FFmpeg
cavs.c
Go to the documentation of this file.
1 /*
2  * Chinese AVS video (AVS1-P2, JiZhun profile) decoder.
3  * Copyright (c) 2006 Stefan Gehrer <stefan.gehrer@gmx.de>
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * Chinese AVS video (AVS1-P2, JiZhun profile) decoder
25  * @author Stefan Gehrer <stefan.gehrer@gmx.de>
26  */
27 
28 #include "avcodec.h"
29 #include "golomb.h"
30 #include "h264chroma.h"
31 #include "idctdsp.h"
32 #include "mathops.h"
33 #include "qpeldsp.h"
34 #include "cavs.h"
35 
36 static const uint8_t alpha_tab[64] = {
37  0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3,
38  4, 4, 5, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 18, 20,
39  22, 24, 26, 28, 30, 33, 33, 35, 35, 36, 37, 37, 39, 39, 42, 44,
40  46, 48, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64
41 };
42 
43 static const uint8_t beta_tab[64] = {
44  0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2,
45  2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6,
46  6, 7, 7, 7, 8, 8, 8, 9, 9, 10, 10, 11, 11, 12, 13, 14,
47  15, 16, 17, 18, 19, 20, 21, 22, 23, 23, 24, 24, 25, 25, 26, 27
48 };
49 
50 static const uint8_t tc_tab[64] = {
51  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
52  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2,
53  2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4,
54  5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9
55 };
56 
57 /** mark block as unavailable, i.e. out of picture
58  * or not yet decoded */
59 static const cavs_vector un_mv = { 0, 0, 1, NOT_AVAIL };
60 
61 static const int8_t left_modifier_l[8] = { 0, -1, 6, -1, -1, 7, 6, 7 };
62 static const int8_t top_modifier_l[8] = { -1, 1, 5, -1, -1, 5, 7, 7 };
63 static const int8_t left_modifier_c[7] = { 5, -1, 2, -1, 6, 5, 6 };
64 static const int8_t top_modifier_c[7] = { 4, 1, -1, -1, 4, 6, 6 };
65 
66 /*****************************************************************************
67  *
68  * in-loop deblocking filter
69  *
70  ****************************************************************************/
71 
72 static inline int get_bs(cavs_vector *mvP, cavs_vector *mvQ, int b)
73 {
74  if ((mvP->ref == REF_INTRA) || (mvQ->ref == REF_INTRA))
75  return 2;
76  if((abs(mvP->x - mvQ->x) >= 4) ||
77  (abs(mvP->y - mvQ->y) >= 4) ||
78  (mvP->ref != mvQ->ref))
79  return 1;
80  if (b) {
81  mvP += MV_BWD_OFFS;
82  mvQ += MV_BWD_OFFS;
83  if((abs(mvP->x - mvQ->x) >= 4) ||
84  (abs(mvP->y - mvQ->y) >= 4) ||
85  (mvP->ref != mvQ->ref))
86  return 1;
87  }
88  return 0;
89 }
90 
91 #define SET_PARAMS \
92  alpha = alpha_tab[av_clip_uintp2(qp_avg + h->alpha_offset, 6)]; \
93  beta = beta_tab[av_clip_uintp2(qp_avg + h->beta_offset, 6)]; \
94  tc = tc_tab[av_clip_uintp2(qp_avg + h->alpha_offset, 6)];
95 
96 /**
97  * in-loop deblocking filter for a single macroblock
98  *
99  * boundary strength (bs) mapping:
100  *
101  * --4---5--
102  * 0 2 |
103  * | 6 | 7 |
104  * 1 3 |
105  * ---------
106  */
107 void ff_cavs_filter(AVSContext *h, enum cavs_mb mb_type)
108 {
109  uint8_t bs[8];
110  int qp_avg, alpha, beta, tc;
111  int i;
112 
113  /* save un-deblocked lines */
114  h->topleft_border_y = h->top_border_y[h->mbx * 16 + 15];
115  h->topleft_border_u = h->top_border_u[h->mbx * 10 + 8];
116  h->topleft_border_v = h->top_border_v[h->mbx * 10 + 8];
117  memcpy(&h->top_border_y[h->mbx * 16], h->cy + 15 * h->l_stride, 16);
118  memcpy(&h->top_border_u[h->mbx * 10 + 1], h->cu + 7 * h->c_stride, 8);
119  memcpy(&h->top_border_v[h->mbx * 10 + 1], h->cv + 7 * h->c_stride, 8);
120  for (i = 0; i < 8; i++) {
121  h->left_border_y[i * 2 + 1] = *(h->cy + 15 + (i * 2 + 0) * h->l_stride);
122  h->left_border_y[i * 2 + 2] = *(h->cy + 15 + (i * 2 + 1) * h->l_stride);
123  h->left_border_u[i + 1] = *(h->cu + 7 + i * h->c_stride);
124  h->left_border_v[i + 1] = *(h->cv + 7 + i * h->c_stride);
125  }
126  if (!h->loop_filter_disable) {
127  /* determine bs */
128  if (mb_type == I_8X8)
129  memset(bs, 2, 8);
130  else {
131  memset(bs, 0, 8);
132  if (ff_cavs_partition_flags[mb_type] & SPLITV) {
133  bs[2] = get_bs(&h->mv[MV_FWD_X0], &h->mv[MV_FWD_X1], mb_type > P_8X8);
134  bs[3] = get_bs(&h->mv[MV_FWD_X2], &h->mv[MV_FWD_X3], mb_type > P_8X8);
135  }
136  if (ff_cavs_partition_flags[mb_type] & SPLITH) {
137  bs[6] = get_bs(&h->mv[MV_FWD_X0], &h->mv[MV_FWD_X2], mb_type > P_8X8);
138  bs[7] = get_bs(&h->mv[MV_FWD_X1], &h->mv[MV_FWD_X3], mb_type > P_8X8);
139  }
140  bs[0] = get_bs(&h->mv[MV_FWD_A1], &h->mv[MV_FWD_X0], mb_type > P_8X8);
141  bs[1] = get_bs(&h->mv[MV_FWD_A3], &h->mv[MV_FWD_X2], mb_type > P_8X8);
142  bs[4] = get_bs(&h->mv[MV_FWD_B2], &h->mv[MV_FWD_X0], mb_type > P_8X8);
143  bs[5] = get_bs(&h->mv[MV_FWD_B3], &h->mv[MV_FWD_X1], mb_type > P_8X8);
144  }
145  if (AV_RN64(bs)) {
146  if (h->flags & A_AVAIL) {
