Go to the documentation of this file.
54 const uint8_t *val_table,
int nb_codes,
55 int use_static,
int is_ac)
58 uint16_t huff_code[256];
59 uint16_t huff_sym[256];
66 for (
i = 0;
i < 256;
i++)
67 huff_sym[
i] =
i + 16 * is_ac;
70 huff_sym[0] = 16 * 256;
73 huff_code, 2, 2, huff_sym, 2, 2, use_static);
103 ht[
i].bits, ht[
i].values, ht[
i].codes,
104 0, ht[
i].class == 1);
108 if (ht[
i].
class < 2) {
109 memcpy(
s->raw_huffman_lengths[ht[
i].class][ht[
i].index],
111 memcpy(
s->raw_huffman_values[ht[
i].class][ht[
i].index],
112 ht[
i].values, ht[
i].length);
122 if (
len > 14 && buf[12] == 1)
123 s->interlace_polarity = 1;
124 if (
len > 14 && buf[12] == 2)
125 s->interlace_polarity = 0;
144 if (!
s->picture_ptr) {
148 s->picture_ptr =
s->picture;
158 s->first_picture = 1;
168 if (
s->extern_huff) {
174 "error using external huffman table, switching back to internal\n");
179 s->interlace_polarity = 1;
183 s->interlace_polarity = 1;
222 for (
i = 0;
i < 64;
i++) {
224 if (
s->quant_matrixes[
index][
i] == 0) {
232 s->quant_matrixes[
index][8]) >> 1;
235 len -= 1 + 64 * (1+pr);
243 int len,
index,
i,
class, n, v, code_max;
265 for (
i = 1;
i <= 16;
i++) {
270 if (len < n || n > 256)
274 for (
i = 0;
i < n;
i++) {
285 class,
index, code_max + 1);
287 code_max + 1, 0,
class > 0)) < 0)
293 code_max + 1, 0, 0)) < 0)
297 for (
i = 0;
i < 16;
i++)
298 s->raw_huffman_lengths[
class][
index][
i] = bits_table[
i + 1];
300 s->raw_huffman_values[
class][
index][
i] = val_table[
i];
313 memset(
s->upscale_h, 0,
sizeof(
s->upscale_h));
314 memset(
s->upscale_v, 0,
sizeof(
s->upscale_v));
324 if (
s->avctx->bits_per_raw_sample !=
bits) {
326 s->avctx->bits_per_raw_sample =
bits;
331 if (
bits == 9 && !
s->pegasus_rct)
334 if(
s->lossless &&
s->avctx->lowres){
343 if (
s->interlaced &&
s->width ==
width &&
s->height ==
height + 1)
349 if (
s->buf_size && (
width + 7) / 8 * ((
height + 7) / 8) >
s->buf_size * 4LL)
353 if (nb_components <= 0 ||
356 if (
s->interlaced && (
s->bottom_field == !
s->interlace_polarity)) {
357 if (nb_components !=
s->nb_components) {
359 "nb_components changing in interlaced picture\n");
363 if (
s->ls && !(
bits <= 8 || nb_components == 1)) {
365 "JPEG-LS that is not <= 8 "
366 "bits/component or 16-bit gray");
369 if (
len != 8 + 3 * nb_components) {
370 av_log(
s->avctx,
AV_LOG_ERROR,
"decode_sof0: error, len(%d) mismatch %d components\n",
len, nb_components);
374 s->nb_components = nb_components;
377 for (
i = 0;
i < nb_components;
i++) {
383 if (h_count[
i] >
s->h_max)
384 s->h_max = h_count[
i];
385 if (v_count[
i] >
s->v_max)
386 s->v_max = v_count[
i];
388 if (
s->quant_index[
i] >= 4) {
392 if (!h_count[
i] || !v_count[
i]) {
394 "Invalid sampling factor in component %d %d:%d\n",
395 i, h_count[
i], v_count[
i]);
400 i, h_count[
i], v_count[
i],
401 s->component_id[
i],
s->quant_index[
i]);
403 if ( nb_components == 4
404 &&
s->component_id[0] ==
'C' - 1
405 &&
s->component_id[1] ==
'M' - 1
406 &&
s->component_id[2] ==
'Y' - 1
407 &&
s->component_id[3] ==
'K' - 1)
408 s->adobe_transform = 0;
410 if (
s->ls && (
s->h_max > 1 ||
s->v_max > 1)) {
416 if (nb_components == 2) {
430 memcmp(
s->h_count, h_count,
sizeof(h_count)) ||
431 memcmp(
s->v_count, v_count,
sizeof(v_count))) {
437 memcpy(
s->h_count, h_count,
sizeof(h_count));
438 memcpy(
s->v_count, v_count,
sizeof(v_count));
443 if (
s->first_picture &&
444 (
s->multiscope != 2 ||
s->avctx->time_base.den >= 25 *
s->avctx->time_base.num) &&
445 s->org_height != 0 &&
446 s->height < ((
s->org_height * 3) / 4)) {
448 s->bottom_field =
s->interlace_polarity;
449 s->picture_ptr->interlaced_frame = 1;
450 s->picture_ptr->top_field_first = !
s->interlace_polarity;
458 s->first_picture = 0;
463 if (
s->got_picture &&
s->interlaced && (
s->bottom_field == !
s->interlace_polarity)) {
464 if (
s->progressive) {
469 if (
s->v_max == 1 &&
s->h_max == 1 &&
s->lossless==1 && (nb_components==3 || nb_components==4))
471 else if (!
s->lossless)
474 pix_fmt_id = ((unsigned)
s->h_count[0] << 28) | (
s->v_count[0] << 24) |
475 (
s->h_count[1] << 20) | (
s->v_count[1] << 16) |
476 (
s->h_count[2] << 12) | (
s->v_count[2] << 8) |
477 (
s->h_count[3] << 4) |
s->v_count[3];
481 if (!(pix_fmt_id & 0xD0D0D0D0))
482 pix_fmt_id -= (pix_fmt_id & 0xF0F0F0F0) >> 1;
483 if (!(pix_fmt_id & 0x0D0D0D0D))
484 pix_fmt_id -= (pix_fmt_id & 0x0F0F0F0F) >> 1;
486 for (
i = 0;
i < 8;
i++) {
487 int j = 6 + (
i&1) - (
i&6);
488 int is = (pix_fmt_id >> (4*
i)) & 0xF;
489 int js = (pix_fmt_id >> (4*j)) & 0xF;
491 if (
is == 1 && js != 2 && (i < 2 || i > 5))
492 js = (pix_fmt_id >> ( 8 + 4*(
i&1))) & 0xF;
493 if (
is == 1 && js != 2 && (i < 2 || i > 5))
494 js = (pix_fmt_id >> (16 + 4*(
i&1))) & 0xF;
496 if (
is == 1 && js == 2) {
497 if (
i & 1)
s->upscale_h[j/2] = 1;
498 else s->upscale_v[j/2] = 1;
503 if (pix_fmt_id != 0x11110000 && pix_fmt_id != 0x11000000)
507 switch (pix_fmt_id) {
517 if (
s->adobe_transform == 0
518 ||
s->component_id[0] ==
'R' - 1 &&
s->component_id[1] ==
'G' - 1 &&
s->component_id[2] ==
'B' - 1) {
532 if (
s->adobe_transform == 0 &&
s->bits <= 8) {
543 if (
s->adobe_transform == 0 &&
s->bits <= 8) {
545 s->upscale_v[1] =
s->upscale_v[2] = 1;
546 s->upscale_h[1] =
s->upscale_h[2] = 1;
547 }
else if (
s->adobe_transform == 2 &&
s->bits <= 8) {
549 s->upscale_v[1] =
s->upscale_v[2] = 1;
550 s->upscale_h[1] =
s->upscale_h[2] = 1;
590 if (
s->component_id[0] ==
'Q' &&
s->component_id[1] ==
'F' &&
s->component_id[2] ==
'A') {
594 s->upscale_v[0] =
s->upscale_v[1] = 1;
596 if (pix_fmt_id == 0x14111100)
597 s->upscale_v[1] =
s->upscale_v[2] = 1;
605 if (
s->component_id[0] ==
'Q' &&
s->component_id[1] ==
'F' &&
s->component_id[2] ==
'A') {
609 s->upscale_h[0] =
s->upscale_h[1] = 1;
621 s->upscale_h[1] =
s->upscale_h[2] = 2;
637 if (pix_fmt_id == 0x42111100) {
640 s->upscale_h[1] =
s->upscale_h[2] = 1;
641 }
else if (pix_fmt_id == 0x24111100) {
644 s->upscale_v[1] =
s->upscale_v[2] = 1;
645 }
else if (pix_fmt_id == 0x23111100) {
648 s->upscale_v[1] =
s->upscale_v[2] = 2;
660 memset(
s->upscale_h, 0,
sizeof(
s->upscale_h));
661 memset(
s->upscale_v, 0,
sizeof(
s->upscale_v));
673 memset(
s->upscale_h, 0,
sizeof(
s->upscale_h));
674 memset(
s->upscale_v, 0,
sizeof(
s->upscale_v));
675 if (
s->nb_components == 3) {
677 }
else if (
s->nb_components != 1) {
680 }
else if (
s->palette_index &&
s->bits <= 8)
682 else if (
s->bits <= 8)
694 if (
s->avctx->pix_fmt ==
s->hwaccel_sw_pix_fmt && !size_change) {
695 s->avctx->pix_fmt =
s->hwaccel_pix_fmt;
698 #if CONFIG_MJPEG_NVDEC_HWACCEL
701 #if CONFIG_MJPEG_VAAPI_HWACCEL
708 if (
s->hwaccel_pix_fmt < 0)
711 s->hwaccel_sw_pix_fmt =
s->avctx->pix_fmt;
712 s->avctx->pix_fmt =
s->hwaccel_pix_fmt;
717 s->picture_ptr->key_frame = 1;
726 s->picture_ptr->key_frame = 1;
729 for (
i = 0;
i < 4;
i++)
730 s->linesize[
i] =
s->picture_ptr->linesize[
i] <<
s->interlaced;
732 ff_dlog(
s->avctx,
"%d %d %d %d %d %d\n",
733 s->width,
s->height,
s->linesize[0],
s->linesize[1],
734 s->interlaced,
s->avctx->height);
738 if ((
s->rgb && !
