Go to the documentation of this file.
42 #if CONFIG_VP7_DECODER && CONFIG_VP8_DECODER
43 #define VPX(vp7, f) (vp7 ? vp7_ ## f : vp8_ ## f)
44 #elif CONFIG_VP7_DECODER
45 #define VPX(vp7, f) vp7_ ## f
46 #else // CONFIG_VP8_DECODER
47 #define VPX(vp7, f) vp8_ ## f
67 s->macroblocks =
NULL;
78 if (
s->avctx->hwaccel) {
82 if (!
f->hwaccel_priv_buf)
84 f->hwaccel_picture_private =
f->hwaccel_priv_buf->data;
99 f->hwaccel_picture_private =
NULL;
103 #if CONFIG_VP8_DECODER
117 if (
src->hwaccel_picture_private) {
135 memset(
s->framep, 0,
sizeof(
s->framep));
152 for (
i = 0;
i < 5;
i++)
164 if (
frame->tf.f->buf[0])
173 #if CONFIG_VP8_VAAPI_HWACCEL
176 #if CONFIG_VP8_NVDEC_HWACCEL
192 if (
width !=
s->avctx->width || ((
width+15)/16 !=
s->mb_width || (
height+15)/16 !=
s->mb_height) &&
s->macroblocks_base ||
201 if (!
s->actually_webp && !is_vp7) {
208 s->mb_width = (
s->avctx->coded_width + 15) / 16;
209 s->mb_height = (
s->avctx->coded_height + 15) / 16;
214 s->macroblocks_base =
av_mallocz((
s->mb_width +
s->mb_height * 2 + 1) *
215 sizeof(*
s->macroblocks));
216 s->intra4x4_pred_mode_top =
av_mallocz(
s->mb_width * 4);
218 s->macroblocks_base =
av_mallocz((
s->mb_width + 2) * (
s->mb_height + 2) *
219 sizeof(*
s->macroblocks));
221 s->top_border =
av_mallocz((
s->mb_width + 1) *
sizeof(*
s->top_border));
224 if (!
s->macroblocks_base || !
s->top_nnz || !
s->top_border ||
225 !
s->thread_data || (!
s->intra4x4_pred_mode_top && !
s->mb_layout)) {
231 s->thread_data[
i].filter_strength =
232 av_mallocz(
s->mb_width *
sizeof(*
s->thread_data[0].filter_strength));
233 if (!
s->thread_data[
i].filter_strength) {
243 s->macroblocks =
s->macroblocks_base + 1;
267 if (
s->segmentation.update_feature_data) {
270 for (
i = 0;
i < 4;
i++)
273 for (
i = 0;
i < 4;
i++)
276 if (
s->segmentation.update_map)
277 for (
i = 0;
i < 3;
i++)
286 for (
i = 0;
i < 4;
i++) {
291 s->lf_delta.ref[
i] = -
s->lf_delta.ref[
i];
300 s->lf_delta.mode[
i] = -
s->lf_delta.mode[
i];
313 buf += 3 * (
s->num_coeff_partitions - 1);
314 buf_size -= 3 * (
s->num_coeff_partitions - 1);
318 for (
i = 0;
i <
s->num_coeff_partitions - 1;
i++) {
320 if (buf_size -
size < 0)
322 s->coeff_partition_size[
i] =
size;
331 s->coeff_partition_size[
i] = buf_size;
368 for (
i = 0;
i < 4;
i++) {
369 if (
s->segmentation.enabled) {
370 base_qi =
s->segmentation.base_quant[
i];
371 if (!
s->segmentation.absolute_vals)
372 base_qi +=
s->quant.yac_qi;
374 base_qi =
s->quant.yac_qi;
376 s->qmat[
i].luma_qmul[0] =
vp8_dc_qlookup[av_clip_uintp2(base_qi +
s->quant.ydc_delta, 7)];
378 s->qmat[
i].luma_dc_qmul[0] =
vp8_dc_qlookup[av_clip_uintp2(base_qi +
s->quant.y2dc_delta, 7)] * 2;
380 s->qmat[
i].luma_dc_qmul[1] =
vp8_ac_qlookup[av_clip_uintp2(base_qi +
s->quant.y2ac_delta, 7)] * 101581 >> 16;
381 s->qmat[
i].chroma_qmul[0] =
vp8_dc_qlookup[av_clip_uintp2(base_qi +
s->quant.uvdc_delta, 7)];
382 s->qmat[
i].chroma_qmul[1] =
vp8_ac_qlookup[av_clip_uintp2(base_qi +
s->quant.uvac_delta, 7)];
384 s->qmat[
i].luma_dc_qmul[1] =
FFMAX(
s->qmat[
i].luma_dc_qmul[1], 8);
385 s->qmat[
i].chroma_qmul[0] =
FFMIN(
s->qmat[
i].chroma_qmul[0], 132);
421 for (
i = 0;
i < 4;
i++)
422 for (j = 0; j < 16; j++)
424 sizeof(
s->prob->token[
i][j]));
432 for (
i = 0;
i < 4;
i++)
433 for (j = 0; j < 8; j++)
434 for (k = 0; k < 3; k++)
443 #define VP7_MVC_SIZE 17
444 #define VP8_MVC_SIZE 19
453 for (
i = 0;
i < 4;
i++)
456 for (
i = 0;
i < 3;
i++)
460 for (
i = 0;
i < 2;
i++)
461 for (j = 0; j < mvc_size; j++)
481 for (j = 1; j < 3; j++) {
494 for (j = 0; j <
height; j++) {
496 uint8_t *dst2 = dst + j * dst_linesize;
499 dst2[
i] = av_clip_uint8(y + ((y * beta) >> 8) +
alpha);
508 if (!
s->keyframe && (
alpha || beta)) {
509 int width =
s->mb_width * 16;
510 int height =
s->mb_height * 16;
534 src->data[0],
src->linesize[0],
544 int part1_size, hscale, vscale,
i, j,
ret;
545 int width =
s->avctx->width;
554 s->profile = (buf[0] >> 1) & 7;
555 if (
s->profile > 1) {
560 s->keyframe = !(buf[0] & 1);
562 part1_size =
AV_RL24(buf) >> 4;
564 if (buf_size < 4 - s->
profile + part1_size) {
565 av_log(
s->avctx,
AV_LOG_ERROR,
"Buffer size %d is too small, needed : %d\n", buf_size, 4 -
s->profile + part1_size);
569 buf += 4 -
s->profile;
570 buf_size -= 4 -
s->profile;
572 memcpy(
s->put_pixels_tab,
s->vp8dsp.put_vp8_epel_pixels_tab,
sizeof(
s->put_pixels_tab));
578 buf_size -= part1_size;
586 if (hscale || vscale)
592 sizeof(
s->prob->pred16x16));
594 sizeof(
s->prob->pred8x8c));
595 for (
i = 0;
i < 2;
i++)
598 memset(&
s->segmentation, 0,
sizeof(
s->segmentation));
599 memset(&
s->lf_delta, 0,
sizeof(
s->lf_delta));
603 if (
s->keyframe ||
s->profile > 0)
604 memset(
s->inter_dc_pred, 0 ,
sizeof(
s->inter_dc_pred));
607 for (
i = 0;
i < 4;
i++) {
609 if (
s->feature_enabled[
i]) {
612 for (j = 0; j < 3; j++)
613 s->feature_index_prob[
i][j] =
617 for (j = 0; j < 4; j++)
618 s->feature_value[
i][j] =
623 s->segmentation.enabled = 0;
624 s->segmentation.update_map = 0;
625 s->lf_delta.enabled = 0;
627 s->num_coeff_partitions = 1;
632 if (!
s->macroblocks_base ||
634 (
width + 15) / 16 !=
s->mb_width || (
height + 15) / 16 !=
s->mb_height) {
649 s->update_probabilities = 1;
652 if (
s->profile > 0) {
654 if (!
s->update_probabilities)
655 s->prob[1] =
s->prob[0];
675 for (
i = 1;
i < 16;
i++)
687 s->mbskip_enabled = 0;
708 int header_size, hscale, vscale,
ret;
709 int width =
s->avctx->width;
717 s->keyframe = !(buf[0] & 1);
718 s->profile = (buf[0]>>1) & 7;
719 s->invisible = !(buf[0] & 0x10);
720 header_size =
AV_RL24(buf) >> 5;
724 s->header_partition_size = header_size;
730 memcpy(
s->put_pixels_tab,
s->vp8dsp.put_vp8_epel_pixels_tab,
731 sizeof(
s->put_pixels_tab));
733 memcpy(
s->put_pixels_tab,
s->vp8dsp.put_vp8_bilinear_pixels_tab,
734 sizeof(
s->put_pixels_tab));
736 if (header_size > buf_size - 7 *
s->keyframe) {
742 if (
AV_RL24(buf) != 0x2a019d) {
744 "Invalid start code 0x%x\n",
AV_RL24(buf));
749 hscale = buf[4] >> 6;
750 vscale = buf[6] >> 6;
754 if (hscale || vscale)
760 sizeof(
s->prob->pred16x16));
762 sizeof(
s->prob->pred8x8c));
764 sizeof(
s->prob->mvc));
765 memset(&
s->segmentation, 0,
sizeof(
s->segmentation));
766 memset(&
s->lf_delta, 0,
sizeof(
s->lf_delta));
773 buf_size -= header_size;
785 s->segmentation.update_map = 0;
793 if (
s->lf_delta.update)
802 if (!