147  qp_avg = (h->qp + h->left_qp + 1) >> 1;
148  SET_PARAMS;
149  h->cdsp.cavs_filter_lv(h->cy, h->l_stride, alpha, beta, tc, bs[0], bs[1]);
150  qp_avg = (ff_cavs_chroma_qp[h->qp] + ff_cavs_chroma_qp[h->left_qp] + 1) >> 1;
151  SET_PARAMS;
152  h->cdsp.cavs_filter_cv(h->cu, h->c_stride, alpha, beta, tc, bs[0], bs[1]);
153  h->cdsp.cavs_filter_cv(h->cv, h->c_stride, alpha, beta, tc, bs[0], bs[1]);
154  }
155  qp_avg = h->qp;
156  SET_PARAMS;
157  h->cdsp.cavs_filter_lv(h->cy + 8, h->l_stride, alpha, beta, tc, bs[2], bs[3]);
158  h->cdsp.cavs_filter_lh(h->cy + 8 * h->l_stride, h->l_stride, alpha, beta, tc, bs[6], bs[7]);
159 
160  if (h->flags & B_AVAIL) {
161  qp_avg = (h->qp + h->top_qp[h->mbx] + 1) >> 1;
162  SET_PARAMS;
163  h->cdsp.cavs_filter_lh(h->cy, h->l_stride, alpha, beta, tc, bs[4], bs[5]);
164  qp_avg = (ff_cavs_chroma_qp[h->qp] + ff_cavs_chroma_qp[h->top_qp[h->mbx]] + 1) >> 1;
165  SET_PARAMS;
166  h->cdsp.cavs_filter_ch(h->cu, h->c_stride, alpha, beta, tc, bs[4], bs[5]);
167  h->cdsp.cavs_filter_ch(h->cv, h->c_stride, alpha, beta, tc, bs[4], bs[5]);
168  }
169  }
170  }
171  h->left_qp = h->qp;
172  h->top_qp[h->mbx] = h->qp;
173 }
174 
175 #undef SET_PARAMS
176 
177 /*****************************************************************************
178  *
179  * spatial intra prediction
180  *
181  ****************************************************************************/
182 
184  uint8_t **left, int block)
185 {
186  int i;
187 
188  switch (block) {
189  case 0:
190  *left = h->left_border_y;
191  h->left_border_y[0] = h->left_border_y[1];
192  memset(&h->left_border_y[17], h->left_border_y[16], 9);
193  memcpy(&top[1], &h->top_border_y[h->mbx * 16], 16);
194  top[17] = top[16];
195  top[0] = top[1];
196  if ((h->flags & A_AVAIL) && (h->flags & B_AVAIL))
197  h->left_border_y[0] = top[0] = h->topleft_border_y;
198  break;
199  case 1:
200  *left = h->intern_border_y;
201  for (i = 0; i < 8; i++)
202  h->intern_border_y[i + 1] = *(h->cy + 7 + i * h->l_stride);
203  memset(&h->intern_border_y[9], h->intern_border_y[8], 9);
204  h->intern_border_y[0] = h->intern_border_y[1];
205  memcpy(&top[1], &h->top_border_y[h->mbx * 16 + 8], 8);
206  if (h->flags & C_AVAIL)
207  memcpy(&top[9], &h->top_border_y[(h->mbx + 1) * 16], 8);
208  else
209  memset(&top[9], top[8], 9);
210  top[17] = top[16];
211  top[0] = top[1];
212  if (h->flags & B_AVAIL)
213  h->intern_border_y[0] = top[0] = h->top_border_y[h->mbx * 16 + 7];
214  break;
215  case 2:
216  *left = &h->left_border_y[8];
217  memcpy(&top[1], h->cy + 7 * h->l_stride, 16);
218  top[17] = top[16];
219  top[0] = top[1];
220  if (h->flags & A_AVAIL)
221  top[0] = h->left_border_y[8];
222  break;
223  case 3:
224  *left = &h->intern_border_y[8];
225  for (i = 0; i < 8; i++)
226  h->intern_border_y[i + 9] = *(h->cy + 7 + (i + 8) * h->l_stride);
227  memset(&h->intern_border_y[17], h->intern_border_y[16], 9);
228  memcpy(&top[0], h->cy + 7 + 7 * h->l_stride, 9);
229  memset(&top[9], top[8], 9);
230  break;
231  }
232 }
233 
235 {
236  /* extend borders by one pixel */
237  h->left_border_u[9] = h->left_border_u[8];
238  h->left_border_v[9] = h->left_border_v[8];
239  if(h->flags & C_AVAIL) {
240  h->top_border_u[h->mbx*10 + 9] = h->top_border_u[h->mbx*10 + 11];
241  h->top_border_v[h->mbx*10 + 9] = h->top_border_v[h->mbx*10 + 11];
242  } else {
243  h->top_border_u[h->mbx * 10 + 9] = h->top_border_u[h->mbx * 10 + 8];
244  h->top_border_v[h->mbx * 10 + 9] = h->top_border_v[h->mbx * 10 + 8];
245  }
246  if((h->flags & A_AVAIL) && (h->flags & B_AVAIL)) {
247  h->top_border_u[h->mbx * 10] = h->left_border_u[0] = h->topleft_border_u;
248  h->top_border_v[h->mbx * 10] = h->left_border_v[0] = h->topleft_border_v;
249  } else {
250  h->left_border_u[0] = h->left_border_u[1];
251  h->left_border_v[0] = h->left_border_v[1];
252  h->top_border_u[h->mbx * 10] = h->top_border_u[h->mbx * 10 + 1];
253  h->top_border_v[h->mbx * 10] = h->top_border_v[h->mbx * 10 + 1];
254  }
255 }
256 
257 static void intra_pred_vert(uint8_t *d, uint8_t *top, uint8_t *left, ptrdiff_t stride)
258 {
259  int y;
260  uint64_t a = AV_RN64(&top[1]);
261  for (y = 0; y < 8; y++)
262  *((uint64_t *)(d + y * stride)) = a;
263 }
264 
265 static void intra_pred_horiz(uint8_t *d, uint8_t *top, uint8_t *left, ptrdiff_t stride)
266 {
267  int y;
268  uint64_t a;
269  for (y = 0; y < 8; y++) {
270  a = left[y + 1] * 0x0101010101010101ULL;
271  *((uint64_t *)(d + y * stride)) = a;
272  }
273 }
274 
275 static void intra_pred_dc_128(uint8_t *d, uint8_t *top, uint8_t *left, ptrdiff_t stride)
276 {
277  int y;
278  uint64_t a = 0x8080808080808080ULL;
279  for (y = 0; y < 8; y++)
280  *((uint64_t *)(d + y * stride)) = a;
281 }
282 
283 static void intra_pred_plane(uint8_t *d, uint8_t *top, uint8_t *left, ptrdiff_t stride)
284 {
