Go to the documentation of this file.
100 static float xcorrelate(
const float *x,
const float *y,
float sumx,
float sumy,
int size)
102 const float xm = sumx /
size, ym = sumy /
size;
103 float num = 0.f, den, den0 = 0.f, den1 = 0.f;
105 for (
int i = 0;
i <
size;
i++) {
106 float xd = x[
i] - xm;
107 float yd = y[
i] - ym;
115 den = sqrtf((den0 * den1) / (
size *
size));
117 return den <= 1e-6
f ? 0.f : num / den;
123 const int size =
s->size;
126 for (
int ch = 0; ch <
out->channels; ch++) {
127 const float *x = (
const float *)
s->cache[0]->extended_data[ch];
128 const float *y = (
const float *)
s->cache[1]->extended_data[ch];
129 float *sumx = (
float *)
s->mean_sum[0]->extended_data[ch];
130 float *sumy = (
float *)
s->mean_sum[1]->extended_data[ch];
131 float *dst = (
float *)
out->extended_data[ch];
140 for (
int n = 0; n <
out->nb_samples; n++) {
144 sumx[0] += x[n +
size];
146 sumy[0] += y[n +
size];
156 const int size =
s->size;
159 for (
int ch = 0; ch <
out->channels; ch++) {
160 const float *x = (
const float *)
s->cache[0]->extended_data[ch];
161 const float *y = (
const float *)
s->cache[1]->extended_data[ch];
162 float *num_sum = (
float *)
s->num_sum->extended_data[ch];
163 float *den_sumx = (
float *)
s->den_sum[0]->extended_data[ch];
164 float *den_sumy = (
float *)
s->den_sum[1]->extended_data[ch];
165 float *dst = (
float *)
out->extended_data[ch];
175 for (
int n = 0; n <
out->nb_samples; n++) {
178 num = num_sum[0] /
size;
179 den = sqrtf((den_sumx[0] * den_sumy[0]) / (
size *
size));
181 dst[n] = den <= 1e-6
f ? 0.f : num / den;
183 num_sum[0] -= x[n] * y[n];
184 num_sum[0] += x[n +
size] * y[n +
size];
185 den_sumx[0] -= x[n] * x[n];
186 den_sumx[0] =
FFMAX(den_sumx[0], 0.
f);
187 den_sumx[0] += x[n +
size] * x[n +
size];
188 den_sumy[0] -= y[n] * y[n];
189 den_sumy[0] =
FFMAX(den_sumy[0], 0.
f);
190 den_sumy[0] += y[n +
size] * y[n +
size];
207 for (
int i = 0;
i < 2;
i++) {
225 if (!
s->cache[0] ||
s->cache[0]->nb_samples <
available) {
232 if (!
s->cache[1] ||
s->cache[1]->nb_samples <
available) {
254 s->pts += out_samples;
268 for (
int i = 0;
i < 2;
i++) {
276 for (
int i = 0;
i < 2;
i++) {
299 if (!
s->fifo[0] || !
s->fifo[1])
307 if (!
s->mean_sum[0] || !
s->mean_sum[1] || !
s->num_sum ||
308 !
s->den_sum[0] || !
s->den_sum[1])
336 .
name =
"axcorrelate0",
340 .name =
"axcorrelate1",
355 #define AF AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
356 #define OFFSET(x) offsetof(AudioXCorrelateContext, x)
369 .
name =
"axcorrelate",
372 .priv_class = &axcorrelate_class,
void av_audio_fifo_free(AVAudioFifo *af)
Free an AVAudioFifo.
AVFrame * ff_get_audio_buffer(AVFilterLink *link, int nb_samples)
Request an audio samples buffer with a specific set of permissions.
@ AV_SAMPLE_FMT_FLTP
float, planar
A list of supported channel layouts.
they must not be accessed directly The fifo field contains the frames that are queued in the input for processing by the filter The status_in and status_out fields contains the queued status(EOF or error) of the link
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
static enum AVSampleFormat sample_fmts[]
enum MovChannelLayoutTag * layouts
The exact code depends on how similar the blocks are and how related they are to the and needs to apply these operations to the correct inlink or outlink if there are several Macros are available to factor that when no extra processing is inlink
AVFILTER_DEFINE_CLASS(axcorrelate)
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
This structure describes decoded (raw) audio or video data.
const char * name
Filter name.
A link between two filters.
int channels
Number of channels.
static int query_formats(AVFilterContext *ctx)
int ff_inlink_consume_frame(AVFilterLink *link, AVFrame **rframe)
Take a frame from the link's FIFO and update the link's stats.
#define FF_FILTER_FORWARD_STATUS_BACK_ALL(outlink, filter)
Forward the status on an output link to all input links.
Context for an Audio FIFO Buffer.
AVFilter ff_af_axcorrelate
int av_audio_fifo_drain(AVAudioFifo *af, int nb_samples)
Drain data from an AVAudioFifo.
static int xcorrelate_fast(AVFilterContext *ctx, AVFrame *out)
A filter pad used for either input or output.
static float square_sum(const float *x, const float *y, int size)
static void ff_outlink_set_status(AVFilterLink *link, int status, int64_t pts)
Set the status field of a link from the source filter.
void ff_inlink_request_frame(AVFilterLink *link)
Mark that a frame is wanted on the link.
static int config_output(AVFilterLink *outlink)
int av_audio_fifo_write(AVAudioFifo *af, void **data, int nb_samples)
Write data to an AVAudioFifo.
static float mean_sum(const float *in, int size)
Describe the class of an AVClass context structure.
AVAudioFifo * av_audio_fifo_alloc(enum AVSampleFormat sample_fmt, int channels, int nb_samples)
Allocate an AVAudioFifo.
int ff_inlink_acknowledge_status(AVFilterLink *link, int *rstatus, int64_t *rpts)
Test and acknowledge the change of status on the link.
static int xcorrelate_slow(AVFilterContext *ctx, AVFrame *out)
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
int format
agreed upon media format
#define AV_NOPTS_VALUE
Undefined timestamp value.
AVFilterContext * src
source filter
int(* xcorrelate)(AVFilterContext *ctx, AVFrame *out)
int av_audio_fifo_size(AVAudioFifo *af)
Get the current number of samples in the AVAudioFifo available for reading.
static av_cold void uninit(AVFilterContext *ctx)
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) #define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac) { } void ff_audio_convert_free(AudioConvert **ac) { if(! *ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);} AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map) { AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method !=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2) { ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc) { av_free(ac);return NULL;} return ac;} in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar) { ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar ? ac->channels :1;} else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;} int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in) { int use_generic=1;int len=in->nb_samples;int p;if(ac->dc) { av_log(ac->avr, AV_LOG_TRACE, "%d samples - audio_convert: %s to %s (dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> in
#define i(width, name, range_min, range_max)
static const AVOption axcorrelate_options[]
AVSampleFormat
Audio sample formats.
static const AVFilterPad inputs[]
const char * name
Pad name.
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
static int activate(AVFilterContext *ctx)
the definition of that something depends on the semantic of the filter The callback must examine the status of the filter s links and proceed accordingly The status of output links is stored in the status_in and status_out fields and tested by the ff_outlink_frame_wanted() function. If this function returns true
static float xcorrelate(const float *x, const float *y, float sumx, float sumy, int size)
int av_audio_fifo_peek(AVAudioFifo *af, void **data, int nb_samples)
Peek data from an AVAudioFifo.
void ff_filter_set_ready(AVFilterContext *filter, unsigned priority)
Mark a filter ready and schedule it for activation.
static const AVFilterPad outputs[]