s->lossless && !
s->ls) ||
739 (!
s->rgb &&
s->ls &&
s->nb_components > 1) ||
747 if (
s->progressive) {
748 int bw = (
width +
s->h_max * 8 - 1) / (
s->h_max * 8);
749 int bh = (
height +
s->v_max * 8 - 1) / (
s->v_max * 8);
750 for (
i = 0;
i <
s->nb_components;
i++) {
751 int size = bw * bh *
s->h_count[
i] *
s->v_count[
i];
756 if (!
s->blocks[
i] || !
s->last_nnz[
i])
758 s->block_stride[
i] = bw *
s->h_count[
i];
760 memset(
s->coefs_finished, 0,
sizeof(
s->coefs_finished));
763 if (
s->avctx->hwaccel) {
764 s->hwaccel_picture_private =
765 av_mallocz(
s->avctx->hwaccel->frame_priv_data_size);
766 if (!
s->hwaccel_picture_private)
769 ret =
s->avctx->hwaccel->start_frame(
s->avctx,
s->raw_image_buffer,
770 s->raw_image_buffer_size);
782 if (code < 0 || code > 16) {
784 "mjpeg_decode_dc: bad vlc: %d:%d (%p)\n",
785 0, dc_index, &
s->vlcs[0][dc_index]);
797 int dc_index,
int ac_index, uint16_t *quant_matrix)
803 if (
val == 0xfffff) {
807 val =
val * (unsigned)quant_matrix[0] +
s->last_dc[component];
809 s->last_dc[component] =
val;
818 i += ((unsigned)
code) >> 4;
826 int sign = (~cache) >> 31;
836 j =
s->scantable.permutated[
i];
846 int component,
int dc_index,
847 uint16_t *quant_matrix,
int Al)
850 s->bdsp.clear_block(
block);
852 if (
val == 0xfffff) {
856 val = (
val * (quant_matrix[0] << Al)) +
s->last_dc[component];
857 s->last_dc[component] =
val;
864 uint8_t *last_nnz,
int ac_index,
865 uint16_t *quant_matrix,
866 int ss,
int se,
int Al,
int *EOBRUN)
878 for (
i =
ss; ;
i++) {
891 int sign = (~cache) >> 31;
899 j =
s->scantable.permutated[
se];
906 j =
s->scantable.permutated[
i];
936 #define REFINE_BIT(j) { \
937 UPDATE_CACHE(re, &s->gb); \
938 sign = block[j] >> 15; \
939 block[j] += SHOW_UBITS(re, &s->gb, 1) * \
940 ((quant_matrix[i] ^ sign) - sign) << Al; \
941 LAST_SKIP_BITS(re, &s->gb, 1); \
949 av_log(s->avctx, AV_LOG_ERROR, "error count: %d\n", i); \
954 j = s->scantable.permutated[i]; \
957 else if (run-- == 0) \
964 int ac_index, uint16_t *quant_matrix,
965 int ss,
int se,
int Al,
int *EOBRUN)
968 int last =
FFMIN(
se, *last_nnz);
984 j =
s->scantable.permutated[
i];
1015 for (;
i <= last;
i++) {
1016 j =
s->scantable.permutated[
i];
1032 if (
s->restart_interval) {
1036 for (
i = 0;
i < nb_components;
i++)
1037 s->last_dc[
i] = (4 <<
s->bits);
1042 if (
s->restart_count == 0) {
1050 for (
i = 0;
i < nb_components;
i++)
1051 s->last_dc[
i] = (4 <<
s->bits);
1067 int left[4], top[4], topleft[4];
1068 const int linesize =
s->linesize[0];
1069 const int mask = ((1 <<
s->bits) - 1) << point_transform;
1070 int resync_mb_y = 0;
1071 int resync_mb_x = 0;
1074 if (!
s->bayer &&
s->nb_components < 3)
1076 if (
s->bayer &&
s->nb_components > 2)
1078 if (
s->nb_components <= 0 ||
s->nb_components > 4)
1080 if (
s->v_max != 1 ||
s->h_max != 1 || !
s->lossless)
1084 s->restart_count =
s->restart_interval;
1086 if (
s->restart_interval == 0)
1087 s->restart_interval = INT_MAX;
1090 width =
s->mb_width / nb_components;
1095 if (!
s->ljpeg_buffer)
1100 for (
i = 0;
i < 4;
i++)
1103 for (mb_y = 0; mb_y <
s->mb_height; mb_y++) {
1104 uint8_t *ptr =
s->picture_ptr->data[0] + (linesize * mb_y);
1106 if (
s->interlaced &&
s->bottom_field)
1107 ptr += linesize >> 1;
1109 for (
i = 0;
i < 4;
i++)
1112 if ((mb_y *
s->width) %
s->restart_interval == 0) {
1113 for (
i = 0;
i < 6;
i++)
1114 vpred[
i] = 1 << (
s->bits-1);
1117 for (mb_x = 0; mb_x <
width; mb_x++) {
1118 int modified_predictor = predictor;
1125 if (
s->restart_interval && !
s->restart_count){
1126 s->restart_count =
s->restart_interval;
1130 top[
i] =
left[
i]= topleft[
i]= 1 << (
s->bits - 1);
1132 if (mb_y == resync_mb_y || mb_y == resync_mb_y+1 && mb_x < resync_mb_x || !mb_x)
1133 modified_predictor = 1;
1135 for (
i=0;
i<nb_components;
i++) {
1138 topleft[
i] = top[
i];
1145 if (!