285  int x, y, ia;
286  int ih = 0;
287  int iv = 0;
288  const uint8_t *cm = ff_crop_tab + MAX_NEG_CROP;
289 
290  for (x = 0; x < 4; x++) {
291  ih += (x + 1) * (top[5 + x] - top[3 - x]);
292  iv += (x + 1) * (left[5 + x] - left[3 - x]);
293  }
294  ia = (top[8] + left[8]) << 4;
295  ih = (17 * ih + 16) >> 5;
296  iv = (17 * iv + 16) >> 5;
297  for (y = 0; y < 8; y++)
298  for (x = 0; x < 8; x++)
299  d[y * stride + x] = cm[(ia + (x - 3) * ih + (y - 3) * iv + 16) >> 5];
300 }
301 
302 #define LOWPASS(ARRAY, INDEX) \
303  ((ARRAY[(INDEX) - 1] + 2 * ARRAY[(INDEX)] + ARRAY[(INDEX) + 1] + 2) >> 2)
304 
305 static void intra_pred_lp(uint8_t *d, uint8_t *top, uint8_t *left, ptrdiff_t stride)
306 {
307  int x, y;
308  for (y = 0; y < 8; y++)
309  for (x = 0; x < 8; x++)
310  d[y * stride + x] = (LOWPASS(top, x + 1) + LOWPASS(left, y + 1)) >> 1;
311 }
312 
313 static void intra_pred_down_left(uint8_t *d, uint8_t *top, uint8_t *left, ptrdiff_t stride)
314 {
315  int x, y;
316  for (y = 0; y < 8; y++)
317  for (x = 0; x < 8; x++)
318  d[y * stride + x] = (LOWPASS(top, x + y + 2) + LOWPASS(left, x + y + 2)) >> 1;
319 }
320 
321 static void intra_pred_down_right(uint8_t *d, uint8_t *top, uint8_t *left, ptrdiff_t stride)
322 {
323  int x, y;
324  for (y = 0; y < 8; y++)
325  for (x = 0; x < 8; x++)
326  if (x == y)
327  d[y * stride + x] = (left[1] + 2 * top[0] + top[1] + 2) >> 2;
328  else if (x > y)
329  d[y * stride + x] = LOWPASS(top, x - y);
330  else
331  d[y * stride + x] = LOWPASS(left, y - x);
332 }
333 
334 static void intra_pred_lp_left(uint8_t *d, uint8_t *top, uint8_t *left, ptrdiff_t stride)
335 {
336  int x, y;
337  for (y = 0; y < 8; y++)
338  for (x = 0; x < 8; x++)
339  d[y * stride + x] = LOWPASS(left, y + 1);
340 }
341 
342 static void intra_pred_lp_top(uint8_t *d, uint8_t *top, uint8_t *left, ptrdiff_t stride)
343 {
344  int x, y;
345  for (y = 0; y < 8; y++)
346  for (x = 0; x < 8; x++)
347  d[y * stride + x] = LOWPASS(top, x + 1);
348 }
349 
350 #undef LOWPASS
351 
352 static inline void modify_pred(const int8_t *mod_table, int *mode)
353 {
354  *mode = mod_table[*mode];
355  if (*mode < 0) {
356  av_log(NULL, AV_LOG_ERROR, "Illegal intra prediction mode\n");
357  *mode = 0;
358  }
359 }
360 
361 void ff_cavs_modify_mb_i(AVSContext *h, int *pred_mode_uv)
362 {
363  /* save pred modes before they get modified */
364  h->pred_mode_Y[3] = h->pred_mode_Y[5];
365  h->pred_mode_Y[6] = h->pred_mode_Y[8];
366  h->top_pred_Y[h->mbx * 2 + 0] = h->pred_mode_Y[7];
367  h->top_pred_Y[h->mbx * 2 + 1] = h->pred_mode_Y[8];
368 
369  /* modify pred modes according to availability of neighbour samples */
370  if (!(h->flags & A_AVAIL)) {
371  modify_pred(left_modifier_l, &h->pred_mode_Y[4]);
372  modify_pred(left_modifier_l, &h->pred_mode_Y[7]);
373  modify_pred(left_modifier_c, pred_mode_uv);
374  }
375  if (!(h->flags & B_AVAIL)) {
376  modify_pred(top_modifier_l, &h->pred_mode_Y[4]);
377  modify_pred(top_modifier_l, &h->pred_mode_Y[5]);
378  modify_pred(top_modifier_c, pred_mode_uv);
379  }
380 }
381 
382 /*****************************************************************************
383  *
384  * motion compensation
385  *
386  ****************************************************************************/
387 
388 static inline void mc_dir_part(AVSContext *h, AVFrame *pic, int chroma_height,
389  int delta, int list, uint8_t *dest_y,
390  uint8_t *dest_cb, uint8_t *dest_cr,
391  int src_x_offset, int src_y_offset,
392  qpel_mc_func *qpix_op,
393  h264_chroma_mc_func chroma_op, cavs_vector *mv)
394 {
395  const int mx = mv->x + src_x_offset * 8;
396  const int my = mv->y + src_y_offset * 8;
397  const int luma_xy = (mx & 3) + ((my & 3) << 2);
398  uint8_t *src_y = pic->data[0] + (mx >> 2) + (my >> 2) * h->l_stride;
399  uint8_t *src_cb = pic->data[1] + (mx >> 3) + (my >> 3) * h->c_stride;
400  uint8_t *src_cr = pic->data[2] + (mx >> 3) + (my >> 3) * h->c_stride;
401  int extra_width = 0;
402  int extra_height = extra_width;
403  const int full_mx = mx >> 2;
404  const int full_my = my >> 2;
405  const int pic_width = 16 * h->mb_width;
406  const int pic_height = 16 * h->mb_height;
407  int emu = 0;
408 
409  if (!pic->data[0])
410  return;
411  if (mx & 7)
412  extra_width -= 3;
413  if (my & 7)
414  extra_height -= 3;
415 
416  if (full_mx < 0 - extra_width ||
417  full_my < 0 - extra_height ||
418  full_mx + 16 /* FIXME */ > pic_width + extra_width ||
419  full_my + 16 /* FIXME */ > pic_height + extra_height) {
420  h->vdsp.emulated_edge_mc(h->edge_emu_buffer,
421  src_y - 2 - 2 * h->l_stride,
422  h->l_stride, h->l_stride,
423  16 + 5, 16 + 5 /* FIXME */,
424  full_mx - 2, full_my - 2,
425  pic_width, pic_height);
426  src_y = h->edge_emu_buffer + 2 + 2 * h->l_stride;
427  emu = 1;
428  }
429 
430  // FIXME try variable height perhaps?
