Go to the documentation of this file.
62 #define OFFSET(x) offsetof(HistogramContext, x)
63 #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
65 #define COMMON_OPTIONS \
66 { "display_mode", "set display mode", OFFSET(display_mode), AV_OPT_TYPE_INT, {.i64=2}, 0, 2, FLAGS, "display_mode"}, \
67 { "d", "set display mode", OFFSET(display_mode), AV_OPT_TYPE_INT, {.i64=2}, 0, 2, FLAGS, "display_mode"}, \
68 { "overlay", NULL, 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, FLAGS, "display_mode" }, \
69 { "parade", NULL, 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, FLAGS, "display_mode" }, \
70 { "stack", NULL, 0, AV_OPT_TYPE_CONST, {.i64=2}, 0, 0, FLAGS, "display_mode" }, \
71 { "levels_mode", "set levels mode", OFFSET(levels_mode), AV_OPT_TYPE_INT, {.i64=0}, 0, 1, FLAGS, "levels_mode"}, \
72 { "m", "set levels mode", OFFSET(levels_mode), AV_OPT_TYPE_INT, {.i64=0}, 0, 1, FLAGS, "levels_mode"}, \
73 { "linear", NULL, 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, FLAGS, "levels_mode" }, \
74 { "logarithmic", NULL, 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, FLAGS, "levels_mode" }, \
75 { "components", "set color components to display", OFFSET(components), AV_OPT_TYPE_INT, {.i64=7}, 1, 15, FLAGS}, \
76 { "c", "set color components to display", OFFSET(components), AV_OPT_TYPE_INT, {.i64=7}, 1, 15, FLAGS},
158 if (!
ctx->inputs[0]->in_formats ||
159 !
ctx->inputs[0]->in_formats->nb_formats) {
163 if (!
ctx->inputs[0]->out_formats)
166 avff =
ctx->inputs[0]->in_formats;
177 if (rgb &&
bits == 8)
179 else if (rgb &&
bits == 9)
181 else if (rgb &&
bits == 10)
183 else if (rgb &&
bits == 12)
211 s->ncomp =
s->desc->nb_components;
212 s->histogram_size = 1 <<
s->desc->comp[0].depth;
213 s->mult =
s->histogram_size / 256;
225 s->start[0] =
s->start[1] =
s->start[2] =
s->start[3] = 0;
226 memcpy(
s->envelope_color,
s->envelope_rgba, 4);
231 s->start[0] =
s->start[3] = 0;
232 s->start[1] =
s->start[2] =
s->histogram_size / 2;
233 s->envelope_color[0] =
RGB_TO_Y_BT709(
s->envelope_rgba[0],
s->envelope_rgba[1],
s->envelope_rgba[2]);
234 s->envelope_color[1] =
RGB_TO_U_BT709(
s->envelope_rgba[0],
s->envelope_rgba[1],
s->envelope_rgba[2], 0);
235 s->envelope_color[2] =
RGB_TO_V_BT709(
s->envelope_rgba[0],
s->envelope_rgba[1],
s->envelope_rgba[2], 0);
236 s->envelope_color[3] =
s->envelope_rgba[3];
239 s->fg_color[3] =
s->fgopacity * 255;
240 s->bg_color[3] =
s->bgopacity * 255;
243 s->planeheight[0] =
s->planeheight[3] =
inlink->h;
245 s->planewidth[0] =
s->planewidth[3] =
inlink->w;
256 if (!strcmp(
ctx->filter->name,
"thistogram"))
259 for (
i = 0;
i <
s->ncomp;
i++) {
260 if ((1 <<
i) &
s->components)
266 s->width =
ctx->inputs[0]->w;
267 outlink->
w =
s->width *
FFMAX(ncomp * (
s->display_mode == 1), 1);
268 outlink->
h =
s->histogram_size *
FFMAX(ncomp * (
s->display_mode == 2), 1);
270 outlink->
w =
s->histogram_size *
FFMAX(ncomp * (
s->display_mode == 1), 1);
271 outlink->
h = (
s->level_height +
s->scale_height) *
FFMAX(ncomp * (
s->display_mode == 2), 1);
275 s->dncomp =
s->odesc->nb_components;
289 if (!
s->thistogram || !
out) {
297 for (k = 0; k < 4 &&
out->data[k]; k++) {
298 const int is_chroma = (k == 1 || k == 2);
299 const int dst_h =
AV_CEIL_RSHIFT(outlink->
h, (is_chroma ?