s->bayer || mb_x) {
1155 mask & (
pred + (unsigned)(
dc * (1 << point_transform)));
1158 if (
s->restart_interval && !--
s->restart_count) {
1163 if (
s->rct &&
s->nb_components == 4) {
1164 for (mb_x = 0; mb_x <
s->mb_width; mb_x++) {
1165 ptr[4*mb_x + 2] =
buffer[mb_x][0] - ((
buffer[mb_x][1] +
buffer[mb_x][2] - 0x200) >> 2);
1166 ptr[4*mb_x + 1] =
buffer[mb_x][1] + ptr[4*mb_x + 2];
1167 ptr[4*mb_x + 3] =
buffer[mb_x][2] + ptr[4*mb_x + 2];
1168 ptr[4*mb_x + 0] =
buffer[mb_x][3];
1170 }
else if (
s->nb_components == 4) {
1171 for(
i=0;
i<nb_components;
i++) {
1172 int c=
s->comp_index[
i];
1174 for(mb_x = 0; mb_x <
s->mb_width; mb_x++) {
1177 }
else if(
s->bits == 9) {
1180 for(mb_x = 0; mb_x <
s->mb_width; mb_x++) {
1181 ((uint16_t*)ptr)[4*mb_x+
c] =
buffer[mb_x][
i];
1185 }
else if (
s->rct) {
1186 for (mb_x = 0; mb_x <
s->mb_width; mb_x++) {
1187 ptr[3*mb_x + 1] =
buffer[mb_x][0] - ((
buffer[mb_x][1] +
buffer[mb_x][2] - 0x200) >> 2);
1188 ptr[3*mb_x + 0] =
buffer[mb_x][1] + ptr[3*mb_x + 1];
1189 ptr[3*mb_x + 2] =
buffer[mb_x][2] + ptr[3*mb_x + 1];
1191 }
else if (
s->pegasus_rct) {
1192 for (mb_x = 0; mb_x <
s->mb_width; mb_x++) {
1194 ptr[3*mb_x + 0] =
buffer[mb_x][1] + ptr[3*mb_x + 1];
1195 ptr[3*mb_x + 2] =
buffer[mb_x][2] + ptr[3*mb_x + 1];
1197 }
else if (
s->bayer) {
1198 if (nb_components == 1) {
1200 for (mb_x = 0; mb_x <
width; mb_x++)
1201 ((uint16_t*)ptr)[mb_x] =
buffer[mb_x][0];
1202 }
else if (nb_components == 2) {
1203 for (mb_x = 0; mb_x <
width; mb_x++) {
1204 ((uint16_t*)ptr)[2*mb_x + 0] =
buffer[mb_x][0];
1205 ((uint16_t*)ptr)[2*mb_x + 1] =
buffer[mb_x][1];
1209 for(
i=0;
i<nb_components;
i++) {
1210 int c=
s->comp_index[
i];
1212 for(mb_x = 0; mb_x <
s->mb_width; mb_x++) {
1215 }
else if(
s->bits == 9) {
1218 for(mb_x = 0; mb_x <
s->mb_width; mb_x++) {
1219 ((uint16_t*)ptr)[3*mb_x+2-
c] =
buffer[mb_x][
i];
1229 int point_transform,
int nb_components)
1231 int i, mb_x, mb_y,
mask;
1232 int bits= (
s->bits+7)&~7;
1233 int resync_mb_y = 0;
1234 int resync_mb_x = 0;
1236 point_transform +=
bits -
s->bits;
1237 mask = ((1 <<
s->bits) - 1) << point_transform;
1239 av_assert0(nb_components>=1 && nb_components<=4);
1241 for (mb_y = 0; mb_y <
s->mb_height; mb_y++) {
1242 for (mb_x = 0; mb_x <
s->mb_width; mb_x++) {
1247 if (
s->restart_interval && !
s->restart_count){
1248 s->restart_count =
s->restart_interval;
1253 if(!mb_x || mb_y == resync_mb_y || mb_y == resync_mb_y+1 && mb_x < resync_mb_x || s->
interlaced){
1254 int toprow = mb_y == resync_mb_y || mb_y == resync_mb_y+1 && mb_x < resync_mb_x;
1255 int leftcol = !mb_x || mb_y == resync_mb_y && mb_x == resync_mb_x;
1256 for (
i = 0;
i < nb_components;
i++) {
1259 int n,
h, v, x, y,
c, j, linesize;
1260 n =
s->nb_blocks[
i];
1261 c =
s->comp_index[
i];
1266 linesize=
s->linesize[
c];
1268 if(
bits>8) linesize /= 2;
1270 for(j=0; j<n; j++) {
1276 if (
h * mb_x + x >=
s->width
1277 || v * mb_y + y >=
s->height) {
1279 }
else if (
bits<=8) {
1280 ptr =
s->picture_ptr->data[
c] + (linesize * (v * mb_y + y)) + (
h * mb_x + x);
1282 if(x==0 && leftcol){
1288 if(x==0 && leftcol){
1289 pred= ptr[-linesize];
1291 PREDICT(
pred, ptr[-linesize-1], ptr[-linesize], ptr[-1], predictor);
1295 if (
s->interlaced &&
s->bottom_field)
1296 ptr += linesize >> 1;
1298 *ptr=
pred + ((unsigned)
dc << point_transform);
1300 ptr16 = (uint16_t*)(
s->picture_ptr->data[
c] + 2*(linesize * (v * mb_y + y)) + 2*(
h * mb_x + x));
1302 if(x==0 && leftcol){
1308 if(x==0 && leftcol){
1309 pred= ptr16[-linesize];
1311 PREDICT(
pred, ptr16[-linesize-1], ptr16[-linesize], ptr16[-1], predictor);
1315 if (
s->interlaced &&
s->bottom_field)
1316 ptr16 += linesize >> 1;
1318 *ptr16=
pred + ((unsigned)
dc << point_transform);
1327 for (
i = 0;
i < nb_components;
i++) {
1330 int n,
h, v, x, y,
c, j, linesize,
dc;
1331 n =
s->nb_blocks[
i];
1332 c =
s->comp_index[
i];
1337 linesize =
s->linesize[
c];
1339 if(
bits>8) linesize /= 2;
1341 for (j = 0; j < n; j++) {
1347 if (
h * mb_x + x >=
s->width
1348 || v * mb_y + y >=
s->height) {
1350 }
else if (
bits<=8) {
1351 ptr =
s->picture_ptr->data[
c] +
1352 (linesize * (v * mb_y + y)) +
1354 PREDICT(
pred, ptr[-linesize-1], ptr[-linesize], ptr[-1], predictor);
1357 *ptr =
pred + ((unsigned)
dc << point_transform);
1359 ptr16 = (uint16_t*)(
s->picture_ptr->data[
c] + 2*(linesize * (v * mb_y + y)) + 2*(
h * mb_x + x));
1360 PREDICT(
pred, ptr16[-linesize-1], ptr16[-linesize], ptr16[-1], predictor);
1363 *ptr16=
pred + ((unsigned)
dc << point_transform);
1373 if (
s->restart_interval && !--
s->restart_count) {
1384 int linesize,
int lowres)
1387 case 0:
s->hdsp.put_pixels_tab[1][0](dst,
src, linesize, 8);
1393 case 3: *dst = *
src;
1400 int block_x, block_y;
1401 int size = 8 >>
s->avctx->lowres;
1403 for (block_y=0; block_y<
size; block_y++)
1404 for (block_x=0; block_x<
size; block_x++)
1405 *(uint16_t*)(ptr + 2*block_x + block_y*linesize) <<= 16 -
s->bits;
1407 for (block_y=0; block_y<
size; block_y++)
1408 for (block_x=0; block_x<
size; block_x++)
1409 *(ptr + block_x + block_y*linesize) <<= 8 -
s->bits;
1414 int Al,
const uint8_t *mb_bitmask,
1415 int mb_bitmask_size,
1418 int i, mb_x, mb_y, chroma_h_shift, chroma_v_shift, chroma_width, chroma_height;
1423 int bytes_per_pixel = 1 + (
s->bits > 8);
1426 if (mb_bitmask_size != (
s->mb_width *
s->mb_height + 7)>>3) {
1430 init_get_bits(&mb_bitmask_gb, mb_bitmask,
s->mb_width *
s->mb_height);
1433 s->restart_count = 0;
1440 for (
i = 0;
i < nb_components;
i++) {
1441 int c =
s->comp_index[
i];
1442 data[
c] =
s->picture_ptr->data[
c];
1443 reference_data[
c] = reference ? reference->
data[
c] :
NULL;
1444 linesize[
c] =
s->linesize[
c];
1445 s->coefs_finished[
c] |= 1;
1448 for (mb_y = 0; mb_y <
s->mb_height; mb_y++) {
1449 for (mb_x = 0; mb_x <
s->mb_width; mb_x++) {
1452 if (
s->restart_interval && !
