39 int poc,
int poc1,
int i)
42 int64_t pocdiff = poc1 - (int64_t)poc0;
43 int td = av_clip_int8(pocdiff);
45 if (pocdiff != (
int)pocdiff)
51 int64_t pocdiff0 = poc - (int64_t)poc0;
52 int tb = av_clip_int8(pocdiff0);
53 int tx = (16384 + (
FFABS(td) >> 1)) /
td;
55 if (pocdiff0 != (
int)pocdiff0)
58 return av_clip_intp2((tb * tx + 32) >> 6, 10);
71 for (field = 0; field < 2; field++) {
74 for (i = 0; i < 2 * sl->
ref_count[0]; i++)
84 int map[2][16 + 32],
int list,
85 int field,
int colfield,
int mbafi)
88 int j, old_ref, rfield;
89 int start = mbafi ? 16 : 0;
94 memset(
map[list], 0,
sizeof(
map[list]));
96 for (rfield = 0; rfield < 2; rfield++) {
97 for (old_ref = 0; old_ref < ref1->
ref_count[colfield][list]; old_ref++) {
98 int poc = ref1->
ref_poc[colfield][list][old_ref];
103 else if (interl && (poc & 3) == 3)
104 poc = (poc & ~3) + rfield + 1;
106 for (j = start; j <
end; j++) {
109 int cur_ref = mbafi ? (j - 16) ^ field : j;
111 map[list][2 * old_ref + (rfield ^ field) + 16] = cur_ref;
112 if (rfield == field || !interl)
113 map[list][old_ref] = cur_ref;
127 int ref1sidx = (ref1->
reference & 1) ^ 1;
129 for (list = 0; list < sl->
list_count; list++) {
131 for (j = 0; j < sl->
ref_count[list]; j++)
155 if (col_poc[0] == INT_MAX && col_poc[1] == INT_MAX) {
160 FFABS(col_poc[1] - cur_poc));
172 for (list = 0; list < 2; list++) {
175 for (field = 0; field < 2; field++)
186 int ref_height = 16 * h->
mb_height >> ref_field_picture;
195 FFMIN(16 * mb_y >> ref_field_picture,
197 ref_field_picture && ref_field);
207 const int16_t (*l1mv0)[2], (*l1mv1)[2];
208 const int8_t *l1ref0, *l1ref1;
209 const int is_b8x8 =
IS_8X8(*mb_type);
221 #define MB_TYPE_16x16_OR_INTRA (MB_TYPE_16x16 | MB_TYPE_INTRA4x4 | \
222 MB_TYPE_INTRA16x16 | MB_TYPE_INTRA_PCM)
225 for (list = 0; list < 2; list++) {
234 ref[list] =
FFMIN3((
unsigned)left_ref,
237 if (ref[list] >= 0) {
243 int match_count = (left_ref == ref[list]) +
244 (top_ref == ref[list]) +
247 if (match_count > 1) {
251 assert(match_count == 1);
252 if (left_ref == ref[list])
254 else if (top_ref == ref[list])
269 if (ref[0] < 0 && ref[1] < 0) {
276 if (!(is_b8x8 | mv[0] | mv[1])) {
300 mb_y = sl->
mb_y & ~1;
328 }
else if (!is_b8x8 &&
353 l1mv0 += 2 * b4_stride;
354 l1mv1 += 2 * b4_stride;
360 for (i8 = 0; i8 < 4; i8++) {
363 int xy8 = x8 + y8 * b8_stride;
364 int xy4 = x8 * 3 + y8 * b4_stride;
376 ((l1ref0[xy8] == 0 &&
377 FFABS(l1mv0[xy4][0]) <= 1 &&
378 FFABS(l1mv0[xy4][1]) <= 1) ||
381 FFABS(l1mv1[xy4][0]) <= 1 &&
382 FFABS(l1mv1[xy4][1]) <= 1))) {
397 if (!is_b8x8 && !(n & 3))
408 FFABS(l1mv0[0][0]) <= 1 &&
409 FFABS(l1mv0[0][1]) <= 1) ||
410 (l1ref0[0] < 0 && !l1ref1[0] &&
411 FFABS(l1mv1[0][0]) <= 1 &&
