FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
dnn_backend_tf.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2018 Sergey Lavrushkin
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 
21 /**
22  * @file
23  * DNN tensorflow backend implementation.
24  */
25 
26 #include "dnn_backend_tf.h"
27 #include "dnn_backend_native.h"
28 #include "libavformat/avio.h"
29 
30 #include <tensorflow/c/c_api.h>
31 
32 typedef struct TFModel{
33  TF_Graph *graph;
34  TF_Session *session;
35  TF_Status *status;
36  TF_Output input, output;
37  TF_Tensor *input_tensor;
39 } TFModel;
40 
41 static void free_buffer(void *data, size_t length)
42 {
43  av_freep(&data);
44 }
45 
46 static TF_Buffer *read_graph(const char *model_filename)
47 {
48  TF_Buffer *graph_buf;
49  unsigned char *graph_data = NULL;
50  AVIOContext *model_file_context;
51  long size, bytes_read;
52 
53  if (avio_open(&model_file_context, model_filename, AVIO_FLAG_READ) < 0){
54  return NULL;
55  }
56 
57  size = avio_size(model_file_context);
58 
59  graph_data = av_malloc(size);
60  if (!graph_data){
61  avio_closep(&model_file_context);
62  return NULL;
63  }
64  bytes_read = avio_read(model_file_context, graph_data, size);
65  avio_closep(&model_file_context);
66  if (bytes_read != size){
67  av_freep(&graph_data);
68  return NULL;
69  }
70 
71  graph_buf = TF_NewBuffer();
72  graph_buf->data = (void *)graph_data;
73  graph_buf->length = size;
74  graph_buf->data_deallocator = free_buffer;
75 
76  return graph_buf;
77 }
78 
79 static DNNReturnType set_input_output_tf(void *model, DNNData *input, DNNData *output)
80 {
81  TFModel *tf_model = (TFModel *)model;
82  int64_t input_dims[] = {1, input->height, input->width, input->channels};
83  TF_SessionOptions *sess_opts;
84  const TF_Operation *init_op = TF_GraphOperationByName(tf_model->graph, "init");
85  TF_Tensor *output_tensor;
86 
87  // Input operation should be named 'x'
88  tf_model->input.oper = TF_GraphOperationByName(tf_model->graph, "x");
89  if (!tf_model->input.oper){
90  return DNN_ERROR;
91  }
92  tf_model->input.index = 0;
93  if (tf_model->input_tensor){
94  TF_DeleteTensor(tf_model->input_tensor);
95  }
96  tf_model->input_tensor = TF_AllocateTensor(TF_FLOAT, input_dims, 4,
97  input_dims[1] * input_dims[2] * input_dims[3] * sizeof(float));
98  if (!tf_model->input_tensor){
99  return DNN_ERROR;
100  }
101  input->data = (float *)TF_TensorData(tf_model->input_tensor);
102 
103  // Output operation should be named 'y'
104  tf_model->output.oper = TF_GraphOperationByName(tf_model->graph, "y");
105  if (!tf_model->output.oper){
106  return DNN_ERROR;
107  }
108  tf_model->output.index = 0;
109 
110  if (tf_model->session){
111  TF_CloseSession(tf_model->session, tf_model->status);
112  TF_DeleteSession(tf_model->session, tf_model->status);
113  }
114 
115  sess_opts = TF_NewSessionOptions();
116  tf_model->session = TF_NewSession(tf_model->graph, sess_opts, tf_model->status);
117  TF_DeleteSessionOptions(sess_opts);
118  if (TF_GetCode(tf_model->status) != TF_OK)
119  {
120  return DNN_ERROR;
121  }
122 
123  // Run initialization operation with name "init" if it is present in graph
124  if (init_op){
125  TF_SessionRun(tf_model->session, NULL,
126  NULL, NULL, 0,
127  NULL, NULL, 0,
128  &init_op, 1, NULL, tf_model->status);
129  if (TF_GetCode(tf_model->status) != TF_OK)
130  {
131  return DNN_ERROR;
132  }
133  }
134 