s->restart_count)
1453 s->restart_count =
s->restart_interval;
1460 for (
i = 0;
i < nb_components;
i++) {
1462 int n,
h, v, x, y,
c, j;
1464 n =
s->nb_blocks[
i];
1465 c =
s->comp_index[
i];
1470 for (j = 0; j < n; j++) {
1471 block_offset = (((linesize[
c] * (v * mb_y + y) * 8) +
1472 (
h * mb_x + x) * 8 * bytes_per_pixel) >>
s->avctx->lowres);
1474 if (
s->interlaced &&
s->bottom_field)
1475 block_offset += linesize[
c] >> 1;
1476 if ( 8*(
h * mb_x + x) < ((
c == 1) || (
c == 2) ? chroma_width :
s->width)
1477 && 8*(v * mb_y + y) < ((
c == 1) || (
c == 2) ? chroma_height :
s->height)) {
1478 ptr =
data[
c] + block_offset;
1481 if (!
s->progressive) {
1485 linesize[
c],
s->avctx->lowres);
1488 s->bdsp.clear_block(
s->block);
1490 s->dc_index[
i],
s->ac_index[
i],
1491 s->quant_matrixes[
s->quant_sindex[
i]]) < 0) {
1493 "error y=%d x=%d\n", mb_y, mb_x);
1497 s->idsp.idct_put(ptr, linesize[
c],
s->block);
1503 int block_idx =
s->block_stride[
c] * (v * mb_y + y) +
1505 int16_t *
block =
s->blocks[
c][block_idx];
1508 s->quant_matrixes[
s->quant_sindex[
i]][0] << Al;
1510 s->quant_matrixes[
s->quant_sindex[
i]],
1513 "error y=%d x=%d\n", mb_y, mb_x);
1517 ff_dlog(
s->avctx,
"mb: %d %d processed\n", mb_y, mb_x);
1518 ff_dlog(
s->avctx,
"%d %d %d %d %d %d %d %d \n",
1519 mb_x, mb_y, x, y,
c,
s->bottom_field,
1520 (v * mb_y + y) * 8, (
h * mb_x + x) * 8);
1535 int se,
int Ah,
int Al)
1539 int c =
s->comp_index[0];
1540 uint16_t *quant_matrix =
s->quant_matrixes[
s->quant_sindex[0]];
1543 if (se < ss || se > 63) {
1550 s->coefs_finished[
c] |= (2ULL <<
se) - (1ULL <<
ss);
1552 s->restart_count = 0;
1554 for (mb_y = 0; mb_y <
s->mb_height; mb_y++) {
1555 int block_idx = mb_y *
s->block_stride[
c];
1556 int16_t (*
block)[64] = &
s->blocks[
c][block_idx];
1557 uint8_t *last_nnz = &
s->last_nnz[
c][block_idx];
1559 av_log(
s->avctx,
AV_LOG_ERROR,
"bitstream truncated in mjpeg_decode_scan_progressive_ac\n");
1562 for (mb_x = 0; mb_x <
s->mb_width; mb_x++,
block++, last_nnz++) {
1564 if (
s->restart_interval && !
s->restart_count)
1565 s->restart_count =
s->restart_interval;
1569 quant_matrix,
ss,
se, Al, &EOBRUN);
1572 quant_matrix,
ss,
se, Al, &EOBRUN);
1578 "error y=%d x=%d\n", mb_y, mb_x);
1593 const int bytes_per_pixel = 1 + (
s->bits > 8);
1594 const int block_size =
s->lossless ? 1 : 8;
1596 for (
c = 0;
c <
s->nb_components;
c++) {
1598 int linesize =
s->linesize[
c];
1599 int h =
s->h_max /
s->h_count[
c];
1600 int v =
s->v_max /
s->v_count[
c];
1601 int mb_width = (
s->width +
h * block_size - 1) / (
h * block_size);
1602 int mb_height = (
s->height + v * block_size - 1) / (v * block_size);
1604 if (~
s->coefs_finished[
c])
1607 if (
s->interlaced &&
s->bottom_field)
1608 data += linesize >> 1;
1610 for (mb_y = 0; mb_y < mb_height; mb_y++) {
1611 uint8_t *ptr =
data + (mb_y * linesize * 8 >>
s->avctx->lowres);
1612 int block_idx = mb_y *
s->block_stride[
c];
1613 int16_t (*
block)[64] = &
s->blocks[
c][block_idx];
1614 for (mb_x = 0; mb_x < mb_width; mb_x++,
block++) {
1615 s->idsp.idct_put(ptr, linesize, *
block);
1618 ptr += bytes_per_pixel*8 >>
s->avctx->lowres;
1625 int mb_bitmask_size,
const AVFrame *reference)
1627 int len, nb_components,
i,
h, v, predictor, point_transform;
1629 const int block_size =
s->lossless ? 1 : 8;
1630 int ilv, prev_shift;
1632 if (!
s->got_picture) {
1634 "Can not process SOS before SOF, skipping\n");
1639 if (reference->
width !=
s->picture_ptr->width ||
1640 reference->
height !=
s->picture_ptr->height ||
1641 reference->
format !=
s->picture_ptr->format) {
1652 "decode_sos: nb_components (%d)",
1656 if (
len != 6 + 2 * nb_components) {
1660 for (
i = 0;
i < nb_components;
i++) {
1665 if (
id ==
s->component_id[
index])
1667 if (
index ==
s->nb_components) {
1669 "decode_sos: index(%d) out of components\n",
index);
1673 if (
s->avctx->codec_tag ==
MKTAG(
'M',
'T',
'S',
'J')
1674 && nb_components == 3 &&
s->nb_components == 3 &&
i)
1677 s->quant_sindex[
i] =
s->quant_index[
index];
1679 s->h_scount[
i] =
s->h_count[
index];
1680 s->v_scount[
i] =
s->v_count[
index];
1682 if((nb_components == 1 || nb_components == 3) &&
s->nb_components == 3 &&
s->avctx->pix_fmt ==
AV_PIX_FMT_GBR24P)
1690 if (
s->dc_index[
i] < 0 ||
s->ac_index[
i] < 0 ||
1691 s->dc_index[
i] >= 4 ||
s->ac_index[
i] >= 4)
1693 if (!
s->vlcs[0][
s->dc_index[
i]].table || !(
s->progressive ?
s->vlcs[2][
s->ac_index[0]].table :
s->vlcs[1][
s->ac_index[
i]].table))
1699 if(
s->avctx->codec_tag !=
AV_RL32(
"CJPG")){
1703 prev_shift = point_transform = 0;
1705 if (nb_components > 1) {
1707 s->mb_width = (
s->width +
s->h_max * block_size - 1) / (
s->h_max * block_size);
1708 s->mb_height = (
s->height +
s->v_max * block_size - 1) / (
s->v_max * block_size);
1709 }
else if (!
s->ls) {
1710 h =
s->h_max /
s->h_scount[0];
1711 v =
s->v_max /
s->v_scount[0];
1712 s->mb_width = (
s->width +
h * block_size - 1) / (
h * block_size);
1713 s->mb_height = (
s->height + v * block_size - 1) / (v * block_size);
1714 s->nb_blocks[0] = 1;
1721 s->lossless ?
"lossless" :
"sequential DCT",
s->rgb ?
"RGB" :
"",
1722 predictor, point_transform, ilv,
s->bits,
s->mjpb_skiptosod,
1723 s->pegasus_rct ?