s->macroblocks_base ||
804 (
width+15)/16 !=
s->mb_width || (
height+15)/16 !=
s->mb_height)
819 s->prob[1] =
s->prob[0];
837 s->coder_state_at_header_end.input =
s->c.buffer - (-
s->c.bits / 8);
838 s->coder_state_at_header_end.range =
s->c.high;
839 s->coder_state_at_header_end.value =
s->c.code_word >> 16;
840 s->coder_state_at_header_end.bit_count = -
s->c.bits % 8;
848 dst->
x = av_clip(
src->x, av_clip(
s->mv_min.x, INT16_MIN, INT16_MAX),
849 av_clip(
s->mv_max.x, INT16_MIN, INT16_MAX));
850 dst->
y = av_clip(
src->y, av_clip(
s->mv_min.y, INT16_MIN, INT16_MAX),
851 av_clip(
s->mv_max.y, INT16_MIN, INT16_MAX));
864 for (
i = 0;
i < 3;
i++)
866 for (
i = (vp7 ? 7 : 9);
i > 3;
i--)
921 const uint8_t *mbsplits_top, *mbsplits_cur, *firstidx;
929 top_mb = &
mb[-
s->mb_width - 1];
931 top_mv = top_mb->
bmv;
945 mb->partitioning = part_idx;
947 for (n = 0; n < num; n++) {
949 uint32_t
left, above;
957 above =
AV_RN32A(&top_mv[mbsplits_top[k + 12]]);
959 above =
AV_RN32A(&cur_mv[mbsplits_cur[k - 4]]);
966 mb->bmv[n].y =
mb->mv.y +
968 mb->bmv[n].x =
mb->mv.x +
996 int xoffset,
int yoffset,
int boundary,
997 int *edge_x,
int *edge_y)
999 int vwidth = mb_width + 1;
1000 int new = (mb_y + yoffset) * vwidth + mb_x + xoffset;
1001 if (
new < boundary ||
new % vwidth == vwidth - 1)
1003 *edge_y =
new / vwidth;
1004 *edge_x =
new % vwidth;
1015 int mb_x,
int mb_y,
int layout)
1018 enum { CNT_ZERO, CNT_NEAREST, CNT_NEAR };
1019 enum { VP8_EDGE_TOP, VP8_EDGE_LEFT, VP8_EDGE_TOPLEFT };
1035 pred->yoffset, !
s->profile, &edge_x, &edge_y)) {
1037 ?
s->macroblocks_base + 1 + edge_x +
1038 (
s->mb_width + 1) * (edge_y + 1)
1039 :
s->macroblocks + edge_x +
1040 (
s->mb_height - edge_y - 1) * 2;
1043 if (
AV_RN32A(&near_mv[CNT_NEAREST])) {
1046 }
else if (
AV_RN32A(&near_mv[CNT_NEAR])) {
1076 if (cnt[CNT_NEAREST] > cnt[CNT_NEAR])
1077 AV_WN32A(&
mb->mv, cnt[CNT_ZERO] > cnt[CNT_NEAREST] ? 0 :
AV_RN32A(&near_mv[CNT_NEAREST]));
1087 mb->bmv[0] =
mb->mv;
1090 mb->mv = near_mv[CNT_NEAR];
1091 mb->bmv[0] =
mb->mv;
1094 mb->mv = near_mv[CNT_NEAREST];
1095 mb->bmv[0] =
mb->mv;
1100 mb->bmv[0] =
mb->mv;
1106 int mb_x,
int mb_y,
int layout)
1111 enum { CNT_ZERO, CNT_NEAREST, CNT_NEAR, CNT_SPLITMV };
1112 enum { VP8_EDGE_TOP, VP8_EDGE_LEFT, VP8_EDGE_TOPLEFT };
1114 int cur_sign_bias =
s->sign_bias[
mb->ref_frame];
1115 int8_t *sign_bias =
s->sign_bias;
1121 mb_edge[0] =
mb + 2;
1122 mb_edge[2] =
mb + 1;
1124 mb_edge[0] =
mb -
s->mb_width - 1;
1125 mb_edge[2] =
mb -
s->mb_width - 2;
1133 #define MV_EDGE_CHECK(n) \
1135 VP8Macroblock *edge = mb_edge[n]; \
1136 int edge_ref = edge->ref_frame; \
1137 if (edge_ref != VP56_FRAME_CURRENT) { \
1138 uint32_t mv = AV_RN32A(&edge->mv); \
1140 if (cur_sign_bias != sign_bias[edge_ref]) { \
1143 mv = ((mv & 0x7fff7fff) + \
1144 0x00010001) ^ (mv & 0x80008000); \
1146 if (!n || mv != AV_RN32A(&near_mv[idx])) \
1147 AV_WN32A(&near_mv[++idx], mv); \
1148 cnt[idx] += 1 + (n != 2); \
1150 cnt[CNT_ZERO] += 1 + (n != 2); \
1163 if (cnt[CNT_SPLITMV] &&
1164 AV_RN32A(&near_mv[1 + VP8_EDGE_TOP]) ==
AV_RN32A(&near_mv[1 + VP8_EDGE_TOPLEFT]))
1165 cnt[CNT_NEAREST] += 1;
1168 if (cnt[CNT_NEAR] > cnt[CNT_NEAREST]) {
1170 FFSWAP(
VP56mv, near_mv[CNT_NEAREST], near_mv[CNT_NEAR]);
1176 clamp_mv(mv_bounds, &
mb->mv, &near_mv[CNT_ZERO + (cnt[CNT_NEAREST] >= cnt[CNT_ZERO])]);
1187 mb->bmv[0] =
mb->mv;
1190 clamp_mv(mv_bounds, &
mb->mv, &near_mv[CNT_NEAR]);
1191 mb->bmv[0] =
mb->mv;
1194 clamp_mv(mv_bounds, &
mb->mv, &near_mv[CNT_NEAREST]);
1195 mb->bmv[0] =
mb->mv;
1200 mb->bmv[0] =
mb->mv;
1206 int mb_x,
int keyframe,
int layout)
1208 uint8_t *intra4x4 =
mb->intra4x4_pred_mode_mb;
1219 top =
mb->intra4x4_pred_mode_top;
1221 top =
s->intra4x4_pred_mode_top + 4 * mb_x;
1222 for (y = 0; y < 4; y++) {
1223 for (x = 0; x < 4; x++) {
1227 left[y] = top[x] = *intra4x4;
1233 for (
i = 0;
i < 16;
i++)
1245 static const char *
const vp7_feature_name[] = {
"q-index",
1247 "partial-golden-update",
1252 for (
i = 0;
i < 4;
i++) {
1253 if (
s->feature_enabled[
i]) {
1256 s->feature_index_prob[
i]);
1258 "Feature %s present in macroblock (value 0x%x)\n",
1259 vp7_feature_name[
i],
s->feature_value[
i][
index]);
1263 }
else if (
s->segmentation.update_map) {
1266 }
else if (
s->segmentation.enabled)
1299 s->ref_count[
mb->ref_frame - 1]++;
1334 int i,
uint8_t *token_prob, int16_t qmul[2],
1335 const uint8_t scan[16],
int vp7)
1349 token_prob = probs[
i][0];
1357 token_prob = probs[
i + 1][1];
1377 int cat = (
a << 1) +
b;
1382 token_prob = probs[
i + 1][2];
1422 token_prob, qmul, scan,
IS_VP7);
1425 #ifndef vp8_decode_block_coeffs_internal
1453 int i,
int zero_nhood, int16_t qmul[2],
1454 const uint8_t scan[16],
int vp7)
1456 uint8_t *token_prob = probs[
i][zero_nhood];
1460 token_prob, qmul, scan)
1470 int i, x, y, luma_start = 0, luma_ctx = 3;
1471 int nnz_pred, nnz, nnz_total = 0;
1476 nnz_pred = t_nnz[8] + l_nnz[8];
1480 nnz_pred,
s->qmat[
segment].luma_dc_qmul,
1482 l_nnz[8] = t_nnz[8] = !!nnz;
1486 s->inter_dc_pred[
mb->ref_frame - 1]);
1493 s->vp8dsp.vp8_luma_dc_wht_dc(
td->block,
td->block_dc);
1495 s->vp8dsp.vp8_luma_dc_wht(
td->block,
td->block_dc);
1502 for (y = 0; y < 4; y++)
1503 for (x = 0; x < 4; x++) {
1504 nnz_pred = l_nnz[y] + t_nnz[x];
1506 s->prob->token[luma_ctx],
1507 luma_start, nnz_pred,
1509 s->prob[0].scan, is_vp7);
1512 td->non_zero_count_cache[y][x] = nnz + block_dc;
1513 t_nnz[x] = l_nnz[y] = !!nnz;
1520 for (
i = 4;
i < 6;
i++)
1521 for (y = 0; y < 2; y++)
1522 for (x = 0; x < 2; x++) {
1523 nnz_pred = l_nnz[