412 FFABS(l1mv1[0][1]) <= 1 &&
427 for (i8 = 0; i8 < 4; i8++) {
428 const int x8 = i8 & 1;
429 const int y8 = i8 >> 1;
442 assert(b8_stride == 2);
449 const int16_t (*l1mv)[2] = l1ref0[i8] == 0 ? l1mv0 : l1mv1;
451 const int16_t *mv_col = l1mv[x8 * 3 + y8 * 3 * b4_stride];
452 if (
FFABS(mv_col[0]) <= 1 &&
FFABS(mv_col[1]) <= 1) {
463 for (i4 = 0; i4 < 4; i4++) {
464 const int16_t *mv_col = l1mv[x8 * 2 + (i4 & 1) +
465 (y8 * 2 + (i4 >> 1)) * b4_stride];
466 if (
FFABS(mv_col[0]) <= 1 &&
FFABS(mv_col[1]) <= 1) {
480 if (!is_b8x8 && !(n & 15))
494 const int16_t (*l1mv0)[2], (*l1mv1)[2];
495 const int8_t *l1ref0, *l1ref1;
496 const int is_b8x8 =
IS_8X8(*mb_type);
497 unsigned int sub_mb_type;
518 mb_y = sl->
mb_y & ~1;
551 }
else if (!is_b8x8 &&
577 l1mv0 += 2 * b4_stride;
578 l1mv1 += 2 * b4_stride;
599 for (i8 = 0; i8 < 4; i8++) {
600 const int x8 = i8 & 1;
601 const int y8 = i8 >> 1;
603 const int16_t (*l1mv)[2] = l1mv0;
617 ref0 = l1ref0[x8 + y8 * b8_stride];
619 ref0 = map_col_to_list0[0][ref0 + ref_offset];
621 ref0 = map_col_to_list0[1][l1ref1[x8 + y8 * b8_stride] +
625 scale = dist_scale_factor[ref0];
630 const int16_t *mv_col = l1mv[x8 * 3 + y8 * b4_stride];
631 int my_col = (mv_col[1] * (1 << y_shift)) / 2;
632 int mx = (scale * mv_col[0] + 128) >> 8;
633 int my = (scale * my_col + 128) >> 8;
652 const int ref0 = l1ref0[0] >= 0 ? map_col_to_list0[0][l1ref0[0] + ref_offset]
653 : map_col_to_list0[1][l1ref1[0] + ref_offset];
654 const int scale = dist_scale_factor[ref0];
655 const int16_t *mv_col = l1ref0[0] >= 0 ? l1mv0[0] : l1mv1[0];
657 mv_l0[0] = (scale * mv_col[0] + 128) >> 8;
658 mv_l0[1] = (scale * mv_col[1] + 128) >> 8;
661 mv1 =
pack16to32(mv_l0[0] - mv_col[0], mv_l0[1] - mv_col[1]);
667 for (i8 = 0; i8 < 4; i8++) {
668 const int x8 = i8 & 1;
669 const int y8 = i8 >> 1;
671 const int16_t (*l1mv)[2] = l1mv0;
684 assert(b8_stride == 2);
687 ref0 = map_col_to_list0[0][ref0 + ref_offset];
689 ref0 = map_col_to_list0[1][l1ref1[i8] + ref_offset];
692 scale = dist_scale_factor[ref0];
697 const int16_t *mv_col = l1mv[x8 * 3 + y8 * 3 * b4_stride];
698 int mx = (scale * mv_col[0] + 128) >> 8;
699 int my = (scale * mv_col[1] + 128) >> 8;
703 pack16to32(mx - mv_col[0], my - mv_col[1]), 4);
705 for (i4 = 0; i4 < 4; i4++) {
706 const int16_t *mv_col = l1mv[x8 * 2 + (i4 & 1) +
707 (y8 * 2 + (i4 >> 1)) * b4_stride];
709 mv_l0[0] = (scale * mv_col[0] + 128) >> 8;
710 mv_l0[1] = (scale * mv_col[1] + 128) >> 8;
713 mv_l0[1] - mv_col[1]));
static void pred_spatial_direct_motion(const H264Context *const h, H264SliceContext *sl, int *mb_type)
struct H264Context * h264
int long_ref
1->long term reference 0->short term reference
int16_t mv_cache[2][5 *8][2]
Motion vector cache.