"PRCT" : (
s->rct ?
"RCT" :
""), nb_components);
1727 for (
i =
s->mjpb_skiptosod;
i > 0;
i--)
1731 for (
i = 0;
i < nb_components;
i++)
1732 s->last_dc[
i] = (4 <<
s->bits);
1734 if (
s->avctx->hwaccel) {
1737 s->raw_scan_buffer_size >= bytes_to_start);
1739 ret =
s->avctx->hwaccel->decode_slice(
s->avctx,
1740 s->raw_scan_buffer + bytes_to_start,
1741 s->raw_scan_buffer_size - bytes_to_start);
1745 }
else if (
s->lossless) {
1747 if (CONFIG_JPEGLS_DECODER &&
s->ls) {
1752 point_transform, ilv)) < 0)
1755 if (
s->rgb ||
s->bayer) {
1761 nb_components)) < 0)
1766 if (
s->progressive && predictor) {
1770 point_transform)) < 0)
1774 prev_shift, point_transform,
1775 mb_bitmask, mb_bitmask_size, reference)) < 0)
1780 if (
s->interlaced &&
1789 s->bottom_field ^= 1;
1807 s->restart_count = 0;
1809 s->restart_interval);
1856 int t_w, t_h, v1, v2;
1864 s->avctx->sample_aspect_ratio.num =
get_bits(&
s->gb, 16);
1865 s->avctx->sample_aspect_ratio.den =
get_bits(&
s->gb, 16);
1866 if (
s->avctx->sample_aspect_ratio.num <= 0
1867 ||
s->avctx->sample_aspect_ratio.den <= 0) {
1868 s->avctx->sample_aspect_ratio.num = 0;
1869 s->avctx->sample_aspect_ratio.den = 1;
1874 "mjpeg: JFIF header found (version: %x.%x) SAR=%d/%d\n",
1876 s->avctx->sample_aspect_ratio.num,
1877 s->avctx->sample_aspect_ratio.den);
1885 if (
len -10 - (t_w * t_h * 3) > 0)
1886 len -= t_w * t_h * 3;
1903 av_log(
s->avctx,
AV_LOG_INFO,
"mjpeg: Adobe header found, transform=%d\n",
s->adobe_transform);
1910 int pegasus_rct =
s->pegasus_rct;
1913 "Pegasus lossless jpeg header found\n");
1933 if (rgb !=
s->rgb || pegasus_rct !=
s->pegasus_rct) {
1939 s->pegasus_rct = pegasus_rct;
1979 }
else if (
type == 1) {
1991 if (!(
flags & 0x04)) {
2001 int ret, le, ifd_offset, bytes_read;
2034 if ((
s->start_code ==
APP1) && (
len > (0x28 - 8))) {
2057 unsigned nummarkers;
2077 if (nummarkers == 0) {
2080 }
else if (
s->iccnum != 0 && nummarkers !=
s->iccnum) {
2083 }
else if (seqno > nummarkers) {
2089 if (
s->iccnum == 0) {
2090 s->iccdata =
av_mallocz(nummarkers *
sizeof(*(
s->iccdata)));
2091 s->iccdatalens =
av_mallocz(nummarkers *
sizeof(*(
s->iccdatalens)));
2092 if (!
s->iccdata || !
s->iccdatalens) {
2096 s->iccnum = nummarkers;
2099 if (
s->iccdata[seqno - 1]) {
2104 s->iccdatalens[seqno - 1] =
len;
2106 if (!
s->iccdata[seqno - 1]) {
2116 if (
s->iccread >
s->iccnum)
2124 "mjpeg: error, decode_app parser read over the end\n");
2140 for (
i = 0;
i <
len - 2;
i++)
2142 if (
i > 0 && cbuf[
i - 1] ==
'\n')
2151 if (!strncmp(cbuf,
"AVID", 4)) {
2153 }
else if (!strcmp(cbuf,
"CS=ITU601"))
2155 else if ((!strncmp(cbuf,
"Intel(R) JPEG Library, version 1", 32) &&
s->avctx->codec_tag) ||
2156 (!strncmp(cbuf,
"Metasoft MJPEG Codec", 20)))
2158 else if (!strcmp(cbuf,
"MULTISCOPE II")) {
2159 s->avctx->sample_aspect_ratio = (
AVRational) { 1, 2 };
2178 buf_ptr = *pbuf_ptr;
2179 while (buf_end - buf_ptr > 1) {
2182 if ((v == 0xff) && (v2 >=
SOF0) && (v2 <=
COM) && buf_ptr < buf_end) {
2191 ff_dlog(
NULL,
"find_marker skipped %d bytes\n", skipped);
2192 *pbuf_ptr = buf_ptr;
2198 const uint8_t **unescaped_buf_ptr,
2199 int *unescaped_buf_size)
2214 #define copy_data_segment(skip) do { \
2215 ptrdiff_t length = (ptr - src) - (skip); \
2217 memcpy(dst, src, length); \
2227 while (ptr < buf_end) {
2232 while (ptr < buf_end && x == 0xff) {
2247 if (x < RST0 || x >
RST7) {
2257 #undef copy_data_segment
2259 *unescaped_buf_ptr =
s->buffer;
2260 *unescaped_buf_size = dst -
s->buffer;
2261 memset(
s->buffer + *unescaped_buf_size, 0,
2265 (buf_end - *buf_ptr) - (dst -
s->buffer));
2274 while (
src + t < buf_end) {
2277 while ((
src + t < buf_end) && x == 0xff)
2292 if (x == 0xFF &&
b < t) {
2304 *unescaped_buf_ptr = dst;
2305 *unescaped_buf_size = (bit_count + 7) >> 3;
2306 memset(
s->buffer + *unescaped_buf_size, 0,
2309 *unescaped_buf_ptr = *buf_ptr;
2310 *unescaped_buf_size = buf_end - *buf_ptr;
2321 for (
i = 0;
i <
s->iccnum;
i++)
2335 int buf_size = avpkt->
size;
2337 const uint8_t *buf_end, *buf_ptr;
2338 const uint8_t *unescaped_buf_ptr;
2340 int unescaped_buf_size;
2346 s->buf_size = buf_size;
2350 s->adobe_transform = -1;
2356 buf_end = buf + buf_size;
2357 while (buf_ptr < buf_end) {
2361 &unescaped_buf_size);
2365 }
else if (unescaped_buf_size > INT_MAX / 8) {
2367 "MJPEG packet 0x%x too big (%d/%d), corrupt data?\n",
2407 if (!CONFIG_JPEGLS_DECODER &&
2431 s->restart_interval = 0;
2432 s->restart_count = 0;
2433 s->raw_image_buffer = buf_ptr;
2434 s->raw_image_buffer_size = buf_end - buf_ptr;
2482 if (!CONFIG_JPEGLS_DECODER ||
2489 s->progressive &&
s->cur_scan &&
s->got_picture)
2492 if (!
s->got_picture) {
2494 "Found EOI before any SOF, ignoring\n");
2497 if (
s->interlaced) {
2498 s->bottom_field ^= 1;
2500 if (
s->bottom_field == !
s->interlace_polarity)
2505 goto the_end_no_picture;
2507 if (
s->avctx->hwaccel) {
2508 ret =
s->avctx->hwaccel->end_frame(
s->avctx);
2523 int qpw = (
s->width + 15) / 16;
2526 memset(qp_table_buf->
data, qp, qpw);
2536 s->raw_scan_buffer = buf_ptr;
2537 s->raw_scan_buffer_size = buf_end - buf_ptr;
2564 "mjpeg: unsupported coding type (%x)\n",
start_code);
2572 "marker parser used %d bytes (%d bits)\n",
2575 if (
s->got_picture &&
s->cur_scan) {
2608 for (p = 0; p<
s->nb_components; p++) {
2612 if (!