431  qpix_op[luma_xy](dest_y, src_y, h->l_stride);
432 
433  if (emu) {
434  h->vdsp.emulated_edge_mc(h->edge_emu_buffer, src_cb,
435  h->c_stride, h->c_stride,
436  9, 9 /* FIXME */,
437  mx >> 3, my >> 3,
438  pic_width >> 1, pic_height >> 1);
439  src_cb = h->edge_emu_buffer;
440  }
441  chroma_op(dest_cb, src_cb, h->c_stride, chroma_height, mx & 7, my & 7);
442 
443  if (emu) {
444  h->vdsp.emulated_edge_mc(h->edge_emu_buffer, src_cr,
445  h->c_stride, h->c_stride,
446  9, 9 /* FIXME */,
447  mx >> 3, my >> 3,
448  pic_width >> 1, pic_height >> 1);
449  src_cr = h->edge_emu_buffer;
450  }
451  chroma_op(dest_cr, src_cr, h->c_stride, chroma_height, mx & 7, my & 7);
452 }
453 
454 static inline void mc_part_std(AVSContext *h, int chroma_height, int delta,
455  uint8_t *dest_y,
456  uint8_t *dest_cb,
457  uint8_t *dest_cr,
458  int x_offset, int y_offset,
459  qpel_mc_func *qpix_put,
460  h264_chroma_mc_func chroma_put,
461  qpel_mc_func *qpix_avg,
462  h264_chroma_mc_func chroma_avg,
463  cavs_vector *mv)
464 {
465  qpel_mc_func *qpix_op = qpix_put;
466  h264_chroma_mc_func chroma_op = chroma_put;
467 
468  dest_y += x_offset * 2 + y_offset * h->l_stride * 2;
469  dest_cb += x_offset + y_offset * h->c_stride;
470  dest_cr += x_offset + y_offset * h->c_stride;
471  x_offset += 8 * h->mbx;
472  y_offset += 8 * h->mby;
473 
474  if (mv->ref >= 0) {
475  AVFrame *ref = h->DPB[mv->ref].f;
476  mc_dir_part(h, ref, chroma_height, delta, 0,
477  dest_y, dest_cb, dest_cr, x_offset, y_offset,
478  qpix_op, chroma_op, mv);
479 
480  qpix_op = qpix_avg;
481  chroma_op = chroma_avg;
482  }
483 
484  if ((mv + MV_BWD_OFFS)->ref >= 0) {
485  AVFrame *ref = h->DPB[0].f;
486  mc_dir_part(h, ref, chroma_height, delta, 1,
487  dest_y, dest_cb, dest_cr, x_offset, y_offset,
488  qpix_op, chroma_op, mv + MV_BWD_OFFS);
489  }
490 }
491 
492 void ff_cavs_inter(AVSContext *h, enum cavs_mb mb_type)
493 {
494  if (ff_cavs_partition_flags[mb_type] == 0) { // 16x16
495  mc_part_std(h, 8, 0, h->cy, h->cu, h->cv, 0, 0,
496  h->cdsp.put_cavs_qpel_pixels_tab[0],
497  h->h264chroma.put_h264_chroma_pixels_tab[0],
498  h->cdsp.avg_cavs_qpel_pixels_tab[0],
499  h->h264chroma.avg_h264_chroma_pixels_tab[0],
500  &h->mv[MV_FWD_X0]);
501  } else {
502  mc_part_std(h, 4, 0, h->cy, h->cu, h->cv, 0, 0,
503  h->cdsp.put_cavs_qpel_pixels_tab[1],
504  h->h264chroma.put_h264_chroma_pixels_tab[1],
505  h->cdsp.avg_cavs_qpel_pixels_tab[1],
506  h->h264chroma.avg_h264_chroma_pixels_tab[1],
507  &h->mv[MV_FWD_X0]);
508  mc_part_std(h, 4, 0, h->cy, h->cu, h->cv, 4, 0,
509  h->cdsp.put_cavs_qpel_pixels_tab[1],
510  h->h264chroma.put_h264_chroma_pixels_tab[1],
511  h->cdsp.avg_cavs_qpel_pixels_tab[1],
512  h->h264chroma.avg_h264_chroma_pixels_tab[1],
513  &h->mv[MV_FWD_X1]);
514  mc_part_std(h, 4, 0, h->cy, h->cu, h->cv, 0, 4,
515  h->cdsp.put_cavs_qpel_pixels_tab[1],
516  h->h264chroma.put_h264_chroma_pixels_tab[1],
517  h->cdsp.avg_cavs_qpel_pixels_tab[1],
518  h->h264chroma.avg_h264_chroma_pixels_tab[1],
519  &h->mv[MV_FWD_X2]);
520  mc_part_std(h, 4, 0, h->cy, h->cu, h->cv, 4, 4,
521  h->cdsp.put_cavs_qpel_pixels_tab[1],
522  h->h264chroma.put_h264_chroma_pixels_tab[1],
523  h->cdsp.avg_cavs_qpel_pixels_tab[1],
524  h->h264chroma.avg_h264_chroma_pixels_tab[1],
525  &h->mv[MV_FWD_X3]);
526  }
527 }
528 
529 /*****************************************************************************
530  *
531  * motion vector prediction
532  *
533  ****************************************************************************/
534 
535 static inline void scale_mv(AVSContext *h, int *d_x, int *d_y,
536  cavs_vector *src, int distp)
537 {
538  int64_t den = h->scale_den[FFMAX(src->ref, 0)];
539  *d_x = (src->x * distp * den + 256 + FF_SIGNBIT(src->x)) >> 9;
540  *d_y = (src->y * distp * den + 256 + FF_SIGNBIT(src->y)) >> 9;
541 }
542 
543 static inline void mv_pred_median(AVSContext *h,
544  cavs_vector *mvP,
545  cavs_vector *mvA,
546  cavs_vector *mvB,
547  cavs_vector *mvC)
548 {
549  int ax, ay, bx, by, cx, cy;
550  int len_ab, len_bc, len_ca, len_mid;
551 
552  /* scale candidates according to their temporal span */
553  scale_mv(h, &ax, &ay, mvA, mvP->dist);
554  scale_mv(h, &bx, &by, mvB, mvP->dist);
555  scale_mv(h, &cx, &cy, mvC, mvP->dist);
556  /* find the geometrical median of the three candidates */
557  len_ab = abs(ax - bx) + abs(ay - by);
558  len_bc = abs(bx - cx) + abs(by - cy);
559  len_ca = abs(cx - ax) + abs(cy - ay);
560  len_mid = mid_pred(len_ab, len_bc, len_ca);
561  if (len_mid == len_ab) {
562  mvP->x = cx;
563  mvP->y = cy;
564  } else if (len_mid == len_bc) {
565  mvP->x = ax;
566  mvP->y = ay;
567  } else {
568  mvP->x = bx;
569  mvP->y = by;
570  }
571 }
572 
574  enum cavs_mv_pred mode, enum cavs_block size, int ref)
575 {
576  cavs_vector *mvP = &h->mv[nP];
577  cavs_vector *mvA = &h->mv[nP-1];
578  cavs_vector *mvB = &h->mv[nP-4];
579  cavs_vector *mvC = &h->mv[nC];
580  const cavs_vector *mvP2 = NULL;
581 
582  mvP->ref = ref;
583  mvP->dist = h->dist[mvP->ref];
584  if (mvC->ref == NOT_AVAIL || (nP == MV_FWD_X3) || (nP == MV_BWD_X3 ))
585  mvC = &h->mv[nP - 5]; // set to top-left (mvD)
586  if (mode == MV_PRED_PSKIP &&