i + 2 * y] + t_nnz[
i + 2 * x];
1525 s->prob->token[2], 0, nnz_pred,
1527 s->prob[0].scan, is_vp7);
1528 td->non_zero_count_cache[
i][(y << 1) + x] = nnz;
1529 t_nnz[
i + 2 * x] = l_nnz[
i + 2 * y] = !!nnz;
1543 ptrdiff_t linesize, ptrdiff_t uvlinesize,
int simple)
1545 AV_COPY128(top_border, src_y + 15 * linesize);
1547 AV_COPY64(top_border + 16, src_cb + 7 * uvlinesize);
1548 AV_COPY64(top_border + 24, src_cr + 7 * uvlinesize);
1554 uint8_t *src_cr, ptrdiff_t linesize, ptrdiff_t uvlinesize,
int mb_x,
1555 int mb_y,
int mb_width,
int simple,
int xchg)
1557 uint8_t *top_border_m1 = top_border - 32;
1559 src_cb -= uvlinesize;
1560 src_cr -= uvlinesize;
1562 #define XCHG(a, b, xchg) \
1570 XCHG(top_border_m1 + 8, src_y - 8, xchg);
1571 XCHG(top_border, src_y, xchg);
1572 XCHG(top_border + 8, src_y + 8, 1);
1573 if (mb_x < mb_width - 1)
1574 XCHG(top_border + 32, src_y + 16, 1);
1578 if (!simple || !mb_y) {
1579 XCHG(top_border_m1 + 16, src_cb - 8, xchg);
1580 XCHG(top_border_m1 + 24, src_cr - 8, xchg);
1581 XCHG(top_border + 16, src_cb, 1);
1582 XCHG(top_border + 24, src_cr, 1);
1632 int *copy_buf,
int vp7)
1636 if (!mb_x && mb_y) {
1670 int x, y,
mode, nnz;
1675 if (mb_y && (
s->deblock_filter || !mb_y) &&
td->thread_nr == 0)
1677 s->linesize,
s->uvlinesize, mb_x, mb_y,
s->mb_width,
1678 s->filter.simple, 1);
1682 s->hpc.pred16x16[
mode](dst[0],
s->linesize);
1685 uint8_t *intra4x4 =
mb->intra4x4_pred_mode_mb;
1686 const uint8_t lo = is_vp7 ? 128 : 127;
1687 const uint8_t hi = is_vp7 ? 128 : 129;
1688 uint8_t tr_top[4] = { lo, lo, lo, lo };
1692 uint8_t *tr_right = ptr -
s->linesize + 16;
1696 if (mb_y && mb_x ==
s->mb_width - 1) {
1697 tr = tr_right[-1] * 0x01010101
u;
1704 for (y = 0; y < 4; y++) {
1705 uint8_t *topright = ptr + 4 -
s->linesize;
1706 for (x = 0; x < 4; x++) {
1708 ptrdiff_t linesize =
s->linesize;
1712 if ((y == 0 || x == 3) && mb_y == 0) {
1715 topright = tr_right;
1718 mb_y + y, &
copy, is_vp7);
1720 dst = copy_dst + 12;
1724 AV_WN32A(copy_dst + 4, lo * 0x01010101U);
1726 AV_COPY32(copy_dst + 4, ptr + 4 * x -
s->linesize);
1730 copy_dst[3] = ptr[4 * x -
s->linesize - 1];
1739 copy_dst[11] = ptr[4 * x - 1];
1740 copy_dst[19] = ptr[4 * x +
s->linesize - 1];
1741 copy_dst[27] = ptr[4 * x +
s->linesize * 2 - 1];
1742 copy_dst[35] = ptr[4 * x +
s->linesize * 3 - 1];
1745 s->hpc.pred4x4[
mode](dst, topright, linesize);
1748 AV_COPY32(ptr + 4 * x +
s->linesize, copy_dst + 20);
1749 AV_COPY32(ptr + 4 * x +
s->linesize * 2, copy_dst + 28);
1750 AV_COPY32(ptr + 4 * x +
s->linesize * 3, copy_dst + 36);
1753 nnz =
td->non_zero_count_cache[y][x];
1756 s->vp8dsp.vp8_idct_dc_add(ptr + 4 * x,
1757 td->block[y][x],
s->linesize);
1759 s->vp8dsp.vp8_idct_add(ptr + 4 * x,
1760 td->block[y][x],
s->linesize);
1765 ptr += 4 *
s->linesize;
1771 mb_x, mb_y, is_vp7);
1772 s->hpc.pred8x8[
mode](dst[1],
s->uvlinesize);
1773 s->hpc.pred8x8[
mode](dst[2],
s->uvlinesize);
1775 if (mb_y && (
s->deblock_filter || !mb_y) &&
td->thread_nr == 0)
1777 s->linesize,
s->uvlinesize, mb_x, mb_y,
s->mb_width,
1778 s->filter.simple, 0);
1782 { 0, 1, 2, 1, 2, 1, 2, 1 },
1784 { 0, 3, 5, 3, 5, 3, 5, 3 },
1785 { 0, 2, 3, 2, 3, 2, 3, 2 },
1807 int x_off,
int y_off,
int block_w,
int block_h,
1814 ptrdiff_t src_linesize = linesize;
1819 x_off +=
mv->x >> 2;
1820 y_off +=
mv->y >> 2;
1824 src += y_off * linesize + x_off;
1827 s->vdsp.emulated_edge_mc(
td->edge_emu_buffer,
1828 src - my_idx * linesize - mx_idx,
1832 x_off - mx_idx, y_off - my_idx,
1837 mc_func[my_idx][mx_idx](dst, linesize,
src, src_linesize, block_h, mx, my);
1840 mc_func[0][0](dst, linesize,
src + y_off * linesize + x_off,
1841 linesize, block_h, 0, 0);
1865 int x_off,
int y_off,
int block_w,
int block_h,
1875 x_off +=
mv->x >> 3;
1876 y_off +=
mv->y >> 3;
1879 src1 += y_off * linesize + x_off;
1880 src2 += y_off * linesize + x_off;
1884 s->vdsp.emulated_edge_mc(
td->edge_emu_buffer,
1885 src1 - my_idx * linesize - mx_idx,
1893 s->vdsp.emulated_edge_mc(
td->edge_emu_buffer,
1894 src2 - my_idx * linesize - mx_idx,
1900 mc_func[my_idx][mx_idx](dst2, linesize, src2,
EDGE_EMU_LINESIZE, block_h, mx, my);
1902 mc_func[my_idx][mx_idx](dst1, linesize,
src1, linesize, block_h, mx, my);
1903 mc_func[my_idx][mx_idx](dst2, linesize, src2, linesize, block_h, mx, my);
1907 mc_func[0][0](dst1, linesize,
src1 + y_off * linesize + x_off, linesize, block_h, 0, 0);
1908 mc_func[0][0](dst2, linesize, src2 + y_off * linesize + x_off, linesize, block_h, 0, 0);
1915 int bx_off,
int by_off,
int block_w,
int block_h,
1922 ref_frame,
mv, x_off + bx_off, y_off + by_off,
1924 s->put_pixels_tab[block_w == 8]);
1927 if (
s->profile == 3) {
1942 dst[2] + by_off *
s->uvlinesize + bx_off, ref_frame,
1943 &uvmv, x_off + bx_off, y_off + by_off,
1945 s->put_pixels_tab[1 + (block_w == 4)]);
1955 if (
s->ref_count[
ref - 1] > (mb_xy >> 5)) {
1956 int x_off = mb_x << 4, y_off = mb_y << 4;
1957 int mx = (
mb->mv.x >> 2) + x_off + 8;
1958 int my = (
mb->mv.y >> 2) + y_off;
1960 int off = mx + (my + (mb_x & 3) * 4) *
s->linesize + 64;
1964 s->vdsp.prefetch(
src[0] + off,
s->linesize, 4);
1965 off = (mx >> 1) + ((my >> 1) + (mb_x & 7)) *
s->uvlinesize + 64;
1966 s->vdsp.prefetch(
src[1] + off,
src[2] -
src[1], 2);
1977 int x_off = mb_x << 4, y_off = mb_y << 4;
1982 switch (
mb->partitioning) {
1992 for (y = 0; y < 4; y++) {
1993 for (x = 0; x < 4; x++) {
1995 ref, &bmv[4 * y + x],
1996 4 * x + x_off, 4 * y + y_off, 4, 4,
1998 s->put_pixels_tab[2]);
2007 for (y = 0; y < 2; y++) {
2008 for (x = 0; x < 2; x++) {
2009 uvmv.