s->upscale_h[p])
2618 if (
s->upscale_v[p] == 1)
2621 for (
i = 0;
i <
h;
i++) {
2622 if (
s->upscale_h[p] == 1) {
2623 if (is16bit) ((uint16_t*)
line)[
w - 1] = ((uint16_t*)
line)[(
w - 1) / 2];
2631 }
else if (
s->upscale_h[p] == 2) {
2633 ((uint16_t*)
line)[
w - 1] = ((uint16_t*)
line)[(
w - 1) / 3];
2635 ((uint16_t*)
line)[
w - 2] = ((uint16_t*)
line)[
w - 1];
2645 line +=
s->linesize[p];
2670 for (p = 0; p <
s->nb_components; p++) {
2674 if (!
s->upscale_v[p])
2680 dst = &((
uint8_t *)
s->picture_ptr->data[p])[(
h - 1) *
s->linesize[p]];
2682 uint8_t *
src1 = &((
uint8_t *)
s->picture_ptr->data[p])[
i *
s->upscale_v[p] / (
s->upscale_v[p] + 1) *
s->linesize[p]];
2683 uint8_t *src2 = &((
uint8_t *)
s->picture_ptr->data[p])[(
i + 1) *
s->upscale_v[p] / (
s->upscale_v[p] + 1) *
s->linesize[p]];
2684 if (
s->upscale_v[p] != 2 && (
src1 == src2 ||
i ==
h - 1)) {
2685 memcpy(dst,
src1,
w);
2690 dst -=
s->linesize[p];
2694 if (
s->flipped && !
s->rgb) {
2703 int w =
s->picture_ptr->width;
2704 int h =
s->picture_ptr->height;
2711 for (
i=0;
i<
h/2;
i++) {
2713 FFSWAP(
int, dst[j], dst2[j]);
2714 dst +=
s->picture_ptr->linesize[
index];
2715 dst2 -=
s->picture_ptr->linesize[
index];
2721 int w =
s->picture_ptr->width;
2722 int h =
s->picture_ptr->height;
2724 for (
i=0;
i<
h;
i++) {
2729 +
s->picture_ptr->linesize[
index]*
i;
2731 for (j=0; j<
w; j++) {
2733 int r = dst[0][j] * k;
2734 int g = dst[1][j] * k;
2735 int b = dst[2][j] * k;
2736 dst[0][j] =
g*257 >> 16;
2737 dst[1][j] =
b*257 >> 16;
2738 dst[2][j] =
r*257 >> 16;
2744 int w =
s->picture_ptr->width;
2745 int h =
s->picture_ptr->height;
2747 for (
i=0;
i<
h;
i++) {
2752 +
s->picture_ptr->linesize[
index]*
i;
2754 for (j=0; j<
w; j++) {
2756 int r = (255 - dst[0][j]) * k;
2757 int g = (128 - dst[1][j]) * k;
2758 int b = (128 - dst[2][j]) * k;
2759 dst[0][j] =
r*257 >> 16;
2760 dst[1][j] = (
g*257 >> 16) + 128;
2761 dst[2][j] = (
b*257 >> 16) + 128;
2770 stereo->
type =
s->stereo3d->type;
2771 stereo->
flags =
s->stereo3d->flags;
2776 if (
s->iccnum != 0 &&
s->iccnum ==
s->iccread) {
2783 for (
i = 0;
i <
s->iccnum;
i++)
2784 total_size +=
s->iccdatalens[
i];
2793 for (
i = 0;
i <
s->iccnum;
i++) {
2806 return buf_ptr - buf;
2816 if (
s->interlaced &&
s->bottom_field == !
s->interlace_polarity &&
s->got_picture && !avctx->
frame_number) {
2822 s->picture_ptr =
NULL;
2823 }
else if (
s->picture_ptr)
2829 s->ljpeg_buffer_size = 0;
2831 for (
i = 0;
i < 3;
i++) {
2832 for (j = 0; j < 4; j++)
2854 #if CONFIG_MJPEG_DECODER
2855 #define OFFSET(x) offsetof(MJpegDecodeContext, x)
2856 #define VD AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_DECODING_PARAM
2858 {
"extern_huff",
"Use external huffman table.",
2863 static const AVClass mjpegdec_class = {
2882 .priv_class = &mjpegdec_class,
2887 #if CONFIG_MJPEG_NVDEC_HWACCEL
2890 #if CONFIG_MJPEG_VAAPI_HWACCEL
2897 #if CONFIG_THP_DECODER
const struct AVHWAccel * hwaccel
Hardware accelerator in use.
static void skip_bits_long(GetBitContext *s, int n)
Skips the specified number of bits.
#define AV_LOG_WARNING
Something somehow does not look correct.
#define FF_CODEC_CAP_INIT_THREADSAFE
The codec does not modify any global variables in the init function, allowing to call the init functi...
@ AV_PIX_FMT_CUDA
HW acceleration through CUDA.
av_cold void ff_init_scantable(uint8_t *permutation, ScanTable *st, const uint8_t *src_scantable)
AVPixelFormat
Pixel format.
static av_cold int init(AVCodecContext *avctx)
static unsigned int show_bits_long(GetBitContext *s, int n)
Show 0-32 bits.
AVBufferRef * av_buffer_alloc(int size)
Allocate an AVBuffer of the given size using av_malloc().
void ff_mjpeg_build_huffman_codes(uint8_t *huff_size, uint16_t *huff_code, const uint8_t *bits_table, const uint8_t *val_table)
static int get_bits_left(GetBitContext *gb)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
enum AVColorSpace colorspace
YUV colorspace type.
int ff_get_format(AVCodecContext *avctx, const enum AVPixelFormat *fmt)
Select the (possibly hardware accelerated) pixel format.
#define FFSWAP(type, a, b)
static av_always_inline void mjpeg_copy_block(MJpegDecodeContext *s, uint8_t *dst, const uint8_t *src, int linesize, int lowres)
The official guide to swscale for confused that is
static void decode_flush(AVCodecContext *avctx)
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
uint8_t * data
The data buffer.
#define MKTAG(a, b, c, d)
int err_recognition
Error recognition; may misdetect some more or less valid parts as errors.
#define GET_VLC(code, name, gb, table, bits, max_depth)
If the vlc code is invalid and max_depth=1, then no bits will be removed.
static unsigned int get_bits_long(GetBitContext *s, int n)
Read 0-32 bits.
AVFrameSideData * av_frame_new_side_data(AVFrame *frame, enum AVFrameSideDataType type, int size)
Add a new side data to a frame.
const uint8_t avpriv_mjpeg_bits_ac_luminance[17]
static void init_put_bits(PutBitContext *s, uint8_t *buffer, int buffer_size)
Initialize the PutBitContext s.
#define se(name, range_min, range_max)
static int get_bits_count(const GetBitContext *s)
static void init_idct(AVCodecContext *avctx)
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
static av_always_inline int bytestream2_seek(GetByteContext *g, int offset, int whence)
This structure describes decoded (raw) audio or video data.
static void put_bits(Jpeg2000EncoderContext *s, int val, int n)
put n times val bit
const uint8_t avpriv_mjpeg_val_ac_luminance[]
#define AV_PIX_FMT_YUVA420P16
@ AVCOL_RANGE_JPEG
the normal 2^n-1 "JPEG" YUV ranges
#define FF_PROFILE_MJPEG_JPEG_LS
enum AVFieldOrder field_order
Field order.
static int mjpeg_decode_dc(MJpegDecodeContext *s, int dc_index)
int step
Number of elements between 2 horizontally consecutive pixels.
void * av_mallocz_array(size_t nmemb, size_t size)
static av_always_inline int get_vlc2(GetBitContext *s, VLC_TYPE(*table)[2], int bits, int max_depth)
Parse a vlc code.
static int build_vlc(VLC *vlc, const uint8_t *bits_table, const uint8_t *val_table, int nb_codes, int use_static, int is_ac)
@ AV_PIX_FMT_BGR24
packed RGB 8:8:8, 24bpp, BGRBGR...
@ AV_PIX_FMT_YUV440P
planar YUV 4:4:0 (1 Cr & Cb sample per 1x2 Y samples)
#define UPDATE_CACHE(name, gb)
const uint8_t avpriv_mjpeg_bits_dc_luminance[17]
static int init_get_bits(GetBitContext *s, const uint8_t *buffer, int bit_size)
Initialize GetBitContext.