s->odesc->log2_chroma_h : 0));
300 const int dst_w =
AV_CEIL_RSHIFT(outlink->
w, (is_chroma ?
s->odesc->log2_chroma_w : 0));
302 if (
s->histogram_size <= 256) {
303 for (
i = 0;
i < dst_h ;
i++)
304 memset(
out->data[
s->odesc->comp[k].plane] +
305 i *
out->linesize[
s->odesc->comp[k].plane],
306 s->bg_color[k], dst_w);
308 const int mult =
s->mult;
310 for (
i = 0;
i < dst_h ;
i++)
311 for (j = 0; j < dst_w; j++)
313 i *
out->linesize[
s->odesc->comp[k].plane] + j * 2,
314 s->bg_color[k] *
mult);
319 for (m = 0, k = 0; k <
s->ncomp; k++) {
320 const int p =
s->desc->comp[k].plane;
321 const int max_value =
s->histogram_size - 1 -
s->start[p];
322 const int height =
s->planeheight[p];
323 const int width =
s->planewidth[p];
325 unsigned max_hval = 0;
328 if (!((1 << k) &
s->components))
331 starty = m *
s->histogram_size * (
s->display_mode == 2);
332 startx = m++ *
s->width * (
s->display_mode == 1);
334 startx = m *
s->histogram_size * (
s->display_mode == 1);
335 starty = m++ * (
s->level_height +
s->scale_height) * (
s->display_mode == 2);
338 if (
s->histogram_size <= 256) {
341 for (j = 0; j <
width; j++)
342 s->histogram[
src[j]]++;
346 const uint16_t *
src = (
const uint16_t *)(
in->data[p] +
i *
in->linesize[p]);
347 for (j = 0; j <
width; j++)
348 s->histogram[
src[j]]++;
352 for (
i = 0;
i <
s->histogram_size;
i++)
353 max_hval =
FFMAX(max_hval,
s->histogram[
i]);
354 max_hval_log =
log2(max_hval + 1);
357 int minh =
s->histogram_size - 1, maxh = 0;
359 for (
int i = 0;
i <
s->histogram_size;
i++) {
360 int idx =
s->histogram_size -
i - 1;
363 if (
s->envelope &&
s->histogram[idx]) {
369 value +=
lrint(max_value * (
log2(
s->histogram[idx] + 1) / max_hval_log));
371 value +=
lrint(max_value *
s->histogram[idx] / (
float)max_hval);
373 if (
s->histogram_size <= 256) {
374 s->out->data[p][(
i + starty) *
s->out->linesize[p] + startx +
s->x_pos] =
value;
376 AV_WN16(
s->out->data[p] + (
i + starty) *
s->out->linesize[p] + startx * 2 +
s->x_pos * 2,
value);
381 if (
s->histogram_size <= 256) {
382 s->out->data[0][(minh + starty) *
s->out->linesize[p] + startx +
s->x_pos] =
s->envelope_color[0];
383 s->out->data[0][(maxh + starty) *
s->out->linesize[p] + startx +
s->x_pos] =
s->envelope_color[0];
384 if (
s->dncomp >= 3) {
385 s->out->data[1][(minh + starty) *
s->out->linesize[p] + startx +
s->x_pos] =
s->envelope_color[1];
386 s->out->data[2][(minh + starty) *
s->out->linesize[p] + startx +
s->x_pos] =
s->envelope_color[2];
387 s->out->data[1][(maxh + starty) *
s->out->linesize[p] + startx +
s->x_pos] =
s->envelope_color[1];
388 s->out->data[2][(maxh + starty) *
s->out->linesize[p] + startx +
s->x_pos] =
s->envelope_color[2];
391 const int mult =
s->mult;
393 AV_WN16(
s->out->data[0] + (minh + starty) *
s->out->linesize[p] + startx * 2 +
s->x_pos * 2,
s->envelope_color[0] *
mult);
394 AV_WN16(
s->out->data[0] + (maxh + starty) *
s->out->linesize[p] + startx * 2 +
s->x_pos * 2,
s->envelope_color[0] *
mult);
395 if (
s->dncomp >= 3) {
396 AV_WN16(
s->out->data[1] + (minh + starty) *
s->out->linesize[p] + startx * 2 +
s->x_pos * 2,
s->envelope_color[1] *
mult);
397 AV_WN16(
s->out->data[2] + (minh + starty) *
s->out->linesize[p] + startx * 2 +
s->x_pos * 2,
s->envelope_color[2] *
mult);
398 AV_WN16(
s->out->data[1] + (maxh + starty) *
s->out->linesize[p] + startx * 2 +
s->x_pos * 2,
s->envelope_color[1] *
mult);
399 AV_WN16(
s->out->data[2] + (maxh + starty) *
s->out->linesize[p] + startx * 2 +
s->x_pos * 2,