x =
mb->bmv[2 * y * 4 + 2 * x ].x +
2010 mb->bmv[2 * y * 4 + 2 * x + 1].x +
2011 mb->bmv[(2 * y + 1) * 4 + 2 * x ].x +
2012 mb->bmv[(2 * y + 1) * 4 + 2 * x + 1].x;
2013 uvmv.
y =
mb->bmv[2 * y * 4 + 2 * x ].y +
2014 mb->bmv[2 * y * 4 + 2 * x + 1].y +
2015 mb->bmv[(2 * y + 1) * 4 + 2 * x ].y +
2016 mb->bmv[(2 * y + 1) * 4 + 2 * x + 1].y;
2019 if (
s->profile == 3) {
2024 dst[2] + 4 * y *
s->uvlinesize + x * 4,
ref,
2025 &uvmv, 4 * x + x_off, 4 * y + y_off, 4, 4,
2027 s->put_pixels_tab[2]);
2064 for (y = 0; y < 4; y++) {
2065 uint32_t nnz4 =
AV_RL32(
td->non_zero_count_cache[y]);
2067 if (nnz4 & ~0x01010101) {
2068 for (x = 0; x < 4; x++) {
2070 s->vp8dsp.vp8_idct_dc_add(y_dst + 4 * x,
2074 s->vp8dsp.vp8_idct_add(y_dst + 4 * x,
2082 s->vp8dsp.vp8_idct_dc_add4y(y_dst,
td->block[y],
s->linesize);
2085 y_dst += 4 *
s->linesize;
2089 for (ch = 0; ch < 2; ch++) {
2090 uint32_t nnz4 =
AV_RL32(
td->non_zero_count_cache[4 + ch]);
2092 uint8_t *ch_dst = dst[1 + ch];
2093 if (nnz4 & ~0x01010101) {
2094 for (y = 0; y < 2; y++) {
2095 for (x = 0; x < 2; x++) {
2097 s->vp8dsp.vp8_idct_dc_add(ch_dst + 4 * x,
2098 td->block[4 + ch][(y << 1) + x],
2101 s->vp8dsp.vp8_idct_add(ch_dst + 4 * x,
2102 td->block[4 + ch][(y << 1) + x],
2106 goto chroma_idct_end;
2108 ch_dst += 4 *
s->uvlinesize;
2111 s->vp8dsp.vp8_idct_dc_add4uv(ch_dst,
td->block[4 + ch],
s->uvlinesize);
2123 int interior_limit, filter_level;
2125 if (
s->segmentation.enabled) {
2126 filter_level =
s->segmentation.filter_level[
mb->segment];
2127 if (!
s->segmentation.absolute_vals)
2128 filter_level +=
s->filter.level;
2130 filter_level =
s->filter.level;
2132 if (
s->lf_delta.enabled) {
2133 filter_level +=
s->lf_delta.ref[
mb->ref_frame];
2134 filter_level +=
s->lf_delta.mode[
mb->mode];
2137 filter_level = av_clip_uintp2(filter_level, 6);
2139 interior_limit = filter_level;
2140 if (
s->filter.sharpness) {
2141 interior_limit >>= (
s->filter.sharpness + 3) >> 2;
2142 interior_limit =
FFMIN(interior_limit, 9 -
s->filter.sharpness);
2144 interior_limit =
FFMAX(interior_limit, 1);
2146 f->filter_level = filter_level;
2147 f->inner_limit = interior_limit;
2148 f->inner_filter = is_vp7 || !
mb->skip ||
mb->mode ==
MODE_I4x4 ||
2154 int mb_x,
int mb_y,
int is_vp7)
2156 int mbedge_lim, bedge_lim_y, bedge_lim_uv, hev_thresh;
2157 int filter_level =
f->filter_level;
2158 int inner_limit =
f->inner_limit;
2159 int inner_filter =
f->inner_filter;
2160 ptrdiff_t linesize =
s->linesize;
2161 ptrdiff_t uvlinesize =
s->uvlinesize;
2162 static const uint8_t hev_thresh_lut[2][64] = {
2163 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
2164 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2165 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
2167 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
2168 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
2169 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2177 bedge_lim_y = filter_level;
2178 bedge_lim_uv = filter_level * 2;
2179 mbedge_lim = filter_level + 2;
2182 bedge_lim_uv = filter_level * 2 + inner_limit;
2183 mbedge_lim = bedge_lim_y + 4;
2186 hev_thresh = hev_thresh_lut[
s->keyframe][filter_level];
2189 s->vp8dsp.vp8_h_loop_filter16y(dst[0], linesize,
2190 mbedge_lim, inner_limit, hev_thresh);
2191 s->vp8dsp.vp8_h_loop_filter8uv(dst[1], dst[2], uvlinesize,
2192 mbedge_lim, inner_limit, hev_thresh);
2195 #define H_LOOP_FILTER_16Y_INNER(cond) \
2196 if (cond && inner_filter) { \
2197 s->vp8dsp.vp8_h_loop_filter16y_inner(dst[0] + 4, linesize, \
2198 bedge_lim_y, inner_limit, \
2200 s->vp8dsp.vp8_h_loop_filter16y_inner(dst[0] + 8, linesize, \
2201 bedge_lim_y, inner_limit, \
2203 s->vp8dsp.vp8_h_loop_filter16y_inner(dst[0] + 12, linesize, \
2204 bedge_lim_y, inner_limit, \
2206 s->vp8dsp.vp8_h_loop_filter8uv_inner(dst[1] + 4, dst[2] + 4, \
2207 uvlinesize, bedge_lim_uv, \
2208 inner_limit, hev_thresh); \
2214 s->vp8dsp.vp8_v_loop_filter16y(dst[0], linesize,
2215 mbedge_lim, inner_limit, hev_thresh);
2216 s->vp8dsp.vp8_v_loop_filter8uv(dst[1], dst[2], uvlinesize,
2217 mbedge_lim, inner_limit, hev_thresh);
2221 s->vp8dsp.vp8_v_loop_filter16y_inner(dst[0] + 4 * linesize,
2222 linesize, bedge_lim_y,
2223 inner_limit, hev_thresh);
2224 s->vp8dsp.vp8_v_loop_filter16y_inner(dst[0] + 8 * linesize,
2225 linesize, bedge_lim_y,
2226 inner_limit, hev_thresh);
2227 s->vp8dsp.vp8_v_loop_filter16y_inner(dst[0] + 12 * linesize,
2228 linesize, bedge_lim_y,
2229 inner_limit, hev_thresh);
2230 s->vp8dsp.vp8_v_loop_filter8uv_inner(dst[1] + 4 * uvlinesize,
2231 dst[2] + 4 * uvlinesize,
2232 uvlinesize, bedge_lim_uv,
2233 inner_limit, hev_thresh);
2243 int mbedge_lim, bedge_lim;
2244 int filter_level =
f->filter_level;
2245 int inner_limit =
f->inner_limit;
2246 int inner_filter =
f->inner_filter;
2247 ptrdiff_t linesize =
s->linesize;
2252 bedge_lim = 2 * filter_level + inner_limit;
2253 mbedge_lim = bedge_lim + 4;
2256 s->vp8dsp.vp8_h_loop_filter_simple(dst, linesize, mbedge_lim);
2258 s->vp8dsp.vp8_h_loop_filter_simple(dst + 4, linesize, bedge_lim);
2259 s->vp8dsp.vp8_h_loop_filter_simple(dst + 8, linesize, bedge_lim);
2260 s->vp8dsp.vp8_h_loop_filter_simple(dst + 12, linesize, bedge_lim);
2264 s->vp8dsp.vp8_v_loop_filter_simple(dst, linesize, mbedge_lim);
2266 s->vp8dsp.vp8_v_loop_filter_simple(dst + 4 * linesize, linesize, bedge_lim);
2267 s->vp8dsp.vp8_v_loop_filter_simple(dst + 8 * linesize, linesize, bedge_lim);
2268 s->vp8dsp.vp8_v_loop_filter_simple(dst + 12 * linesize, linesize, bedge_lim);
2272 #define MARGIN (16 << 2)
2280 s->mv_bounds.mv_min.y = -
MARGIN;
2281 s->mv_bounds.mv_max.y = ((
s->mb_height - 1) << 6) +
MARGIN;
2282 for (mb_y = 0; mb_y <
s->mb_height; mb_y++) {
2284 ((
s->mb_width + 1) * (mb_y + 1) + 1);
2285 int mb_xy = mb_y *
s->mb_width;
2289 s->mv_bounds.mv_min.x = -
MARGIN;
2290 s->mv_bounds.mv_max.x = ((
s->mb_width - 1) << 6) +
MARGIN;
2292 for (mb_x = 0; mb_x <
s->mb_width; mb_x++, mb_xy++,
mb++) {
2297 AV_WN32A((
mb -
s->mb_width - 1)->intra4x4_pred_mode_top,
2300 prev_frame && prev_frame->
seg_map ?