587  (mvA->ref == NOT_AVAIL ||
588  mvB->ref == NOT_AVAIL ||
589  (mvA->x | mvA->y | mvA->ref) == 0 ||
590  (mvB->x | mvB->y | mvB->ref) == 0)) {
591  mvP2 = &un_mv;
592  /* if there is only one suitable candidate, take it */
593  } else if (mvA->ref >= 0 && mvB->ref < 0 && mvC->ref < 0) {
594  mvP2 = mvA;
595  } else if (mvA->ref < 0 && mvB->ref >= 0 && mvC->ref < 0) {
596  mvP2 = mvB;
597  } else if (mvA->ref < 0 && mvB->ref < 0 && mvC->ref >= 0) {
598  mvP2 = mvC;
599  } else if (mode == MV_PRED_LEFT && mvA->ref == ref) {
600  mvP2 = mvA;
601  } else if (mode == MV_PRED_TOP && mvB->ref == ref) {
602  mvP2 = mvB;
603  } else if (mode == MV_PRED_TOPRIGHT && mvC->ref == ref) {
604  mvP2 = mvC;
605  }
606  if (mvP2) {
607  mvP->x = mvP2->x;
608  mvP->y = mvP2->y;
609  } else
610  mv_pred_median(h, mvP, mvA, mvB, mvC);
611 
612  if (mode < MV_PRED_PSKIP) {
613  int mx = get_se_golomb(&h->gb) + (unsigned)mvP->x;
614  int my = get_se_golomb(&h->gb) + (unsigned)mvP->y;
615 
616  if (mx != (int16_t)mx || my != (int16_t)my) {
617  av_log(h->avctx, AV_LOG_ERROR, "MV %d %d out of supported range\n", mx, my);
618  } else {
619  mvP->x = mx;
620  mvP->y = my;
621  }
622  }
623  set_mvs(mvP, size);
624 }
625 
626 /*****************************************************************************
627  *
628  * macroblock level
629  *
630  ****************************************************************************/
631 
632 /**
633  * initialise predictors for motion vectors and intra prediction
634  */
636 {
637  int i;
638 
639  /* copy predictors from top line (MB B and C) into cache */
640  for (i = 0; i < 3; i++) {
641  h->mv[MV_FWD_B2 + i] = h->top_mv[0][h->mbx * 2 + i];
642  h->mv[MV_BWD_B2 + i] = h->top_mv[1][h->mbx * 2 + i];
643  }
644  h->pred_mode_Y[1] = h->top_pred_Y[h->mbx * 2 + 0];
645  h->pred_mode_Y[2] = h->top_pred_Y[h->mbx * 2 + 1];
646  /* clear top predictors if MB B is not available */
647  if (!(h->flags & B_AVAIL)) {
648  h->mv[MV_FWD_B2] = un_mv;
649  h->mv[MV_FWD_B3] = un_mv;
650  h->mv[MV_BWD_B2] = un_mv;
651  h->mv[MV_BWD_B3] = un_mv;
652  h->pred_mode_Y[1] = h->pred_mode_Y[2] = NOT_AVAIL;
653  h->flags &= ~(C_AVAIL | D_AVAIL);
654  } else if (h->mbx) {
655  h->flags |= D_AVAIL;
656  }
657  if (h->mbx == h->mb_width - 1) // MB C not available
658  h->flags &= ~C_AVAIL;
659  /* clear top-right predictors if MB C is not available */
660  if (!(h->flags & C_AVAIL)) {
661  h->mv[MV_FWD_C2] = un_mv;
662  h->mv[MV_BWD_C2] = un_mv;
663  }
664  /* clear top-left predictors if MB D is not available */
665  if (!(h->flags & D_AVAIL)) {
666  h->mv[MV_FWD_D3] = un_mv;
667  h->mv[MV_BWD_D3] = un_mv;
668  }
669 }
670 
671 /**
672  * save predictors for later macroblocks and increase
673  * macroblock address
674  * @return 0 if end of frame is reached, 1 otherwise
675  */
677 {
678  int i;
679 
680  h->flags |= A_AVAIL;
681  h->cy += 16;
682  h->cu += 8;
683  h->cv += 8;
684  /* copy mvs as predictors to the left */
685  for (i = 0; i <= 20; i += 4)
686  h->mv[i] = h->mv[i + 2];
687  /* copy bottom mvs from cache to top line */
688  h->top_mv[0][h->mbx * 2 + 0] = h->mv[MV_FWD_X2];
689  h->top_mv[0][h->mbx * 2 + 1] = h->mv[MV_FWD_X3];
690  h->top_mv[1][h->mbx * 2 + 0] = h->mv[MV_BWD_X2];
691  h->top_mv[1][h->mbx * 2 + 1] = h->mv[MV_BWD_X3];
692  /* next MB address */
693  h->mbidx++;
694  h->mbx++;
695  if (h->mbx == h->mb_width) { // New mb line
696  h->flags = B_AVAIL | C_AVAIL;
697  /* clear left pred_modes */
698  h->pred_mode_Y[3] = h->pred_mode_Y[6] = NOT_AVAIL;
699  /* clear left mv predictors */
700  for (i = 0; i <= 20; i += 4)
701  h->mv[i] = un_mv;
702  h->mbx = 0;
703  h->mby++;
704  /* re-calculate sample pointers */
705  h->cy = h->cur.f->data[0] + h->mby * 16 * h->l_stride;
706  h->cu = h->cur.f->data[1] + h->mby * 8 * h->c_stride;
707  h->cv = h->cur.f->data[2] + h->mby * 8 * h->c_stride;
708  if (h->mby == h->mb_height) { // Frame end
709  return 0;
710  }
711  }
712  return 1;
713 }
714 
715 /*****************************************************************************
716  *
717  * frame level
718  *
719  ****************************************************************************/
720 
722 {
723  int i;
724 
725  /* clear some predictors */
726  for (i = 0; i <= 20; i += 4)
727  h->mv[i] = un_mv;
728  h->mv[MV_BWD_X0] = ff_cavs_dir_mv;
729  set_mvs(&h->mv[MV_BWD_X0], BLK_16X16);
730  h->mv[MV_FWD_X0] = ff_cavs_dir_mv;
731  set_mvs(&h->mv[MV_FWD_X0], BLK_16X16);
732  h->pred_mode_Y[3] = h->pred_mode_Y[6] = NOT_AVAIL;
733  h->cy = h->cur.f->data[0];
734  h->cu = h->cur.f->data[1];
735  h->cv = h->cur.f->data[2];
736  h->l_stride = h->cur.f->linesize[0];
737  h->c_stride = h->cur.f->linesize[1];
738  h->luma_scan[2] = 8 * h->l_stride;
739  h->luma_scan[3] = 8 * h->l_stride + 8;
740  h->mbx = h->mby = h->mbidx = 0;
741  h->flags = 0;
742 
743  return 0;
744 }
745 
746 /*****************************************************************************
747  *
748  * headers and interface
749  *
750  ****************************************************************************/
751 
752 /**
753  * some predictions require data from the top-neighbouring macroblock.