#define FF_DEBUG_PICT_INFO
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
#define GET_CACHE(name, gb)
static void skip_bits(GetBitContext *s, int n)
@ AV_STEREO3D_SIDEBYSIDE
Views are next to each other.
int av_pix_fmt_count_planes(enum AVPixelFormat pix_fmt)
@ AVCOL_SPC_BT470BG
also ITU-R BT601-6 625 / ITU-R BT1358 625 / ITU-R BT1700 625 PAL & SECAM / IEC 61966-2-4 xvYCC601
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
int ff_mjpeg_decode_dht(MJpegDecodeContext *s)
static int ljpeg_decode_yuv_scan(MJpegDecodeContext *s, int predictor, int point_transform, int nb_components)
static void shift_output(MJpegDecodeContext *s, uint8_t *ptr, int linesize)
@ AV_PIX_FMT_GBRAP
planar GBRA 4:4:4:4 32bpp
const struct AVCodec * codec
av_cold int ff_mjpeg_decode_init(AVCodecContext *avctx)
enum AVDiscard skip_frame
Skip decoding for selected frames.
@ AV_STEREO3D_2D
Video is not stereoscopic (and metadata has to be there).
#define AV_PIX_FMT_YUVA444P16
#define FF_PROFILE_MJPEG_HUFFMAN_BASELINE_DCT
static int mjpeg_decode_com(MJpegDecodeContext *s)
static int init_default_huffman_tables(MJpegDecodeContext *s)
int flags
AV_CODEC_FLAG_*.
static double val(void *priv, double ch)
int av_pix_fmt_get_chroma_sub_sample(enum AVPixelFormat pix_fmt, int *h_shift, int *v_shift)
Utility function to access log2_chroma_w log2_chroma_h from the pixel format AVPixFmtDescriptor.
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf type
#define AV_PIX_FMT_GRAY16
#define ss(width, name, subs,...)
#define FF_CODEC_CAP_SKIP_FRAME_FILL_PARAM
The decoder extracts and fills its parameters even if the frame is skipped due to the skip_frame sett...
AVFrame * av_frame_alloc(void)
Allocate an AVFrame and set its fields to default values.
const uint8_t avpriv_mjpeg_bits_dc_chrominance[17]
@ AV_PIX_FMT_YUVJ411P
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples) full scale (JPEG), deprecated in favor ...
const AVProfile ff_mjpeg_profiles[]
int ff_exif_decode_ifd(void *logctx, GetByteContext *gbytes, int le, int depth, AVDictionary **metadata)
static int aligned(int val)
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
static int decode_dc_progressive(MJpegDecodeContext *s, int16_t *block, int component, int dc_index, uint16_t *quant_matrix, int Al)
#define AV_PIX_FMT_YUV422P16
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
#define FF_CODEC_PROPERTY_LOSSLESS
#define FF_PROFILE_MJPEG_HUFFMAN_PROGRESSIVE_DCT
static const uint16_t mask[17]
static int handle_rstn(MJpegDecodeContext *s, int nb_components)
@ AV_PIX_FMT_YUVJ422P
planar YUV 4:2:2, 16bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV422P and setting col...
#define CLOSE_READER(name, gb)
static void decode(AVCodecContext *dec_ctx, AVPacket *pkt, AVFrame *frame, FILE *outfile)
@ AV_STEREO3D_LINES
Views are packed per line, as if interlaced.
@ AV_PIX_FMT_YUVA420P
planar YUV 4:2:0, 20bpp, (1 Cr & Cb sample per 2x2 Y & A samples)
static void parse_avid(MJpegDecodeContext *s, uint8_t *buf, int len)
const uint8_t avpriv_mjpeg_val_dc[12]
#define AV_PIX_FMT_YUV444P16
#define AV_CEIL_RSHIFT(a, b)
#define FF_PROFILE_MJPEG_HUFFMAN_LOSSLESS
#define AV_GET_BUFFER_FLAG_REF
The decoder will keep a reference to the frame and may reuse it later.
int ff_jpegls_decode_picture(MJpegDecodeContext *s, int near, int point_transform, int ilv)
#define av_assert0(cond)
assert() equivalent, that is always enabled.
static enum AVPixelFormat pix_fmts[]
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
#define AV_PIX_FMT_YUV420P16
static void reset_icc_profile(MJpegDecodeContext *s)
av_cold int ff_mjpeg_decode_end(AVCodecContext *avctx)
void ff_free_vlc(VLC *vlc)
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
@ AV_PIX_FMT_YUVJ444P
planar YUV 4:4:4, 24bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV444P and setting col...
av_cold void ff_hpeldsp_init(HpelDSPContext *c, int flags)
int flags
Additional information about the frame packing.
@ AVDISCARD_ALL
discard all
#define AV_PIX_FMT_GBRP16
#define AV_PIX_FMT_RGBA64
#define LIBAVUTIL_VERSION_INT
Describe the class of an AVClass context structure.
#define PTRDIFF_SPECIFIER
static void flush(AVCodecContext *avctx)
static void mjpeg_idct_scan_progressive_ac(MJpegDecodeContext *s)
static void copy_block2(uint8_t *dst, const uint8_t *src, ptrdiff_t dstStride, ptrdiff_t srcStride, int h)
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
Rational number (pair of numerator and denominator).
int ff_mjpeg_decode_dqt(MJpegDecodeContext *s)
@ AV_PIX_FMT_YUVJ420P
planar YUV 4:2:0, 12bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV420P and setting col...
const char * av_default_item_name(void *ptr)
Return the context name.
static unsigned int get_bits1(GetBitContext *s)
@ AV_PICTURE_TYPE_I
Intra.
@ AV_FRAME_DATA_ICC_PROFILE
The data contains an ICC profile as an opaque octet buffer following the format described by ISO 1507...
#define LAST_SKIP_BITS(name, gb, num)
static int mjpeg_decode_scan(MJpegDecodeContext *s, int nb_components, int Ah, int Al, const uint8_t *mb_bitmask, int mb_bitmask_size, const AVFrame *reference)
static int decode_block_refinement(MJpegDecodeContext *s, int16_t *block, uint8_t *last_nnz, int ac_index, uint16_t *quant_matrix, int ss, int se, int Al, int *EOBRUN)
static int mjpeg_decode_scan_progressive_ac(MJpegDecodeContext *s, int ss, int se, int Ah, int Al)
int ff_init_vlc_sparse(VLC *vlc_arg, int nb_bits, int nb_codes, const void *bits, int bits_wrap, int bits_size, const void *codes, int codes_wrap, int codes_size, const void *symbols, int symbols_wrap, int symbols_size, int flags)
@ AV_PIX_FMT_GRAY8
Y , 8bpp.
#define AV_EF_EXPLODE
abort decoding on minor error detection
@ AV_PIX_FMT_ABGR
packed ABGR 8:8:8:8, 32bpp, ABGRABGR...
const uint8_t avpriv_mjpeg_val_ac_chrominance[]
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
static av_always_inline int bytestream2_tell(GetByteContext *g)
#define copy_data_segment(skip)
const OptionDef options[]
static void copy_mb(CinepakEncContext *s, uint8_t *a_data[4], int a_linesize[4], uint8_t *b_data[4], int b_linesize[4])
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame.
@ AV_PIX_FMT_RGB24
packed RGB 8:8:8, 24bpp, RGBRGB...
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() for allocating buffers and supports custom allocators.
static int ljpeg_decode_rgb_scan(MJpegDecodeContext *s, int nb_components, int predictor, int point_transform)
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled top and top right vectors is used as motion vector prediction the used motion vector is the sum of the predictor and(mvx_diff, mvy_diff) *mv_scale Intra DC Prediction block[y][x] dc[1]
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
int av_frame_ref(AVFrame *dst, const AVFrame *src)
Set up a new reference to the data described by the source frame.
int ff_jpegls_decode_lse(MJpegDecodeContext *s)
Decode LSE block with initialization parameters.