2302 s->mv_bounds.mv_min.x -= 64;
2303 s->mv_bounds.mv_max.x -= 64;
2305 s->mv_bounds.mv_min.y -= 64;
2306 s->mv_bounds.mv_max.y -= 64;
2324 #define check_thread_pos(td, otd, mb_x_check, mb_y_check) \
2326 int tmp = (mb_y_check << 16) | (mb_x_check & 0xFFFF); \
2327 if (atomic_load(&otd->thread_mb_pos) < tmp) { \
2328 pthread_mutex_lock(&otd->lock); \
2329 atomic_store(&td->wait_mb_pos, tmp); \
2331 if (atomic_load(&otd->thread_mb_pos) >= tmp) \
2333 pthread_cond_wait(&otd->cond, &otd->lock); \
2335 atomic_store(&td->wait_mb_pos, INT_MAX); \
2336 pthread_mutex_unlock(&otd->lock); \
2340 #define update_pos(td, mb_y, mb_x) \
2342 int pos = (mb_y << 16) | (mb_x & 0xFFFF); \
2343 int sliced_threading = (avctx->active_thread_type == FF_THREAD_SLICE) && \
2345 int is_null = !next_td || !prev_td; \
2346 int pos_check = (is_null) ? 1 : \
2347 (next_td != td && pos >= atomic_load(&next_td->wait_mb_pos)) || \
2348 (prev_td != td && pos >= atomic_load(&prev_td->wait_mb_pos)); \
2349 atomic_store(&td->thread_mb_pos, pos); \
2350 if (sliced_threading && pos_check) { \
2351 pthread_mutex_lock(&td->lock); \
2352 pthread_cond_broadcast(&td->cond); \
2353 pthread_mutex_unlock(&td->lock); \
2357 #define check_thread_pos(td, otd, mb_x_check, mb_y_check) while(0)
2358 #define update_pos(td, mb_y, mb_x) while(0)
2362 int jobnr,
int threadnr,
int is_vp7)
2367 int mb_x, mb_xy = mb_y *
s->mb_width;
2368 int num_jobs =
s->num_jobs;
2369 VP8Frame *curframe =
s->curframe, *prev_frame =
s->prev_frame;
2373 curframe->
tf.
f->
data[0] + 16 * mb_y *
s->linesize,
2374 curframe->
tf.
f->
data[1] + 8 * mb_y *
s->uvlinesize,
2375 curframe->
tf.
f->
data[2] + 8 * mb_y *
s->uvlinesize
2384 prev_td = &
s->thread_data[(jobnr + num_jobs - 1) % num_jobs];
2385 if (mb_y ==
s->mb_height - 1)
2388 next_td = &
s->thread_data[(jobnr + 1) % num_jobs];
2389 if (
s->mb_layout == 1)
2390 mb =
s->macroblocks_base + ((
s->mb_width + 1) * (mb_y + 1) + 1);
2394 if (prev_frame &&
s->segmentation.enabled &&
2395 !
s->segmentation.update_map)
2397 mb =
s->macroblocks + (
s->mb_height - mb_y - 1) * 2;
2398 memset(
mb - 1, 0,
sizeof(*
mb));
2402 if (!is_vp7 || mb_y == 0)
2403 memset(
td->left_nnz, 0,
sizeof(
td->left_nnz));
2406 td->mv_bounds.mv_max.x = ((
s->mb_width - 1) << 6) +
MARGIN;
2408 for (mb_x = 0; mb_x <
s->mb_width; mb_x++, mb_xy++,
mb++) {
2412 if (prev_td !=
td) {
2413 if (threadnr != 0) {
2415 mb_x + (is_vp7 ? 2 : 1),
2416 mb_y - (is_vp7 ? 2 : 1));
2419 mb_x + (is_vp7 ? 2 : 1) +
s->mb_width + 3,
2420 mb_y - (is_vp7 ? 2 : 1));
2424 s->vdsp.prefetch(dst[0] + (mb_x & 3) * 4 *
s->linesize + 64,
2426 s->vdsp.prefetch(dst[1] + (mb_x & 7) *
s->uvlinesize + 64,
2427 dst[2] - dst[1], 2);
2431 prev_frame && prev_frame->seg_map ?
2432 prev_frame->seg_map->data + mb_xy :
NULL, 0, is_vp7);
2455 td->left_nnz[8] = 0;
2456 s->top_nnz[mb_x][8] = 0;
2460 if (
s->deblock_filter)
2463 if (
s->deblock_filter && num_jobs != 1 && threadnr == num_jobs - 1) {
2464 if (
s->filter.simple)
2469 dst[1], dst[2],
s->linesize,
s->uvlinesize, 0);
2477 td->mv_bounds.mv_min.x -= 64;
2478 td->mv_bounds.mv_max.x -= 64;
2480 if (mb_x ==
s->mb_width + 1) {
2490 int jobnr,
int threadnr)
2496 int jobnr,
int threadnr)
2502 int jobnr,
int threadnr,
int is_vp7)
2506 int mb_x, mb_y =
atomic_load(&
td->thread_mb_pos) >> 16, num_jobs =
s->num_jobs;
2507 AVFrame *curframe =
s->curframe->tf.f;
2511 curframe->
data[0] + 16 * mb_y *
s->linesize,
2512 curframe->
data[1] + 8 * mb_y *
s->uvlinesize,
2513 curframe->
data[2] + 8 * mb_y *
s->uvlinesize
2516 if (
s->mb_layout == 1)
2517 mb =
s->macroblocks_base + ((
s->mb_width + 1) * (mb_y + 1) + 1);
2519 mb =
s->macroblocks + (
s->mb_height - mb_y - 1) * 2;
2524 prev_td = &
s->thread_data[(jobnr + num_jobs - 1) % num_jobs];
2525 if (mb_y ==
s->mb_height - 1)
2528 next_td = &
s->thread_data[(jobnr + 1) % num_jobs];
2530 for (mb_x = 0; mb_x <
s->mb_width; mb_x++,
mb++) {
2534 (mb_x + 1) + (
s->mb_width + 3), mb_y - 1);
2536 if (next_td != &
s->thread_data[0])
2539 if (num_jobs == 1) {
2540 if (
s->filter.simple)
2545 dst[1], dst[2],
s->linesize,
s->uvlinesize, 0);
2548 if (
s->filter.simple)
2561 int jobnr,
int threadnr)
2567 int jobnr,
int threadnr)
2574 int threadnr,
int is_vp7)
2580 int mb_y, num_jobs =
s->num_jobs;
2583 td->thread_nr = threadnr;
2584 td->mv_bounds.mv_min.y = -
MARGIN - 64 * threadnr;
2585 td->mv_bounds.mv_max.y = ((
s->mb_height - 1) << 6) +
MARGIN - 64 * threadnr;
2586 for (mb_y = jobnr; mb_y <
s->mb_height; mb_y += num_jobs) {
2588 ret =
s->decode_mb_row_no_filter(avctx, tdata, jobnr, threadnr);
2593 if (
s->deblock_filter)
2594 s->filter_mb_row(avctx, tdata, jobnr, threadnr);
2597 td->mv_bounds.mv_min.y -= 64 * num_jobs;
2598 td->mv_bounds.mv_max.y -= 64 * num_jobs;
2608 int jobnr,
int threadnr)
2614 int jobnr,
int threadnr)
2624 int ret,
i, referenced, num_jobs;
2636 if (
s->actually_webp) {
2640 if (
s->pix_fmt < 0) {
2658 memcpy(&
s->next_framep[0], &
s->framep[0],
sizeof(
s->framep[0]) * 4);
2664 for (
i = 0;
i < 5;
i++)
2665 if (
s->frames[
i].tf.f->buf[0] &&
2666 &
s->frames[
i] != prev_frame &&
2689 "Discarding interframe without a prior keyframe!\n");
2694 curframe->tf.f->key_frame =
s->keyframe;
2735 s->linesize = curframe->tf.f->linesize[0];
2736 s->uvlinesize = curframe->tf.f->linesize[1];
2738 memset(
s->top_nnz, 0,
s->mb_width *
sizeof(*
s->top_nnz));
2742 memset(
s->macroblocks +
s->mb_height * 2 - 1, 0,
2743 (
s->mb_width + 1) *
sizeof(*
s->macroblocks));
2744 if (!