754  * this data has to be stored for one complete row of macroblocks
755  * and this storage space is allocated here
756  */
758 {
759  /* alloc top line of predictors */
760  h->top_qp = av_mallocz(h->mb_width);
761  h->top_mv[0] = av_calloc(h->mb_width * 2 + 1, sizeof(cavs_vector));
762  h->top_mv[1] = av_calloc(h->mb_width * 2 + 1, sizeof(cavs_vector));
763  h->top_pred_Y = av_calloc(h->mb_width * 2, sizeof(*h->top_pred_Y));
764  h->top_border_y = av_calloc(h->mb_width + 1, 16);
765  h->top_border_u = av_calloc(h->mb_width, 10);
766  h->top_border_v = av_calloc(h->mb_width, 10);
767 
768  /* alloc space for co-located MVs and types */
769  h->col_mv = av_calloc(h->mb_width * h->mb_height,
770  4 * sizeof(*h->col_mv));
771  h->col_type_base = av_mallocz(h->mb_width * h->mb_height);
772  h->block = av_mallocz(64 * sizeof(int16_t));
773 
774  if (!h->top_qp || !h->top_mv[0] || !h->top_mv[1] || !h->top_pred_Y ||
775  !h->top_border_y || !h->top_border_u || !h->top_border_v ||
776  !h->col_mv || !h->col_type_base || !h->block) {
777  av_freep(&h->top_qp);
778  av_freep(&h->top_mv[0]);
779  av_freep(&h->top_mv[1]);
780  av_freep(&h->top_pred_Y);
781  av_freep(&h->top_border_y);
782  av_freep(&h->top_border_u);
783  av_freep(&h->top_border_v);
784  av_freep(&h->col_mv);
785  av_freep(&h->col_type_base);
786  av_freep(&h->block);
787  return AVERROR(ENOMEM);
788  }
789  return 0;
790 }
791 
793 {
794  AVSContext *h = avctx->priv_data;
795 
796  ff_blockdsp_init(&h->bdsp, avctx);
797  ff_h264chroma_init(&h->h264chroma, 8);
798  ff_idctdsp_init(&h->idsp, avctx);
799  ff_videodsp_init(&h->vdsp, 8);
800  ff_cavsdsp_init(&h->cdsp, avctx);
801  ff_init_scantable_permutation(h->idsp.idct_permutation,
802  h->cdsp.idct_perm);
803  ff_init_scantable(h->idsp.idct_permutation, &h->scantable, ff_zigzag_direct);
804 
805  h->avctx = avctx;
806  avctx->pix_fmt = AV_PIX_FMT_YUV420P;
807 
808  h->cur.f = av_frame_alloc();
809  h->DPB[0].f = av_frame_alloc();
810  h->DPB[1].f = av_frame_alloc();
811  if (!h->cur.f || !h->DPB[0].f || !h->DPB[1].f)
812  return AVERROR(ENOMEM);
813 
814  h->luma_scan[0] = 0;
815  h->luma_scan[1] = 8;
816  h->intra_pred_l[INTRA_L_VERT] = intra_pred_vert;
817  h->intra_pred_l[INTRA_L_HORIZ] = intra_pred_horiz;
818  h->intra_pred_l[INTRA_L_LP] = intra_pred_lp;
819  h->intra_pred_l[INTRA_L_DOWN_LEFT] = intra_pred_down_left;
820  h->intra_pred_l[INTRA_L_DOWN_RIGHT] = intra_pred_down_right;
821  h->intra_pred_l[INTRA_L_LP_LEFT] = intra_pred_lp_left;
822  h->intra_pred_l[INTRA_L_LP_TOP] = intra_pred_lp_top;
823  h->intra_pred_l[INTRA_L_DC_128] = intra_pred_dc_128;
824  h->intra_pred_c[INTRA_C_LP] = intra_pred_lp;
825  h->intra_pred_c[INTRA_C_HORIZ] = intra_pred_horiz;
826  h->intra_pred_c[INTRA_C_VERT] = intra_pred_vert;
827  h->intra_pred_c[INTRA_C_PLANE] = intra_pred_plane;
828  h->intra_pred_c[INTRA_C_LP_LEFT] = intra_pred_lp_left;
829  h->intra_pred_c[INTRA_C_LP_TOP] = intra_pred_lp_top;
830  h->intra_pred_c[INTRA_C_DC_128] = intra_pred_dc_128;
831  h->mv[7] = un_mv;
832  h->mv[19] = un_mv;
833  return 0;
834 }
835 
837 {
838  AVSContext *h = avctx->priv_data;
839 
840  av_frame_free(&h->cur.f);
841  av_frame_free(&h->DPB[0].f);
842  av_frame_free(&h->DPB[1].f);
843 
844  av_freep(&h->top_qp);
845  av_freep(&h->top_mv[0]);
846  av_freep(&h->top_mv[1]);
847  av_freep(&h->top_pred_Y);
848  av_freep(&h->top_border_y);
849  av_freep(&h->top_border_u);
850  av_freep(&h->top_border_v);
851  av_freep(&h->col_mv);
852  av_freep(&h->col_type_base);
853  av_freep(&h->block);
854  av_freep(&h->edge_emu_buffer);
855  return 0;
856 }
BLK_16X16
@ BLK_16X16
Definition: cavs.h:116
left_modifier_l
static const int8_t left_modifier_l[8]
Definition: cavs.c:61
cavs_mb
cavs_mb
Definition: cavs.h:63
MV_PRED_PSKIP
@ MV_PRED_PSKIP
Definition: cavs.h:111
ff_cavs_partition_flags
const uint8_t ff_cavs_partition_flags[30]
Definition: cavsdata.c:24
AVERROR
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
ff_cavs_chroma_qp
const uint8_t ff_cavs_chroma_qp[64]
Definition: cavsdata.c:57
MV_FWD_D3
@ MV_FWD_D3
Definition: cavs.h:123
MV_BWD_C2
@ MV_BWD_C2
Definition: cavs.h:136
MV_BWD_D3
@ MV_BWD_D3
Definition: cavs.h:133
MV_BWD_X0
@ MV_BWD_X0
Definition: cavs.h:138
mv
static const int8_t mv[256][2]
Definition: 4xm.c:80
INTRA_C_VERT
@ INTRA_C_VERT
Definition: cavs.h:99
av_frame_free
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
Definition: frame.c:111
MV_FWD_X0
@ MV_FWD_X0
Definition: cavs.h:128
un_mv
static const cavs_vector un_mv
mark block as unavailable, i.e.
Definition: cavs.c:59
AV_RN64
#define AV_RN64(p)
Definition: intreadwrite.h:368
AVFrame
This structure describes decoded (raw) audio or video data.