135  // Execute network to get output height, width and number of channels
136  TF_SessionRun(tf_model->session, NULL,
137  &tf_model->input, &tf_model->input_tensor, 1,
138  &tf_model->output, &output_tensor, 1,
139  NULL, 0, NULL, tf_model->status);
140  if (TF_GetCode(tf_model->status) != TF_OK){
141  return DNN_ERROR;
142  }
143  else{
144  output->height = TF_Dim(output_tensor, 1);
145  output->width = TF_Dim(output_tensor, 2);
146  output->channels = TF_Dim(output_tensor, 3);
147  output->data = av_malloc(output->height * output->width * output->channels * sizeof(float));
148  if (!output->data){
149  return DNN_ERROR;
150  }
151  tf_model->output_data = output;
152  TF_DeleteTensor(output_tensor);
153  }
154 
155  return DNN_SUCCESS;
156 }
157 
158 static DNNReturnType load_tf_model(TFModel *tf_model, const char *model_filename)
159 {
160  TF_Buffer *graph_def;
161  TF_ImportGraphDefOptions *graph_opts;
162 
163  graph_def = read_graph(model_filename);
164  if (!graph_def){
165  return DNN_ERROR;
166  }
167  tf_model->graph = TF_NewGraph();
168  tf_model->status = TF_NewStatus();
169  graph_opts = TF_NewImportGraphDefOptions();
170  TF_GraphImportGraphDef(tf_model->graph, graph_def, graph_opts, tf_model->status);
171  TF_DeleteImportGraphDefOptions(graph_opts);
172  TF_DeleteBuffer(graph_def);
173  if (TF_GetCode(tf_model->status) != TF_OK){
174  TF_DeleteGraph(tf_model->graph);
175  TF_DeleteStatus(tf_model->status);
176  return DNN_ERROR;
177  }
178 
179  return DNN_SUCCESS;
180 }
181 
182 #define NAME_BUFFER_SIZE 256
183 
184 static DNNReturnType add_conv_layer(TFModel *tf_model, TF_Operation *transpose_op, TF_Operation **cur_op,
185  ConvolutionalParams* params, const int layer)
186 {
187  TF_Operation *op;
188  TF_OperationDescription *op_desc;
189  TF_Output input;
190  int64_t strides[] = {1, 1, 1, 1};
191  TF_Tensor *tensor;
192  int64_t dims[4];
193  int dims_len;
194  char name_buffer[NAME_BUFFER_SIZE];
195  int32_t size;
196 
197  size = params->input_num * params->output_num * params->kernel_size * params->kernel_size;
198  input.index = 0;
199 
200  snprintf(name_buffer, NAME_BUFFER_SIZE, "conv_kernel%d", layer);
201  op_desc = TF_NewOperation(tf_model->graph, "Const", name_buffer);
202  TF_SetAttrType(op_desc, "dtype", TF_FLOAT);
203  dims[0] = params->output_num;
204  dims[1] = params->kernel_size;
205  dims[2] = params->kernel_size;
206  dims[3] = params->input_num;
207  dims_len = 4;
208  tensor = TF_AllocateTensor(TF_FLOAT, dims, dims_len, size * sizeof(float));
209  memcpy(TF_TensorData(tensor), params->kernel, size * sizeof(float));
210  TF_SetAttrTensor(op_desc, "value", tensor, tf_model->status);
211  if (TF_GetCode(tf_model->status) != TF_OK){
212  return DNN_ERROR;
213  }
214  op = TF_FinishOperation(op_desc, tf_model->status);
215  if (TF_GetCode(tf_model->status) != TF_OK){
216  return DNN_ERROR;
217  }
218 
219  snprintf(name_buffer, NAME_BUFFER_SIZE, "transpose%d", layer);
220  op_desc = TF_NewOperation(tf_model->graph, "Transpose", name_buffer);
221  input.oper = op;
222  TF_AddInput(op_desc, input);
223  input.oper = transpose_op;
224  TF_AddInput(op_desc, input);
225  TF_SetAttrType(op_desc, "T", TF_FLOAT);
226  TF_SetAttrType(op_desc, "Tperm", TF_INT32);
227  op = TF_FinishOperation(op_desc, tf_model->status);
228  if (TF_GetCode(tf_model->status) != TF_OK){
229  return DNN_ERROR;
230  }
231 