s->mb_layout &&
s->keyframe)
2745 memset(
s->intra4x4_pred_mode_top,
DC_PRED,
s->mb_width * 4);
2747 memset(
s->ref_count, 0,
sizeof(
s->ref_count));
2749 if (
s->mb_layout == 1) {
2752 if (prev_frame &&
s->segmentation.enabled &&
2753 !
s->segmentation.update_map)
2767 s->num_jobs = num_jobs;
2768 s->curframe = curframe;
2769 s->prev_frame = prev_frame;
2770 s->mv_bounds.mv_min.y = -
MARGIN;
2771 s->mv_bounds.mv_max.y = ((
s->mb_height - 1) << 6) +
MARGIN;
2786 memcpy(&
s->framep[0], &
s->next_framep[0],
sizeof(
s->framep[0]) * 4);
2791 if (!
s->update_probabilities)
2792 s->prob[0] =
s->prob[1];
2794 if (!
s->invisible) {
2802 memcpy(&
s->next_framep[0], &
s->framep[0],
sizeof(
s->framep[0]) * 4);
2812 #if CONFIG_VP7_DECODER
2840 if (!
s->frames[
i].tf.f)
2860 if (CONFIG_VP7_DECODER && is_vp7) {
2865 }
else if (CONFIG_VP8_DECODER && !is_vp7) {
2883 #if CONFIG_VP7_DECODER
2895 #if CONFIG_VP8_DECODER
2897 #define REBASE(pic) ((pic) ? (pic) - &s_src->frames[0] + &s->frames[0] : NULL)
2905 if (
s->macroblocks_base &&
2906 (s_src->mb_width !=
s->mb_width || s_src->mb_height !=
s->mb_height)) {
2908 s->mb_width = s_src->mb_width;
2909 s->mb_height = s_src->mb_height;
2912 s->pix_fmt = s_src->pix_fmt;
2913 s->prob[0] = s_src->prob[!s_src->update_probabilities];
2914 s->segmentation = s_src->segmentation;
2915 s->lf_delta = s_src->lf_delta;
2916 memcpy(
s->sign_bias, s_src->sign_bias,
sizeof(
s->sign_bias));
2919 if (s_src->frames[
i].tf.f->buf[0]) {
2920 int ret = vp8_ref_frame(
s, &
s->frames[
i], &s_src->frames[
i]);
2926 s->framep[0] = REBASE(s_src->next_framep[0]);
2927 s->framep[1] = REBASE(s_src->next_framep[1]);
2928 s->framep[2] = REBASE(s_src->next_framep[2]);
2929 s->framep[3] = REBASE(s_src->next_framep[3]);
2936 #if CONFIG_VP7_DECODER
2943 .
init = vp7_decode_init,
2945 .
decode = vp7_decode_frame,
2951 #if CONFIG_VP8_DECODER
2966 #if CONFIG_VP8_VAAPI_HWACCEL
2969 #if CONFIG_VP8_NVDEC_HWACCEL
static const int vp8_mode_contexts[6][4]
static const uint8_t vp8_dct_cat1_prob[]
#define VP7_MV_PRED_COUNT
const struct AVHWAccel * hwaccel
Hardware accelerator in use.
av_cold int ff_vp8_decode_free(AVCodecContext *avctx)
static const uint8_t vp7_pred4x4_mode[]
static const VP7MVPred vp7_mv_pred[VP7_MV_PRED_COUNT]
#define AV_LOG_WARNING
Something somehow does not look correct.
@ AV_PIX_FMT_CUDA
HW acceleration through CUDA.
AVPixelFormat
Pixel format.
static av_always_inline int vp8_rac_get_coeff(VP56RangeCoder *c, const uint8_t *prob)
static int vp7_calculate_mb_offset(int mb_x, int mb_y, int mb_width, int xoffset, int yoffset, int boundary, int *edge_x, int *edge_y)
The vp7 reference decoder uses a padding macroblock column (added to right edge of the frame) to guar...
#define atomic_store(object, desired)
static av_cold int init(AVCodecContext *avctx)
static void vp7_filter_mb_row(AVCodecContext *avctx, void *tdata, int jobnr, int threadnr)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
static int vp7_read_mv_component(VP56RangeCoder *c, const uint8_t *p)
enum AVColorSpace colorspace
YUV colorspace type.
static av_always_inline int vp78_decode_init(AVCodecContext *avctx, int is_vp7)
int ff_get_format(AVCodecContext *avctx, const enum AVPixelFormat *fmt)
Select the (possibly hardware accelerated) pixel format.
static av_always_inline int vpX_rac_is_end(VP56RangeCoder *c)
vp5689 returns 1 if the end of the stream has been reached, 0 otherwise.
#define FFSWAP(type, a, b)
static av_always_inline int read_mv_component(VP56RangeCoder *c, const uint8_t *p, int vp7)
Motion vector coding, 17.1.
#define u(width, name, range_min, range_max)
static av_always_inline int check_tm_pred8x8_mode(int mode, int mb_x, int mb_y, int vp7)
int(* update_thread_context)(struct AVCodecContext *dst, const struct AVCodecContext *src)
Copy necessary context variables from a previous thread context to the current one.
static const uint8_t vp8_submv_prob[5][3]
uint8_t * data
The data buffer.
static av_always_inline int pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *attr)
static const uint16_t vp7_ydc_qlookup[]
static av_always_inline void clamp_mv(VP8mvbounds *s, VP56mv *dst, const VP56mv *src)
#define HOR_VP8_PRED
unaveraged version of HOR_PRED, see
static const int8_t mv[256][2]
static av_always_inline void vp7_decode_mvs(VP8Context *s, VP8Macroblock *mb, int mb_x, int mb_y, int layout)
static const uint8_t vp7_mv_default_prob[2][17]
static av_always_inline int check_intra_pred4x4_mode_emuedge(int mode, int mb_x, int mb_y, int *copy_buf, int vp7)
const uint8_t *const ff_vp8_dct_cat_prob[]
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
static av_always_inline int check_tm_pred4x4_mode(int mode, int mb_x, int mb_y, int vp7)
static const uint16_t vp7_y2dc_qlookup[]
This structure describes decoded (raw) audio or video data.
@ AVCOL_RANGE_JPEG
the normal 2^n-1 "JPEG" YUV ranges
static av_always_inline int inter_predict_dc(int16_t block[16], int16_t pred[2])
static const VP56mv * get_bmv_ptr(const VP8Macroblock *mb, int subblock)
static void vp8_get_quants(VP8Context *s)
AVBufferRef * av_buffer_allocz(int size)
Same as av_buffer_alloc(), except the returned buffer will be initialized to zero.
static VP56Frame ref_to_update(VP8Context *s, int update, VP56Frame ref)
Determine which buffers golden and altref should be updated with after this frame.
static int vp8_decode_block_coeffs_internal(VP56RangeCoder *r, int16_t block[16], uint8_t probs[16][3][NUM_DCT_TOKENS - 1], int i, uint8_t *token_prob, int16_t qmul[2])
static av_always_inline void backup_mb_border(uint8_t *top_border, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, ptrdiff_t linesize, ptrdiff_t uvlinesize, int simple)
@ VP8_SPLITMVMODE_4x4
4x4 blocks of 4x4px each
#define VERT_VP8_PRED
for VP8, VERT_PRED is the average of
the pkt_dts and pkt_pts fields in AVFrame will work as usual Restrictions on codec whose streams don t reset across will not work because their bitstreams cannot be decoded in parallel *The contents of buffers must not be read before ff_thread_await_progress() has been called on them. reget_buffer() and buffer age optimizations no longer work. *The contents of buffers must not be written to after ff_thread_report_progress() has been called on them. This includes draw_edges(). Porting codecs to frame threading
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
static av_unused int vp8_rac_get_nn(VP56RangeCoder *c)
static int vp8_decode_mb_row_no_filter(AVCodecContext *avctx, void *tdata, int jobnr, int threadnr)
static const int8_t vp8_pred8x8c_tree[3][2]
#define bit(string, value)
#define update_pos(td, mb_y, mb_x)
static av_always_inline int update_dimensions(VP8Context *s, int width, int height, int is_vp7)
static av_always_inline int vp56_rac_get_prob_branchy(VP56RangeCoder *c, int prob)
@ AVCOL_SPC_BT470BG
also ITU-R BT601-6 625 / ITU-R BT1358 625 / ITU-R BT1700 625 PAL & SECAM / IEC 61966-2-4 xvYCC601
@ VP8_SPLITMVMODE_8x8
2x2 blocks of 8x8px each
static av_always_inline int vp8_rac_get(VP56RangeCoder *c)
const struct AVCodec * codec
static av_always_inline void filter_level_for_mb(VP8Context *s, VP8Macroblock *mb, VP8FilterStrength *f, int is_vp7)
static const uint8_t vp8_mv_update_prob[2][19]
enum AVDiscard skip_frame
Skip decoding for selected frames.