s->envelope_color[2] *
mult);
404 for (
i = 0;
i <
s->histogram_size;
i++) {
408 col_height =
lrint(
s->level_height * (1. - (
log2(
s->histogram[
i] + 1) / max_hval_log)));
410 col_height =
s->level_height - (
s->histogram[
i] * (int64_t)
s->level_height + max_hval - 1) / max_hval;
412 if (
s->histogram_size <= 256) {
413 for (j =
s->level_height - 1; j >= col_height; j--) {
414 if (
s->display_mode) {
415 for (l = 0; l <
s->dncomp; l++)
416 out->data[l][(j + starty) *
out->linesize[l] + startx +
i] =
s->fg_color[l];
418 out->data[p][(j + starty) *
out->linesize[p] + startx +
i] = 255;
421 for (j =
s->level_height +
s->scale_height - 1; j >=
s->level_height; j--)
422 out->data[p][(j + starty) *
out->linesize[p] + startx +
i] =
i;
424 const int mult =
s->mult;
426 for (j =
s->level_height - 1; j >= col_height; j--) {
427 if (
s->display_mode) {
428 for (l = 0; l <
s->dncomp; l++)
429 AV_WN16(
out->data[l] + (j + starty) *
out->linesize[l] + startx * 2 +
i * 2,
s->fg_color[l] *
mult);
431 AV_WN16(
out->data[p] + (j + starty) *
out->linesize[p] + startx * 2 +
i * 2, 255 *
mult);
434 for (j =
s->level_height +
s->scale_height - 1; j >=
s->level_height; j--)
435 AV_WN16(
out->data[p] + (j + starty) *
out->linesize[p] + startx * 2 +
i * 2,
i);
440 memset(
s->histogram, 0,
s->histogram_size *
sizeof(
unsigned));
446 if (
s->x_pos >=
s->width)
478 #if CONFIG_HISTOGRAM_FILTER
487 .priv_class = &histogram_class,
492 #if CONFIG_THISTOGRAM_FILTER
494 static const AVOption thistogram_options[] = {
510 .
name =
"thistogram",
516 .priv_class = &thistogram_class,
AVFrame * ff_get_video_buffer(AVFilterLink *link, int w, int h)
Request a picture buffer with a specific set of permissions.
AVPixelFormat
Pixel format.
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
static const AVFilterPad outputs[]
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
The exact code depends on how similar the blocks are and how related they are to the and needs to apply these operations to the correct inlink or outlink if there are several Macros are available to factor that when no extra processing is inlink
const AVPixFmtDescriptor * odesc
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
#define AV_PIX_FMT_YUVA422P9
static int query_formats(AVFilterContext *ctx)
This structure describes decoded (raw) audio or video data.
static const uint8_t black_yuva_color[4]
#define RGB_TO_U_BT709(r1, g1, b1, shift)
#define AV_PIX_FMT_YUVA420P10
static enum AVPixelFormat levels_out_yuv8_pix_fmts[]
#define AV_PIX_FMT_YUV420P10
static enum AVPixelFormat levels_out_yuv9_pix_fmts[]
@ AV_PIX_FMT_YUV440P
planar YUV 4:4:0 (1 Cr & Cb sample per 1x2 Y samples)
static int config_input(AVFilterLink *inlink)
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
const char * name
Filter name.
static const uint8_t white_gbrp_color[4]
A link between two filters.
#define AV_PIX_FMT_YUVA422P10
#define AV_PIX_FMT_YUVA420P9
@ AV_PIX_FMT_GBRAP
planar GBRA 4:4:4:4 32bpp
#define AV_PIX_FMT_GBRP10
#define RGB_TO_V_BT709(r1, g1, b1, shift)
#define AV_PIX_FMT_YUV422P9
A filter pad used for either input or output.
static enum AVPixelFormat levels_out_rgb10_pix_fmts[]
#define AV_PIX_FMT_YUV444P10
@ AV_PIX_FMT_YUVJ411P
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples) full scale (JPEG), deprecated in favor ...
static int16_t mult(Float11 *f1, Float11 *f2)
@ AV_PIX_FMT_YUVJ422P
planar YUV 4:2:2, 16bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV422P and setting col...