Definition: frame.h:325
ff_cavsdsp_init
av_cold void ff_cavsdsp_init(CAVSDSPContext *c, AVCodecContext *avctx)
Definition: cavsdsp.c:551
b
#define b
Definition: input.c:34
intra_pred_down_right
static void intra_pred_down_right(uint8_t *d, uint8_t *top, uint8_t *left, ptrdiff_t stride)
Definition: cavs.c:321
LOWPASS
#define LOWPASS(ARRAY, INDEX)
Definition: cavs.c:302
ff_cavs_init
av_cold int ff_cavs_init(AVCodecContext *avctx)
Definition: cavs.c:792
ff_cavs_dir_mv
const cavs_vector ff_cavs_dir_mv
mark block as "no prediction from this direction" e.g.
Definition: cavsdata.c:66
cavs_block
cavs_block
Definition: cavs.h:115
scale_mv
static void scale_mv(AVSContext *h, int *d_x, int *d_y, cavs_vector *src, int distp)
Definition: cavs.c:535
INTRA_C_HORIZ
@ INTRA_C_HORIZ
Definition: cavs.h:98
FFMAX
#define FFMAX(a, b)
Definition: macros.h:47
ff_cavs_modify_mb_i
void ff_cavs_modify_mb_i(AVSContext *h, int *pred_mode_uv)
Definition: cavs.c:361
ff_cavs_load_intra_pred_chroma
void ff_cavs_load_intra_pred_chroma(AVSContext *h)
Definition: cavs.c:234
ff_idctdsp_init
av_cold void ff_idctdsp_init(IDCTDSPContext *c, AVCodecContext *avctx)
Definition: idctdsp.c:240
ff_crop_tab
#define ff_crop_tab
Definition: motionpixels_tablegen.c:26
AVFrame::data
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:346
MV_BWD_X3
@ MV_BWD_X3
Definition: cavs.h:142
ff_cavs_init_pic
int ff_cavs_init_pic(AVSContext *h)
Definition: cavs.c:721
golomb.h
exp golomb vlc stuff
set_mvs
static void set_mvs(cavs_vector *mv, enum cavs_block size)
Definition: cavs.h:252
MV_FWD_A3
@ MV_FWD_A3
Definition: cavs.h:130
INTRA_C_PLANE
@ INTRA_C_PLANE
Definition: cavs.h:100
cavs_vector::x
int16_t x
Definition: cavs.h:146
modify_pred
static void modify_pred(const int8_t *mod_table, int *mode)
Definition: cavs.c:352
h264_chroma_mc_func
void(* h264_chroma_mc_func)(uint8_t *dst, uint8_t *src, ptrdiff_t srcStride, int h, int x, int y)
Definition: h264chroma.h:25
tc_tab
static const uint8_t tc_tab[64]
Definition: cavs.c:50
ff_videodsp_init
av_cold void ff_videodsp_init(VideoDSPContext *ctx, int bpc)
Definition: videodsp.c:39
SPLITV
#define SPLITV
Definition: cavs.h:58
cavs_vector::dist
int16_t dist
Definition: cavs.h:148
av_frame_alloc
AVFrame * av_frame_alloc(void)
Allocate an AVFrame and set its fields to default values.
Definition: frame.c:99
B_AVAIL
#define B_AVAIL
Definition: cavs.h:42
AV_LOG_ERROR
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:180
av_cold
#define av_cold
Definition: attributes.h:90
I_8X8
@ I_8X8
Definition: cavs.h:64
MV_BWD_X2
@ MV_BWD_X2
Definition: cavs.h:141
ff_cavs_init_top_lines
int ff_cavs_init_top_lines(AVSContext *h)
some predictions require data from the top-neighbouring macroblock.
Definition: cavs.c:757
left_modifier_c
static const int8_t left_modifier_c[7]
Definition: cavs.c:63
INTRA_L_DOWN_RIGHT
@ INTRA_L_DOWN_RIGHT
Definition: cavs.h:90
mc_dir_part
static void mc_dir_part(AVSContext *h, AVFrame *pic, int chroma_height, int delta, int list, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr, int src_x_offset, int src_y_offset, qpel_mc_func *qpix_op, h264_chroma_mc_func chroma_op, cavs_vector *mv)
Definition: cavs.c:388
MV_PRED_TOPRIGHT
@ MV_PRED_TOPRIGHT
Definition: cavs.h:110
MV_FWD_B3
@ MV_FWD_B3
Definition: cavs.h:125
AV_PIX_FMT_YUV420P
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
Definition: pixfmt.h:66
MV_BWD_OFFS
#define MV_BWD_OFFS
Definition: cavs.h:60
get_se_golomb
static int get_se_golomb(GetBitContext *gb)
read signed exp golomb code.
Definition: golomb.h:239
MV_BWD_B2
@ MV_BWD_B2
Definition: cavs.h:134
if
if(ret)
Definition: filter_design.txt:179
INTRA_L_LP
@ INTRA_L_LP
Definition: cavs.h:88
NULL
#define NULL
Definition: coverity.c:32
top_modifier_l
static const int8_t top_modifier_l[8]
Definition: cavs.c:62
INTRA_C_DC_128
@ INTRA_C_DC_128
Definition: cavs.h:103
INTRA_L_DC_128
@ INTRA_L_DC_128
Definition: cavs.h:93
mathops.h
list
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining list
Definition: filter_design.txt:25
A_AVAIL
#define A_AVAIL
Definition: cavs.h:41
qpeldsp.h
abs
#define abs(x)
Definition: cuda_runtime.h:35
cavs_mv_loc
cavs_mv_loc
Definition: cavs.h:122
INTRA_C_LP
@ INTRA_C_LP
Definition: cavs.h:97
INTRA_L_VERT
@ INTRA_L_VERT
Definition: cavs.h:86
qpel_mc_func
void(* qpel_mc_func)(uint8_t *dst, const uint8_t *src, ptrdiff_t stride)
Definition: qpeldsp.h:65
FF_SIGNBIT
#define FF_SIGNBIT(x)
Definition: mathops.h:129
ff_cavs_mv
void ff_cavs_mv(AVSContext *h, enum cavs_mv_loc nP, enum cavs_mv_loc nC, enum cavs_mv_pred mode, enum cavs_block size, int ref)
Definition: cavs.c:573
D_AVAIL
#define D_AVAIL
Definition: cavs.h:44
intra_pred_down_left
static void intra_pred_down_left(uint8_t *d, uint8_t *top, uint8_t *left, ptrdiff_t stride)
Definition: cavs.c:313
SET_PARAMS
#define SET_PARAMS
Definition: cavs.c:91
MV_FWD_A1
@ MV_FWD_A1
Definition: cavs.h:127
INTRA_L_HORIZ
@ INTRA_L_HORIZ
Definition: cavs.h:87
size
int size
Definition: twinvq_data.h:10344
h264chroma.h
intra_pred_dc_128
static void intra_pred_dc_128(uint8_t *d, uint8_t *top, uint8_t *left, ptrdiff_t stride)
Definition: cavs.c:275
ff_cavs_end
av_cold int ff_cavs_end(AVCodecContext *avctx)
Definition: cavs.c:836
MV_FWD_B2
@ MV_FWD_B2
Definition: cavs.h:124
REF_INTRA
#define REF_INTRA
Definition: cavs.h:46
C_AVAIL
#define C_AVAIL