static av_always_inline void intra_predict(VP8Context *s, VP8ThreadData *td, uint8_t *dst[3], VP8Macroblock *mb, int mb_x, int mb_y, int is_vp7)
int thread_count
thread count is used to decide how many independent tasks should be passed to execute()
the pkt_dts and pkt_pts fields in AVFrame will work as usual Restrictions on codec whose streams don t reset across will not work because their bitstreams cannot be decoded in parallel *The contents of buffers must not be read before as well as code calling up to before the decode process starts Call have so the codec calls ff_thread_report set FF_CODEC_CAP_ALLOCATE_PROGRESS in AVCodec caps_internal and use ff_thread_get_buffer() to allocate frames. The frames must then be freed with ff_thread_release_buffer(). Otherwise decode directly into the user-supplied frames. Call ff_thread_report_progress() after some part of the current picture has decoded. A good place to put this is where draw_horiz_band() is called - add this if it isn 't called anywhere
static av_unused int vp8_rac_get_sint(VP56RangeCoder *c, int bits)
av_cold void ff_videodsp_init(VideoDSPContext *ctx, int bpc)
static av_always_inline void update(SilenceDetectContext *s, AVFrame *insamples, int is_silence, int current_sample, int64_t nb_samples_notify, AVRational time_base)
static av_always_inline int check_intra_pred8x8_mode_emuedge(int mode, int mb_x, int mb_y, int vp7)
static void vp8_filter_mb_row(AVCodecContext *avctx, void *tdata, int jobnr, int threadnr)
static void vp7_get_quants(VP8Context *s)
@ VP8_SPLITMVMODE_16x8
2 16x8 blocks (vertical)
static av_cold int vp8_init_frames(VP8Context *s)
AVFrame * av_frame_alloc(void)
Allocate an AVFrame and set its fields to default values.
void ff_vp7dsp_init(VP8DSPContext *c)
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
void ff_vp8dsp_init(VP8DSPContext *c)
static const uint8_t vp8_dct_cat2_prob[]
void ff_thread_report_progress(ThreadFrame *f, int n, int field)
Notify later decoding threads when part of their reference picture is ready.
static void decode(AVCodecContext *dec_ctx, AVPacket *pkt, AVFrame *frame, FILE *outfile)
static const uint8_t vp8_pred4x4_mode[]
static const uint8_t vp8_pred8x8c_prob_inter[3]
#define AV_GET_BUFFER_FLAG_REF
The decoder will keep a reference to the frame and may reuse it later.
static const int8_t vp8_pred16x16_tree_intra[4][2]
static void parse_segment_info(VP8Context *s)
static const uint8_t vp8_pred4x4_prob_inter[9]
static enum AVPixelFormat pix_fmts[]
static const uint8_t vp8_mbsplits[5][16]
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_RL16
static av_always_inline int decode_block_coeffs(VP56RangeCoder *c, int16_t block[16], uint8_t probs[16][3][NUM_DCT_TOKENS - 1], int i, int zero_nhood, int16_t qmul[2], const uint8_t scan[16], int vp7)
static const int vp7_mode_contexts[31][4]
static av_always_inline int vp78_decode_mv_mb_modes(AVCodecContext *avctx, VP8Frame *curframe, VP8Frame *prev_frame, int is_vp7)
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
#define atomic_load(object)
static int vp8_decode_mv_mb_modes(AVCodecContext *avctx, VP8Frame *cur_frame, VP8Frame *prev_frame)
@ VP8_SPLITMVMODE_8x16
2 8x16 blocks (horizontal)
static const uint8_t vp8_mv_default_prob[2][19]
static const int8_t vp8_coeff_band_indexes[8][10]
static const uint8_t vp8_pred16x16_prob_inter[4]
static void vp8_decode_flush_impl(AVCodecContext *avctx, int free_mem)
#define AV_CODEC_CAP_FRAME_THREADS
Codec supports frame-level multithreading.
@ AVDISCARD_ALL
discard all
static av_always_inline void decode_mb_coeffs(VP8Context *s, VP8ThreadData *td, VP56RangeCoder *c, VP8Macroblock *mb, uint8_t t_nnz[9], uint8_t l_nnz[9], int is_vp7)
static void flush(AVCodecContext *avctx)
static const int sizes[][2]
enum AVColorRange color_range
MPEG vs JPEG YUV range.
void av_buffer_unref(AVBufferRef **buf)
Free a given reference and automatically free the buffer if there are no more references to it.
static int vp7_decode_mb_row_sliced(AVCodecContext *avctx, void *tdata, int jobnr, int threadnr)
static int vp8_update_dimensions(VP8Context *s, int width, int height)
static int vp8_rac_get_uint(VP56RangeCoder *c, int bits)
static av_always_inline int vp8_rac_get_tree(VP56RangeCoder *c, const int8_t(*tree)[2], const uint8_t *probs)
int(* end_frame)(AVCodecContext *avctx)
Called at the end of each frame or field picture.
@ AV_PICTURE_TYPE_I
Intra.
AVBufferRef * hwaccel_priv_buf
#define check_thread_pos(td, otd, mb_x_check, mb_y_check)
static const uint16_t vp7_yac_qlookup[]
static const uint8_t vp8_token_default_probs[4][8][3][NUM_DCT_TOKENS - 1]
static av_always_inline void vp8_mc_part(VP8Context *s, VP8ThreadData *td, uint8_t *dst[3], ThreadFrame *ref_frame, int x_off, int y_off, int bx_off, int by_off, int block_w, int block_h, int width, int height, VP56mv *mv)
static av_always_inline int vp78_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *avpkt, int is_vp7)
static const uint8_t vp8_token_update_probs[4][8][3][NUM_DCT_TOKENS - 1]
#define ONLY_IF_THREADS_ENABLED(x)
Define a function with only the non-default version specified.
static const uint8_t vp8_mbsplit_count[4]
int ff_vp8_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *avpkt)
static av_always_inline int decode_mb_row_no_filter(AVCodecContext *avctx, void *tdata, int jobnr, int threadnr, int is_vp7)
static const uint8_t vp7_feature_value_size[2][4]
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
void(* vp8_mc_func)(uint8_t *dst, ptrdiff_t dstStride, uint8_t *src, ptrdiff_t srcStride, int h, int x, int y)
av_cold int ff_vp8_decode_init(AVCodecContext *avctx)
void ff_thread_release_buffer(AVCodecContext *avctx, ThreadFrame *f)
Wrapper around release_buffer() frame-for multithreaded codecs.
static const uint8_t vp8_mbfirstidx[4][16]
@ AVDISCARD_NONKEY
discard all frames except keyframes
static av_always_inline void xchg_mb_border(uint8_t *top_border, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, ptrdiff_t linesize, ptrdiff_t uvlinesize, int mb_x, int mb_y, int mb_width, int simple, int xchg)
const uint8_t ff_zigzag_scan[16+1]
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() for allocating buffers and supports custom allocators.
static const int8_t vp8_pred4x4_tree[9][2]
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled top and top right vectors is used as motion vector prediction the used motion vector is the sum of the predictor and(mvx_diff, mvy_diff) *mv_scale Intra DC Prediction block[y][x] dc[1]
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
static void copy(const float *p1, float *p2, const int length)
int av_frame_ref(AVFrame *dst, const AVFrame *src)
Set up a new reference to the data described by the source frame.
static const uint8_t vp8_coeff_band[16]
static const uint8_t subpel_idx[3][8]
static av_always_inline void vp8_mc_chroma(VP8Context *s, VP8ThreadData *td, uint8_t *dst1, uint8_t *dst2, ThreadFrame *ref, const VP56mv *mv, int x_off, int y_off, int block_w, int block_h, int width, int height, ptrdiff_t linesize, vp8_mc_func mc_func[3][3])
chroma MC function
static int vp7_update_dimensions(VP8Context *s, int width, int height)
#define EDGE_EMU_LINESIZE
static av_always_inline void filter_mb(VP8Context *s, uint8_t *dst[3], VP8FilterStrength *f, int mb_x, int mb_y, int is_vp7)
static void vp8_release_frame(VP8Context *s, VP8Frame *f)
static av_always_inline void decode_mb_mode(VP8Context *s, VP8mvbounds *mv_bounds, VP8Macroblock *mb, int mb_x, int mb_y, uint8_t *segment, uint8_t *ref, int layout, int is_vp7)
static void free_buffers(VP8Context *s)
static int vp7_decode_mv_mb_modes(AVCodecContext *avctx, VP8Frame *cur_frame, VP8Frame *prev_frame)
#define FF_THREAD_SLICE
Decode more than one part of a single frame at once.
static const uint8_t vp8_pred8x8c_prob_intra[3]
static int vp8_read_mv_component(VP56RangeCoder *c, const uint8_t *p)
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_RL24
static av_always_inline void vp8_decode_mvs(VP8Context *s, VP8mvbounds *mv_bounds, VP8Macroblock *mb, int mb_x, int mb_y, int layout)
static const uint8_t vp8_pred4x4_prob_intra[10][10][9]
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
#define AV_CODEC_CAP_SLICE_THREADS
Codec supports slice-based (or partition-based) multithreading.
static int vp8_decode_frame_header(VP8Context *s, const uint8_t *buf, int buf_size)
static const uint8_t vp8_mbsplit_prob[3]
static int setup_partitions(VP8Context *s, const uint8_t *buf, int buf_size)
static const int8_t vp8_pred16x16_tree_inter[4][2]
int ff_vp56_init_range_decoder(VP56RangeCoder *c, const uint8_t *buf, int buf_size)
static const int8_t vp7_feature_index_tree[4][2]
enum AVDiscard skip_loop_filter
Skip loop filtering for selected frames.