232  snprintf(name_buffer, NAME_BUFFER_SIZE, "conv2d%d", layer);
233  op_desc = TF_NewOperation(tf_model->graph, "Conv2D", name_buffer);
234  input.oper = *cur_op;
235  TF_AddInput(op_desc, input);
236  input.oper = op;
237  TF_AddInput(op_desc, input);
238  TF_SetAttrType(op_desc, "T", TF_FLOAT);
239  TF_SetAttrIntList(op_desc, "strides", strides, 4);
240  TF_SetAttrString(op_desc, "padding", "VALID", 5);
241  *cur_op = TF_FinishOperation(op_desc, tf_model->status);
242  if (TF_GetCode(tf_model->status) != TF_OK){
243  return DNN_ERROR;
244  }
245 
246  snprintf(name_buffer, NAME_BUFFER_SIZE, "conv_biases%d", layer);
247  op_desc = TF_NewOperation(tf_model->graph, "Const", name_buffer);
248  TF_SetAttrType(op_desc, "dtype", TF_FLOAT);
249  dims[0] = params->output_num;
250  dims_len = 1;
251  tensor = TF_AllocateTensor(TF_FLOAT, dims, dims_len, params->output_num * sizeof(float));
252  memcpy(TF_TensorData(tensor), params->biases, params->output_num * sizeof(float));
253  TF_SetAttrTensor(op_desc, "value", tensor, tf_model->status);
254  if (TF_GetCode(tf_model->status) != TF_OK){
255  return DNN_ERROR;
256  }
257  op = TF_FinishOperation(op_desc, tf_model->status);
258  if (TF_GetCode(tf_model->status) != TF_OK){
259  return DNN_ERROR;
260  }
261 
262  snprintf(name_buffer, NAME_BUFFER_SIZE, "bias_add%d", layer);
263  op_desc = TF_NewOperation(tf_model->graph, "BiasAdd", name_buffer);
264  input.oper = *cur_op;
265  TF_AddInput(op_desc, input);
266  input.oper = op;
267  TF_AddInput(op_desc, input);
268  TF_SetAttrType(op_desc, "T", TF_FLOAT);
269  *cur_op = TF_FinishOperation(op_desc, tf_model->status);
270  if (TF_GetCode(tf_model->status) != TF_OK){
271  return DNN_ERROR;
272  }
273 
274  snprintf(name_buffer, NAME_BUFFER_SIZE, "activation%d", layer);
275  switch (params->activation){
276  case RELU:
277  op_desc = TF_NewOperation(tf_model->graph, "Relu", name_buffer);
278  break;
279  case TANH:
280  op_desc = TF_NewOperation(tf_model->graph, "Tanh", name_buffer);
281  break;
282  case SIGMOID:
283  op_desc = TF_NewOperation(tf_model->graph, "Sigmoid", name_buffer);
284  break;
285  default:
286  return DNN_ERROR;
287  }
288  input.oper = *cur_op;
289  TF_AddInput(op_desc, input);
290  TF_SetAttrType(op_desc, "T", TF_FLOAT);
291  *cur_op = TF_FinishOperation(op_desc, tf_model->status);
292  if (TF_GetCode(tf_model->status) != TF_OK){
293  return DNN_ERROR;
294  }
295 
296  return DNN_SUCCESS;
297 }
298 
299 static DNNReturnType add_depth_to_space_layer(TFModel *tf_model, TF_Operation **cur_op,
300  DepthToSpaceParams *params, const int layer)
301 {
302  TF_OperationDescription *op_desc;
303  TF_Output input;
304  char name_buffer[NAME_BUFFER_SIZE];
305 
306  snprintf(name_buffer, NAME_BUFFER_SIZE, "depth_to_space%d", layer);
307  op_desc = TF_NewOperation(tf_model->graph, "DepthToSpace", name_buffer);
308  input.oper = *cur_op;
309  input.index = 0;
310  TF_AddInput(op_desc, input);
311  TF_SetAttrType(op_desc, "T", TF_FLOAT);
312  TF_SetAttrInt(op_desc, "block_size", params->block_size);
313  *cur_op = TF_FinishOperation(op_desc, tf_model->status);
314  if (TF_GetCode(tf_model->status) != TF_OK){
315  return DNN_ERROR;
316  }
317 
318  return DNN_SUCCESS;
319 }
320 
321 static int calculate_pad(const ConvolutionalNetwork *conv_network)
322 {
324  int32_t layer;
325  int pad = 0;
326 
327  for (layer = 0; layer < conv_network->layers_num; ++layer){