int dist_scale_factor[32]
int16_t(*[2] motion_val)[2]
void ff_h264_pred_direct_motion(const H264Context *const h, H264SliceContext *sl, int *mb_type)
void ff_thread_await_progress(ThreadFrame *f, int n, int field)
Wait for earlier decoding threads to finish reference pictures.
unsigned int ref_count[2]
num_ref_idx_l0/1_active_minus1 + 1
#define av_assert0(cond)
assert() equivalent, that is always enabled.
uint16_t sub_mb_type[4]
as a DCT coefficient is int32_t in high depth, we need to reserve twice the space.
void void avpriv_request_sample(void *avc, const char *msg,...) av_printf_format(2
Log a generic warning message about a missing feature.
#define av_assert2(cond)
assert() equivalent, that does lie in speed critical code.
int field_picture
whether or not picture was encoded in separate fields
static av_cold int end(AVCodecContext *avctx)
Multithreading support functions.
int map_col_to_list0_field[2][2][16+32]
#define PICT_BOTTOM_FIELD
void ff_h264_direct_ref_list_init(const H264Context *const h, H264SliceContext *sl)
static void await_reference_mb_row(const H264Context *const h, H264Ref *ref, int mb_y)
H.264 parameter set handling.
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
static const uint16_t mask[17]
int map_col_to_list0[2][16+32]
int active_thread_type
Which multithreading methods are in use by the codec.
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
int ref_poc[2][2][32]
POCs of the frames/fields used as reference (FIXME need per slice)
int direct_spatial_mv_pred
H264SEIUnregistered unregistered
int frame_num
frame_num (raw frame_num from slice header)
#define MB_TYPE_16x16_OR_INTRA
int slice_type_nos
S free slice type (SI/SP are remapped to I/P)
useful rectangle filling function
#define FF_THREAD_FRAME
Decode more than one frame at once.
static void pred_temp_direct_motion(const H264Context *const h, H264SliceContext *sl, int *mb_type)
#define MB_TYPE_INTERLACED
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
H.264 / AVC / MPEG-4 part10 codec.
int direct_8x8_inference_flag
static void fill_rectangle(int x, int y, int w, int h)
static int get_scale_factor(H264SliceContext *sl, int poc, int poc1, int i)
static const int8_t mv[256][2]
Libavcodec external API header.
int field_poc[2]
top/bottom POC
static const uint8_t scan8[16 *3+3]
static av_always_inline uint32_t pack16to32(unsigned a, unsigned b)
H264Picture * cur_pic_ptr
const VDPAUPixFmtMap * map
static void fill_colmap(const H264Context *h, H264SliceContext *sl, int map[2][16+32], int list, int field, int colfield, int mbafi)
int mbaff
1 -> MBAFF frame 0-> not MBAFF
common internal api header.
static int ref[MAX_W *MAX_W]
int8_t ref_cache[2][5 *8]
#define PART_NOT_AVAILABLE
int current_slice
current slice number, used to initialize slice_num of each thread/context
H264Ref ref_list[2][48]
0..15: frame refs, 16..47: mbaff field refs.
int ref_count[2][2]
number of entries in ref_poc (FIXME need per slice)
int dist_scale_factor_field[2][32]
void ff_h264_direct_dist_scale_factor(const H264Context *const h, H264SliceContext *sl)