#define HWACCEL_NVDEC(codec)
static av_always_inline int pthread_cond_destroy(pthread_cond_t *cond)
#define FF_THREAD_FRAME
Decode more than one frame at once.
#define H_LOOP_FILTER_16Y_INNER(cond)
static av_always_inline int vp78_decode_mb_row_sliced(AVCodecContext *avctx, void *tdata, int jobnr, int threadnr, int is_vp7)
static av_always_inline int pthread_mutex_destroy(pthread_mutex_t *mutex)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel layout
static av_always_inline void idct_mb(VP8Context *s, VP8ThreadData *td, uint8_t *dst[3], VP8Macroblock *mb)
static av_always_inline int decode_block_coeffs_internal(VP56RangeCoder *r, int16_t block[16], uint8_t probs[16][3][NUM_DCT_TOKENS - 1], int i, uint8_t *token_prob, int16_t qmul[2], const uint8_t scan[16], int vp7)
#define i(width, name, range_min, range_max)
int(* decode_slice)(AVCodecContext *avctx, const uint8_t *buf, uint32_t buf_size)
Callback for each slice.
static const SiprModeParam modes[MODE_COUNT]
static av_always_inline void decode_intra4x4_modes(VP8Context *s, VP56RangeCoder *c, VP8Macroblock *mb, int mb_x, int keyframe, int layout)
static int vp7_fade_frame(VP8Context *s, int alpha, int beta)
static av_always_inline void prefetch_motion(VP8Context *s, VP8Macroblock *mb, int mb_x, int mb_y, int mb_xy, int ref)
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
const char * name
Name of the codec implementation.
the pkt_dts and pkt_pts fields in AVFrame will work as usual Restrictions on codec whose streams don t reset across will not work because their bitstreams cannot be decoded in parallel *The contents of buffers must not be read before as well as code calling up to before the decode process starts Call have update_thread_context() run it in the next thread. Add AV_CODEC_CAP_FRAME_THREADS to the codec capabilities. There will be very little speed gain at this point but it should work. If there are inter-frame dependencies
static void vp78_reset_probability_tables(VP8Context *s)
static int vp7_decode_frame_header(VP8Context *s, const uint8_t *buf, int buf_size)
static void fade(uint8_t *dst, ptrdiff_t dst_linesize, const uint8_t *src, ptrdiff_t src_linesize, int width, int height, int alpha, int beta)
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
@ AVCOL_RANGE_MPEG
the normal 219*2^(n-8) "MPEG" YUV ranges
static int vp8_decode_mb_row_sliced(AVCodecContext *avctx, void *tdata, int jobnr, int threadnr)
@ VP8_SPLITMVMODE_NONE
(only used in prediction) no split MVs
static int vp7_decode_block_coeffs_internal(VP56RangeCoder *r, int16_t block[16], uint8_t probs[16][3][NUM_DCT_TOKENS - 1], int i, uint8_t *token_prob, int16_t qmul[2], const uint8_t scan[16])
#define AV_LOG_FATAL
Something went wrong and recovery is not possible.
static av_always_inline int check_dc_pred8x8_mode(int mode, int mb_x, int mb_y)
static const float pred[4]
static int vp7_decode_mb_row_no_filter(AVCodecContext *avctx, void *tdata, int jobnr, int threadnr)
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
static const uint8_t vp8_pred16x16_prob_intra[4]
static const uint16_t vp8_ac_qlookup[VP8_MAX_QUANT+1]
#define prob(name, subs,...)
the pkt_dts and pkt_pts fields in AVFrame will work as usual Restrictions on codec whose streams don t reset across will not work because their bitstreams cannot be decoded in parallel *The contents of buffers must not be read before as well as code calling up to before the decode process starts Call ff_thread_finish_setup() afterwards. If some code can 't be moved
static av_always_inline void inter_predict(VP8Context *s, VP8ThreadData *td, uint8_t *dst[3], VP8Macroblock *mb, int mb_x, int mb_y)
Apply motion vectors to prediction buffer, chapter 18.
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled left
#define FF_ARRAY_ELEMS(a)
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_RL32
static av_always_inline int decode_splitmvs(VP8Context *s, VP56RangeCoder *c, VP8Macroblock *mb, int layout, int is_vp7)
Split motion vector prediction, 16.4.
main external API structure.
int active_thread_type
Which multithreading methods are in use by the codec.
uint8_t intra4x4_pred_mode_top[4]
av_cold void ff_h264_pred_init(H264PredContext *h, int codec_id, const int bit_depth, int chroma_format_idc)
Set the intra prediction function pointers.
int frame_priv_data_size
Size of per-frame hardware accelerator private data.
static av_always_inline void filter_mb_simple(VP8Context *s, uint8_t *dst, VP8FilterStrength *f, int mb_x, int mb_y)
static int ref[MAX_W *MAX_W]
AVBufferRef * av_buffer_ref(AVBufferRef *buf)
Create a new reference to an AVBuffer.
int ff_thread_ref_frame(ThreadFrame *dst, ThreadFrame *src)
int(* start_frame)(AVCodecContext *avctx, const uint8_t *buf, uint32_t buf_size)
Called at the beginning of each frame or field picture.
static av_always_inline void vp8_mc_luma(VP8Context *s, VP8ThreadData *td, uint8_t *dst, ThreadFrame *ref, const VP56mv *mv, int x_off, int y_off, int block_w, int block_h, int width, int height, ptrdiff_t linesize, vp8_mc_func mc_func[3][3])
luma MC function
static void vp78_update_probability_tables(VP8Context *s)
@ AV_PICTURE_TYPE_P
Predicted.
int ff_set_dimensions(AVCodecContext *s, int width, int height)
Check that the provided frame dimensions are valid and set them on the codec context.
#define LOCAL_ALIGNED(a, t, v,...)
#define vp56_rac_get_prob
#define FF_CODEC_CAP_ALLOCATE_PROGRESS
static void vp78_update_pred16x16_pred8x8_mvc_probabilities(VP8Context *s, int mvc_size)
#define avpriv_request_sample(...)
static void update_refs(VP8Context *s)
static void update_lf_deltas(VP8Context *s)
static av_always_inline void filter_mb_row(AVCodecContext *avctx, void *tdata, int jobnr, int threadnr, int is_vp7)
static const int16_t alpha[]
This structure stores compressed data.
static enum AVPixelFormat get_pixel_format(VP8Context *s)
#define HWACCEL_VAAPI(codec)
static VP8Frame * vp8_find_free_buffer(VP8Context *s)
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
static const double coeff[2][5]
The exact code depends on how similar the blocks are and how related they are to the block
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
static void copy_chroma(AVFrame *dst, AVFrame *src, int width, int height)
static av_always_inline int pthread_cond_init(pthread_cond_t *cond, const pthread_condattr_t *attr)
static const uint16_t vp7_y2ac_qlookup[]
#define atomic_init(obj, value)
static const uint8_t vp7_submv_prob[3]
@ AVDISCARD_NONREF
discard all non reference
static av_always_inline unsigned int vp56_rac_renorm(VP56RangeCoder *c)
static const uint8_t vp8_dc_qlookup[VP8_MAX_QUANT+1]
static void vp8_decode_flush(AVCodecContext *avctx)
int(* execute2)(struct AVCodecContext *c, int(*func)(struct AVCodecContext *c2, void *arg, int jobnr, int threadnr), void *arg2, int *ret, int count)
The codec may call this to execute several independent things.
static int vp8_alloc_frame(VP8Context *s, VP8Frame *f, int ref)
static const av_always_inline uint8_t * get_submv_prob(uint32_t left, uint32_t top, int is_vp7)
av_cold void ff_vp78dsp_init(VP8DSPContext *dsp)
void * hwaccel_picture_private