Definition: cavs.h:43
a
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
Definition: undefined.txt:41
P_8X8
@ P_8X8
Definition: cavs.h:69
intra_pred_lp_left
static void intra_pred_lp_left(uint8_t *d, uint8_t *top, uint8_t *left, ptrdiff_t stride)
Definition: cavs.c:334
MV_FWD_X3
@ MV_FWD_X3
Definition: cavs.h:132
ff_cavs_load_intra_pred_luma
void ff_cavs_load_intra_pred_luma(AVSContext *h, uint8_t *top, uint8_t **left, int block)
Definition: cavs.c:183
i
#define i(width, name, range_min, range_max)
Definition: cbs_h2645.c:269
ff_init_scantable
av_cold void ff_init_scantable(const uint8_t *permutation, ScanTable *st, const uint8_t *src_scantable)
Definition: idctdsp.c:30
ff_h264chroma_init
av_cold void ff_h264chroma_init(H264ChromaContext *c, int bit_depth)
Definition: h264chroma.c:41
delta
float delta
Definition: vorbis_enc_data.h:430
get_bs
static int get_bs(cavs_vector *mvP, cavs_vector *mvQ, int b)
Definition: cavs.c:72
MV_PRED_TOP
@ MV_PRED_TOP
Definition: cavs.h:109
cavs_vector::y
int16_t y
Definition: cavs.h:147
av_mallocz
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
Definition: mem.c:264
beta_tab
static const uint8_t beta_tab[64]
Definition: cavs.c:43
MV_FWD_X2
@ MV_FWD_X2
Definition: cavs.h:131
AVCodecContext::pix_fmt
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
Definition: avcodec.h:599
av_calloc
void * av_calloc(size_t nmemb, size_t size)
Definition: mem.c:272
mc_part_std
static void mc_part_std(AVSContext *h, int chroma_height, int delta, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr, int x_offset, int y_offset, qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put, qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg, cavs_vector *mv)
Definition: cavs.c:454
MV_FWD_C2
@ MV_FWD_C2
Definition: cavs.h:126
INTRA_L_DOWN_LEFT
@ INTRA_L_DOWN_LEFT
Definition: cavs.h:89
idctdsp.h
avcodec.h
stride
#define stride
Definition: h264pred_template.c:537
ff_cavs_init_mb
void ff_cavs_init_mb(AVSContext *h)
initialise predictors for motion vectors and intra prediction
Definition: cavs.c:635
ff_zigzag_direct
const uint8_t ff_zigzag_direct[64]
Definition: mathtables.c:98
mv_pred_median
static void mv_pred_median(AVSContext *h, cavs_vector *mvP, cavs_vector *mvA, cavs_vector *mvB, cavs_vector *mvC)
Definition: cavs.c:543
mid_pred
#define mid_pred
Definition: mathops.h:97
cavs_mv_pred
cavs_mv_pred
Definition: cavs.h:106
INTRA_L_LP_LEFT
@ INTRA_L_LP_LEFT
Definition: cavs.h:91
left
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled left
Definition: snow.txt:386
ff_cavs_inter
void ff_cavs_inter(AVSContext *h, enum cavs_mb mb_type)
Definition: cavs.c:492
INTRA_C_LP_TOP
@ INTRA_C_LP_TOP
Definition: cavs.h:102
AVCodecContext
main external API structure.
Definition: avcodec.h:389
mode
mode
Definition: ebur128.h:83
cm
#define cm
Definition: dvbsubdec.c:39
ref
static int ref[MAX_W *MAX_W]
Definition: jpeg2000dwt.c:112
intra_pred_vert
static void intra_pred_vert(uint8_t *d, uint8_t *top, uint8_t *left, ptrdiff_t stride)
Definition: cavs.c:257
AVSContext
Definition: cavs.h:165
cavs_vector
Definition: cavs.h:145
tc
#define tc
Definition: regdef.h:69
cavs_vector::ref
int16_t ref
Definition: cavs.h:149
ff_init_scantable_permutation
av_cold void ff_init_scantable_permutation(uint8_t *idct_permutation, enum idct_permutation_type perm_type)
Definition: idctdsp.c:51
ff_cavs_next_mb
int ff_cavs_next_mb(AVSContext *h)
save predictors for later macroblocks and increase macroblock address
Definition: cavs.c:676
MV_BWD_B3
@ MV_BWD_B3
Definition: cavs.h:135
alpha
static const int16_t alpha[]
Definition: ilbcdata.h:55
AVCodecContext::priv_data
void * priv_data
Definition: avcodec.h:416
av_freep
#define av_freep(p)
Definition: tableprint_vlc.h:34
src
INIT_CLIP pixel * src
Definition: h264pred_template.c:418
MV_PRED_LEFT
@ MV_PRED_LEFT
Definition: cavs.h:108
d
d
Definition: ffmpeg_filter.c:153
alpha_tab
static const uint8_t alpha_tab[64]
Definition: cavs.c:36
intra_pred_lp
static void intra_pred_lp(uint8_t *d, uint8_t *top, uint8_t *left, ptrdiff_t stride)
Definition: cavs.c:305
cavs.h
block
The exact code depends on how similar the blocks are and how related they are to the block
Definition: filter_design.txt:207
av_log
#define av_log(a,...)
Definition: tableprint_vlc.h:27
ff_cavs_filter
void ff_cavs_filter(AVSContext *h, enum cavs_mb mb_type)
in-loop deblocking filter for a single macroblock
Definition: cavs.c:107
MV_FWD_X1
@ MV_FWD_X1
Definition: cavs.h:129
intra_pred_horiz
static void intra_pred_horiz(uint8_t *d, uint8_t *top, uint8_t *left, ptrdiff_t stride)
Definition: cavs.c:265
h
h
Definition: vp9dsp_template.c:2038
ff_blockdsp_init
av_cold void ff_blockdsp_init(BlockDSPContext *c, AVCodecContext *avctx)
Definition: blockdsp.c:59
MAX_NEG_CROP
#define MAX_NEG_CROP
Definition: mathops.h:30
INTRA_C_LP_LEFT
@ INTRA_C_LP_LEFT
Definition: cavs.h:101
intra_pred_plane
static void intra_pred_plane(uint8_t *d, uint8_t *top, uint8_t *left, ptrdiff_t stride)
Definition: cavs.c:283
intra_pred_lp_top
static void intra_pred_lp_top(uint8_t *d, uint8_t *top, uint8_t *left, ptrdiff_t stride)
Definition: cavs.c:342
top_modifier_c
static const int8_t top_modifier_c[7]
Definition: cavs.c:64
NOT_AVAIL
#define NOT_AVAIL
Definition: cavs.h:45
INTRA_L_LP_TOP
@ INTRA_L_LP_TOP
Definition: cavs.h:92
SPLITH
#define SPLITH
Definition: cavs.h:57