328  if (conv_network->layers[layer].type == CONV){
329  params = (ConvolutionalParams *)conv_network->layers[layer].params;
330  pad += params->kernel_size >> 1;
331  }
332  }
333 
334  return pad;
335 }
336 
337 static DNNReturnType add_pad_op(TFModel *tf_model, TF_Operation **cur_op, const int32_t pad)
338 {
339  TF_Operation *op;
340  TF_Tensor *tensor;
341  TF_OperationDescription *op_desc;
342  TF_Output input;
343  int32_t *pads;
344  int64_t pads_shape[] = {4, 2};
345 
346  input.index = 0;
347 
348  op_desc = TF_NewOperation(tf_model->graph, "Const", "pads");
349  TF_SetAttrType(op_desc, "dtype", TF_INT32);
350  tensor = TF_AllocateTensor(TF_INT32, pads_shape, 2, 4 * 2 * sizeof(int32_t));
351  pads = (int32_t *)TF_TensorData(tensor);
352  pads[0] = 0; pads[1] = 0;
353  pads[2] = pad; pads[3] = pad;
354  pads[4] = pad; pads[5] = pad;
355  pads[6] = 0; pads[7] = 0;
356  TF_SetAttrTensor(op_desc, "value", tensor, tf_model->status);
357  if (TF_GetCode(tf_model->status) != TF_OK){
358  return DNN_ERROR;
359  }
360  op = TF_FinishOperation(op_desc, tf_model->status);
361  if (TF_GetCode(tf_model->status) != TF_OK){
362  return DNN_ERROR;
363  }
364 
365  op_desc = TF_NewOperation(tf_model->graph, "MirrorPad", "mirror_pad");
366  input.oper = *cur_op;
367  TF_AddInput(op_desc, input);
368  input.oper = op;
369  TF_AddInput(op_desc, input);
370  TF_SetAttrType(op_desc, "T", TF_FLOAT);
371  TF_SetAttrType(op_desc, "Tpaddings", TF_INT32);
372  TF_SetAttrString(op_desc, "mode", "SYMMETRIC", 9);
373  *cur_op = TF_FinishOperation(op_desc, tf_model->status);
374  if (TF_GetCode(tf_model->status) != TF_OK){
375  return DNN_ERROR;
376  }
377 
378  return DNN_SUCCESS;
379 }
380 
381 static DNNReturnType load_native_model(TFModel *tf_model, const char *model_filename)
382 {
383  int32_t layer;
384  TF_OperationDescription *op_desc;
385  TF_Operation *op;
386  TF_Operation *transpose_op;
387  TF_Tensor *tensor;
388  TF_Output input;
390  int64_t transpose_perm_shape[] = {4};
391  int64_t input_shape[] = {1, -1, -1, -1};
392  int32_t pad;
393  DNNReturnType layer_add_res;
394  DNNModel *native_model = NULL;
395  ConvolutionalNetwork *conv_network;
396 
397  native_model = ff_dnn_load_model_native(model_filename);
398  if (!native_model){
399  return DNN_ERROR;
400  }
401 
402  conv_network = (ConvolutionalNetwork *)native_model->model;
403  pad = calculate_pad(conv_network);
404  tf_model->graph = TF_NewGraph();
405  tf_model->status = TF_NewStatus();
406 
407 #define CLEANUP_ON_ERROR(tf_model) \
408  { \
409  TF_DeleteGraph(tf_model->graph); \
410  TF_DeleteStatus(tf_model->status); \
411  return DNN_ERROR; \
412  }
413 
414  op_desc = TF_NewOperation(tf_model->graph, "Placeholder", "x");
415  TF_SetAttrType(op_desc, "dtype", TF_FLOAT);
416  TF_SetAttrShape(op_desc, "shape", input_shape, 4);
417  op = TF_FinishOperation(op_desc, tf_model->status);
418  if (TF_GetCode(tf_model->status) != TF_OK){
419  CLEANUP_ON_ERROR(tf_model);
420  }
421 
422  if (add_pad_op(tf_model, &op, pad) != DNN_SUCCESS){
423  CLEANUP_ON_ERROR(tf_model);
424  }
425 
426  op_desc = TF_NewOperation(tf_model->graph, "Const", "transpose_perm");
427  TF_SetAttrType(op_desc, "dtype", TF_INT32);
428  tensor = TF_AllocateTensor(TF_INT32, transpose_perm_shape, 1, 4 * sizeof(int32_t));
429  transpose_perm = (int32_t *)TF_TensorData(tensor);
430  transpose_perm[0] = 1;
431  transpose_perm[1] = 2;
432  transpose_perm[2] = 3;
