context *h, H264SliceContext *sl, int mb_type, int simple, int transform_bypass, int pixel_shift, const int *block_offset, int linesize, uint8_t *dest_y, int p)
Definition: h264_mb.c:612
void(* h264_chroma_mc_func)(uint8_t *dst, uint8_t *src, int srcStride, int h, int x, int y)
Definition: h264chroma.h:24
common internal and external API header
if(ret< 0)
Definition: vf_mcdeint.c:282
static int ref[MAX_W *MAX_W]
Definition: jpeg2000dwt.c:107
H264ParamSets ps
Definition: h264.h:574
static void get_lowest_part_y(const H264Context *h, H264SliceContext *sl, int16_t refs[2][48], int n, int height, int y_offset, int list0, int list1, int *nrefs)
Definition: h264_mb.c:51
#define IS_INTRA4x4(a)
Definition: mpegutils.h:77
int8_t ref_cache[2][5 *8]
Definition: h264.h:430
#define IS_8X8(a)
Definition: mpegutils.h:91
void(* h264_idct_add16intra)(uint8_t *dst, const int *blockoffset, int16_t *block, int stride, const uint8_t nnzc[15 *8])
Definition: h264dsp.h:98
#define FRAME_MBAFF(h)
Definition: h264.h:77
H264Picture cur_pic
Definition: h264.h:467
int mb_width
Definition: h264.h:555
static av_always_inline void mc_dir_part(const H264Context *h, H264SliceContext *sl, H264Ref *pic, int n, int square, int height, int delta, int list, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr, int src_x_offset, int src_y_offset, const qpel_mc_func *qpix_op, h264_chroma_mc_func chroma_op, int pixel_shift, int chroma_idc)
Definition: h264_mb.c:204
#define AV_RN16A(p)
Definition: intreadwrite.h:522
H264Ref ref_list[2][48]
0..15: frame refs, 16..47: mbaff field refs.
Definition: h264.h:406
SPS * sps
Definition: h264.h:238
H264DSPContext h264dsp
Definition: h264.h:460
#define XCHG(a, b, xchg)
#define av_always_inline
Definition: attributes.h:39
#define stride
uint8_t * bipred_scratchpad
Definition: h264.h:413
void(* pred8x8l[9+3])(uint8_t *src, int topleft, int topright, ptrdiff_t stride)
Definition: h264pred.h:95