#define AV_PIX_FMT_GBRAP10
static const AVOption histogram_options[]
#define AV_PIX_FMT_GBRAP12
@ AV_PIX_FMT_YUVA420P
planar YUV 4:2:0, 20bpp, (1 Cr & Cb sample per 2x2 Y & A samples)
#define AV_CEIL_RSHIFT(a, b)
AVRational sample_aspect_ratio
agreed upon sample aspect ratio
uint8_t envelope_color[4]
#define AV_PIX_FMT_YUVA444P12
#define AV_PIX_FMT_YUV420P9
AVFrame * av_frame_clone(const AVFrame *src)
Create a new frame that references the same data as src.
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
@ AV_PIX_FMT_YUVJ444P
planar YUV 4:4:4, 24bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV444P and setting col...
Describe the class of an AVClass context structure.
#define RGB_TO_Y_BT709(r, g, b)
Rational number (pair of numerator and denominator).
@ AV_PIX_FMT_YUVJ420P
planar YUV 4:2:0, 12bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV420P and setting col...
static enum AVPixelFormat levels_out_rgb12_pix_fmts[]
#define AV_PIX_FMT_YUV422P10
@ AV_PIX_FMT_GRAY8
Y , 8bpp.
static int config_output(AVFilterLink *outlink)
static const AVFilterPad inputs[]
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
#define AV_PIX_FMT_FLAG_RGB
The pixel format contains RGB-like data (as opposed to YUV/grayscale).
AVFILTER_DEFINE_CLASS(histogram)
int format
agreed upon media format
#define AV_PIX_FMT_YUV422P12
#define AV_PIX_FMT_YUV444P12
AVFilterContext * src
source filter
@ AV_PIX_FMT_YUVA444P
planar YUV 4:4:4 32bpp, (1 Cr & Cb sample per 1x1 Y & A samples)
#define AV_PIX_FMT_YUVA444P10
AVFilter ff_vf_thistogram
static enum AVPixelFormat levels_in_pix_fmts[]
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) #define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac) { } void ff_audio_convert_free(AudioConvert **ac) { if(! *ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);} AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map) { AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method !=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2) { ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc) { av_free(ac);return NULL;} return ac;} in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar) { ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar ? ac->channels :1;} else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;} int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in) { int use_generic=1;int len=in->nb_samples;int p;if(ac->dc) { av_log(ac->avr, AV_LOG_TRACE, "%d samples - audio_convert: %s to %s (dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> in
#define i(width, name, range_min, range_max)
int w
agreed upon image width
#define AV_PIX_FMT_GBRP12
static enum AVPixelFormat out_pix_fmts[]
static void envelope(VectorscopeContext *s, AVFrame *out)
static enum AVPixelFormat levels_out_yuv10_pix_fmts[]
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf default value
const AVPixFmtDescriptor * desc
const char * name
Pad name.
#define AV_PIX_FMT_YUV444P9
#define AV_PIX_FMT_YUVA444P9
#define AV_PIX_FMT_YUV420P12
int h
agreed upon image height
#define AV_PIX_FMT_YUVA422P12
static enum AVPixelFormat levels_out_rgb8_pix_fmts[]
@ AV_PIX_FMT_YUV444P
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
@ AV_PIX_FMT_GBRP
planar GBR 4:4:4 24bpp
@ AV_PIX_FMT_YUV422P
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
static enum AVPixelFormat levels_out_yuv12_pix_fmts[]
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
@ AV_PIX_FMT_YUV411P
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples)
@ AV_PIX_FMT_YUV410P
planar YUV 4:1:0, 9bpp, (1 Cr & Cb sample per 4x4 Y samples)
static enum AVPixelFormat levels_out_rgb9_pix_fmts[]
unsigned histogram[256 *256]
#define AV_PIX_FMT_YUV440P12
static const uint8_t black_gbrp_color[4]
@ AV_PIX_FMT_YUVA422P
planar YUV 4:2:2 24bpp, (1 Cr & Cb sample per 2x1 Y & A samples)
static const uint8_t white_yuva_color[4]