433  transpose_perm[3] = 0;
434  TF_SetAttrTensor(op_desc, "value", tensor, tf_model->status);
435  if (TF_GetCode(tf_model->status) != TF_OK){
436  CLEANUP_ON_ERROR(tf_model);
437  }
438  transpose_op = TF_FinishOperation(op_desc, tf_model->status);
439 
440  for (layer = 0; layer < conv_network->layers_num; ++layer){
441  switch (conv_network->layers[layer].type){
442  case INPUT:
443  break;
444  case CONV:
445  layer_add_res = add_conv_layer(tf_model, transpose_op, &op,
446  (ConvolutionalParams *)conv_network->layers[layer].params, layer);
447  break;
448  case DEPTH_TO_SPACE:
449  layer_add_res = add_depth_to_space_layer(tf_model, &op,
450  (DepthToSpaceParams *)conv_network->layers[layer].params, layer);
451  break;
452  default:
453  CLEANUP_ON_ERROR(tf_model);
454  }
455 
456  if (layer_add_res != DNN_SUCCESS){
457  CLEANUP_ON_ERROR(tf_model);
458  }
459  }
460 
461  op_desc = TF_NewOperation(tf_model->graph, "Identity", "y");
462  input.oper = op;
463  TF_AddInput(op_desc, input);
464  TF_FinishOperation(op_desc, tf_model->status);
465  if (TF_GetCode(tf_model->status) != TF_OK){
466  CLEANUP_ON_ERROR(tf_model);
467  }
468 
469  ff_dnn_free_model_native(&native_model);
470 
471  return DNN_SUCCESS;
472 }
473 
474 DNNModel *ff_dnn_load_model_tf(const char *model_filename)
475 {
476  DNNModel *model = NULL;
477  TFModel *tf_model = NULL;
478 
479  model = av_malloc(sizeof(DNNModel));
480  if (!model){
481  return NULL;
482  }
483 
484  tf_model = av_malloc(sizeof(TFModel));
485  if (!tf_model){
486  av_freep(&model);
487  return NULL;
488  }
489  tf_model->session = NULL;
490  tf_model->input_tensor = NULL;
491  tf_model->output_data = NULL;
492 
493  if (load_tf_model(tf_model, model_filename) != DNN_SUCCESS){
494  if (load_native_model(tf_model, model_filename) != DNN_SUCCESS){
495  av_freep(&tf_model);
496  av_freep(&model);
497 
498  return NULL;
499  }
500  }
501 
502  model->model = (void *)tf_model;
504 
505  return model;
506 }
507 
508 
509 
511 {
512  TFModel *tf_model = (TFModel *)model->model;
513  TF_Tensor *output_tensor;
514 
515  TF_SessionRun(tf_model->session, NULL,
516  &tf_model->input, &tf_model->input_tensor, 1,
517  &tf_model->output, &output_tensor, 1,
518  NULL, 0, NULL, tf_model->status);
519 
520  if (TF_GetCode(tf_model->status) != TF_OK){
521  return DNN_ERROR;
522  }
523  else{
524  memcpy(tf_model->output_data->data, TF_TensorData(output_tensor),
525  tf_model->output_data->height * tf_model->output_data->width *
526  tf_model->output_data->channels * sizeof(float));
527  TF_DeleteTensor(output_tensor);
528 
529  return DNN_SUCCESS;
530  }
531 }
532 
534 {
535  TFModel *tf_model;
536 
537  if (*model){
538  tf_model = (TFModel *)(*model)->model;
539  if (tf_model->graph){
540  TF_DeleteGraph(tf_model->graph);
541  }
542  if (tf_model->session){
543  TF_CloseSession(tf_model->session, tf_model->status);
544  TF_DeleteSession(tf_model->session, tf_model->status);
545  }
546  if (tf_model->status){
547  TF_DeleteStatus(tf_model->status);
548  }
549  if (tf_model->input_tensor){
550  TF_DeleteTensor(tf_model->input_tensor);
551  }
552  if (tf_model->output_data){
553  av_freep(&tf_model->output_data->data);
554  }
555  av_freep(&tf_model);
556  av_freep(model);
557  }
558 }
int avio_open(AVIOContext **s, const char *url, int flags)
Create and initialize a AVIOContext for accessing the resource indicated by url.