#define FF_QSCALE_TYPE_MPEG1
static int decode_block_progressive(MJpegDecodeContext *s, int16_t *block, uint8_t *last_nnz, int ac_index, uint16_t *quant_matrix, int ss, int se, int Al, int *EOBRUN)
#define av_err2str(errnum)
Convenience macro, the return value should be used only directly in function arguments but never stan...
int ff_mjpeg_decode_sos(MJpegDecodeContext *s, const uint8_t *mb_bitmask, int mb_bitmask_size, const AVFrame *reference)
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_WL16 uint64_t_TMPL AV_WB64 unsigned int_TMPL AV_RB32
void avpriv_report_missing_feature(void *avc, const char *msg,...) av_printf_format(2
Log a generic warning message about a missing feature.
int format
format of the frame, -1 if unknown or unset Values correspond to enum AVPixelFormat for video frames,...
#define OPEN_READER(name, gb)
@ AV_PIX_FMT_YUVA444P
planar YUV 4:4:4 32bpp, (1 Cr & Cb sample per 1x1 Y & A samples)
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf offset
static int get_xbits(GetBitContext *s, int n)
Read MPEG-1 dc-style VLC (sign bit + mantissa with no MSB).
void av_dict_free(AVDictionary **pm)
Free all the memory allocated for an AVDictionary struct and all keys and values.
#define HWACCEL_NVDEC(codec)
static int find_marker(const uint8_t **pbuf_ptr, const uint8_t *buf_end)
#define AV_STEREO3D_FLAG_INVERT
Inverted views, Right/Bottom represents the left view.
#define AV_LOG_INFO
Standard information.
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel layout
static void copy_block4(uint8_t *dst, const uint8_t *src, ptrdiff_t dstStride, ptrdiff_t srcStride, int h)
int ff_mjpeg_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *avpkt)
static int decode_block(MJpegDecodeContext *s, int16_t *block, int component, int dc_index, int ac_index, uint16_t *quant_matrix)
#define i(width, name, range_min, range_max)
and forward the test the status of outputs and forward it to the corresponding return FFERROR_NOT_READY If the filters stores internally one or a few frame for some it can consider them to be part of the FIFO and delay acknowledging a status change accordingly Example code
uint8_t * extradata
some codecs need / can use extradata like Huffman tables.
static unsigned int show_bits(GetBitContext *s, int n)
Show 1-25 bits.
#define FF_CODEC_CAP_INIT_CLEANUP
The codec allows calling the close function for deallocation even if the init function returned a fai...
#define FF_PROFILE_MJPEG_HUFFMAN_EXTENDED_SEQUENTIAL_DCT
@ AV_STEREO3D_TOPBOTTOM
Views are on top of each other.
static int mjpeg_decode_dri(MJpegDecodeContext *s)
void av_fast_padded_malloc(void *ptr, unsigned int *size, size_t min_size)
Same behaviour av_fast_malloc but the buffer has additional AV_INPUT_BUFFER_PADDING_SIZE at the end w...
#define FF_DEBUG_STARTCODE
@ AV_PIX_FMT_YUVJ440P
planar YUV 4:4:0 full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV440P and setting color_range
void av_frame_unref(AVFrame *frame)
Unreference all the buffers referenced by frame and reset the frame fields.
av_cold void ff_idctdsp_init(IDCTDSPContext *c, AVCodecContext *avctx)
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
const char * name
Name of the codec implementation.
enum AVChromaLocation chroma_sample_location
This defines the location of chroma samples.
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
@ AVCOL_RANGE_MPEG
the normal 219*2^(n-8) "MPEG" YUV ranges
const uint8_t ff_zigzag_direct[64]
@ AV_PIX_FMT_PAL8
8 bits with AV_PIX_FMT_RGB32 palette
#define AV_LOG_FATAL
Something went wrong and recovery is not possible.
static const float pred[4]
AVStereo3D * av_stereo3d_alloc(void)
Allocate an AVStereo3D structure and set its fields to default values.
const char * class_name
The name of the class; usually it is the same name as the context structure type to which the AVClass...
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
enum AVStereo3DType type
How views are packed within the video.
static const uint8_t * align_get_bits(GetBitContext *s)
@ LSE
JPEG-LS extension parameters.
#define AV_INPUT_BUFFER_PADDING_SIZE
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled left
#define FF_ARRAY_ELEMS(a)
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_RL32
int ff_mjpeg_find_marker(MJpegDecodeContext *s, const uint8_t **buf_ptr, const uint8_t *buf_end, const uint8_t **unescaped_buf_ptr, int *unescaped_buf_size)
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf default minimum maximum flags name is the option keep it simple and lowercase description are in without and describe what they for example set the foo of the bar offset is the offset of the field in your see the OFFSET() macro
main external API structure.
#define SHOW_UBITS(name, gb, num)
the frame and frame reference mechanism is intended to as much as expensive copies of that data while still allowing the filters to produce correct results The data is stored in buffers represented by AVFrame structures Several references can point to the same frame buffer
@ AVCHROMA_LOC_CENTER
MPEG-1 4:2:0, JPEG 4:2:0, H.263 4:2:0.
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return values
AVComponentDescriptor comp[4]
Parameters that describe how pixels are packed.
int ff_tdecode_header(GetByteContext *gb, int *le, int *ifd_offset)
Decodes a TIFF header from the input bytestream and sets the endianness in *le and the offset to the ...
static const AVProfile profiles[]
@ AV_PIX_FMT_YUV444P
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
int ff_mjpeg_decode_sof(MJpegDecodeContext *s)
@ AV_PIX_FMT_GBRP
planar GBR 4:4:4 24bpp
@ AV_PIX_FMT_GRAY16LE
Y , 16bpp, little-endian.
@ AV_PIX_FMT_YUV422P
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
A reference to a data buffer.
int ff_set_dimensions(AVCodecContext *s, int width, int height)
Check that the provided frame dimensions are valid and set them on the codec context.
static int mjpeg_decode_app(MJpegDecodeContext *s)
int frame_number
Frame counter, set by libavcodec.
AVStereo3D * av_stereo3d_create_side_data(AVFrame *frame)
Allocate a complete AVFrameSideData and add it to the frame.
#define avpriv_request_sample(...)
Structure to hold side data for an AVFrame.
static void flush_put_bits(PutBitContext *s)
Pad the end of the output stream with zeros.
unsigned int codec_tag
fourcc (LSB first, so "ABCD" -> ('D'<<24) + ('C'<<16) + ('B'<<8) + 'A').
This structure stores compressed data.
void av_fast_malloc(void *ptr, unsigned int *size, size_t min_size)
Allocate a buffer, reusing the given one if large enough.
int av_dict_copy(AVDictionary **dst, const AVDictionary *src, int flags)
Copy entries from one AVDictionary struct into another.
@ AV_PIX_FMT_YUV411P
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples)
#define HWACCEL_VAAPI(codec)
static av_always_inline void bytestream2_init(GetByteContext *g, const uint8_t *buf, int buf_size)
#define flags(name, subs,...)
#define AVERROR_BUG
Internal bug, also see AVERROR_BUG2.
The exact code depends on how similar the blocks are and how related they are to the block
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
const uint8_t avpriv_mjpeg_bits_ac_chrominance[17]
Stereo 3D type: this structure describes how two videos are packed within a single video surface,...
int av_image_check_size(unsigned int w, unsigned int h, int log_offset, void *log_ctx)
Check if the given dimension of an image is valid, meaning that all bytes of the image can be address...
av_cold void ff_blockdsp_init(BlockDSPContext *c, AVCodecContext *avctx)
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_WL16 uint64_t_TMPL AV_WB64 unsigned int_TMPL AV_WB32 unsigned int_TMPL AV_RB24
#define PREDICT(ret, topleft, top, left, predictor)
int av_frame_set_qp_table(AVFrame *f, AVBufferRef *buf, int stride, int qp_type)
#define av_fourcc2str(fourcc)