Definition: aviobuf.c:1154
void * model
Definition: dnn_interface.h:40
#define NULL
Definition: coverity.c:32
Bytestream IO Context.
Definition: avio.h:161
int64_t avio_size(AVIOContext *s)
Get the filesize.
Definition: aviobuf.c:336
Buffered I/O operations.
ptrdiff_t const GLvoid * data
Definition: opengl_enc.c:101
static TF_Buffer * read_graph(const char *model_filename)
int channels
Definition: dnn_interface.h:35
DNNActivationFunc activation
DNN inference functions interface for native backend.
#define AVIO_FLAG_READ
read-only
Definition: avio.h:654
DNNModel * ff_dnn_load_model_tf(const char *model_filename)
DNNReturnType(* set_input_output)(void *model, DNNData *input, DNNData *output)
Definition: dnn_interface.h:43
#define av_malloc(s)
TF_Status * status
DNN inference functions interface for TensorFlow backend.
ptrdiff_t size
Definition: opengl_enc.c:101
int avio_read(AVIOContext *s, unsigned char *buf, int size)
Read size bytes from AVIOContext into buf.
Definition: aviobuf.c:648
int height
Definition: dnn_interface.h:35
static DNNReturnType load_tf_model(TFModel *tf_model, const char *model_filename)
GLenum GLint * params
Definition: opengl_enc.c:114
GLsizei GLsizei * length
Definition: opengl_enc.c:115
TF_Tensor * input_tensor
TF_Output input
static DNNReturnType load_native_model(TFModel *tf_model, const char *model_filename)
#define NAME_BUFFER_SIZE
int32_t
static int calculate_pad(const ConvolutionalNetwork *conv_network)
DNNReturnType
Definition: dnn_interface.h:29
void ff_dnn_free_model_native(DNNModel **model)
DNNReturnType ff_dnn_execute_model_tf(const DNNModel *model)
static DNNReturnType add_conv_layer(TFModel *tf_model, TF_Operation *transpose_op, TF_Operation **cur_op, ConvolutionalParams *params, const int layer)
static void free_buffer(void *data, size_t length)
static DNNReturnType add_depth_to_space_layer(TFModel *tf_model, TF_Operation **cur_op, DepthToSpaceParams *params, const int layer)
static DNNReturnType set_input_output_tf(void *model, DNNData *input, DNNData *output)
#define snprintf
Definition: snprintf.h:34
DNNLayerType type
TF_Session * session
static int op(uint8_t **dst, const uint8_t *dst_end, GetByteContext *gb, int pixel, int count, int *x, int width, int linesize)
Perform decode operation.
Definition: anm.c:78
if(ret< 0)
Definition: vf_mcdeint.c:279
static DNNReturnType add_pad_op(TFModel *tf_model, TF_Operation **cur_op, const int32_t pad)
TF_Graph * graph
void ff_dnn_free_model_tf(DNNModel **model)
DNNData * output_data
float * data
Definition: dnn_interface.h:34
void * params
static void transpose_perm(int16_t *out, int16_t *in, int num_vect, const uint8_t line_len[2], int length_div)
Interpret the input data as in the following table:
Definition: twinvq.c:630
DNNModel * ff_dnn_load_model_native(const char *model_filename)
#define av_freep(p)
int avio_closep(AVIOContext **s)
Close the resource accessed by the AVIOContext *s, free it and set the pointer pointing to it to NULL...
Definition: aviobuf.c:1215
#define CLEANUP_ON_ERROR(tf_model)
TF_Output output