Go to the documentation of this file.
120 memset(am->
prob[0], 0, (buf_size + 5) *
sizeof(*am->
prob[0]));
121 memset(am->
prob[1], 0, (buf_size + 5) *
sizeof(*am->
prob[1]));
154 if (
s->channels < 1 ||
s->channels > 2)
159 s->frame_samples = 131072 /
s->align;
160 s->last_nb_samples =
s->total_nb_samples %
s->frame_samples;
167 s->ch[0].cmode =
s->ch[1].cmode = cmode < 0 ? 2 : cmode;
168 s->ch[0].cmode2 = cmode < 0 ?
FFABS(cmode) : 0;
169 s->ch[1].cmode2 = cmode < 0 ?
FFABS(cmode) : 0;
183 x = (1 << (
bits >> 1)) + 3;
201 memset(
c->buf0, 0,
sizeof(
c->buf0));
202 memset(
c->buf1, 0,
sizeof(
c->buf1));
204 c->filt_size = &
s->filt_size;
205 c->filt_bits = &
s->filt_bits;
207 c->bprob[0] =
s->bprob[0];
208 c->bprob[1] =
s->bprob[1];
210 c->srate_pad = (
sample_rate << 13) / 44100 & 0xFFFFFFFCU;
214 c->bprob[0][
i] =
c->bprob[1][
i] = 1;
216 for (
int i = 0;
i < 11;
i++) {
245 ac->
high = 0xffffffff;
246 ac->
value = bytestream2_get_be32(&ac->
gb);
255 help = ac->
high / (unsigned)(freq2 + freq1);
261 ac->
low = low =
add + low;
264 if ((low ^ (high + low)) > 0xFFFFFF) {
267 ac->
high = (uint16_t)-(int16_t)low;
272 ac->
value = bytestream2_get_byteu(&ac->
gb) | (ac->
value << 8);
274 low = ac->
low = ac->
low << 8;
281 if ((low ^ (
add + low)) > 0xFFFFFF) {
284 ac->
high = (uint16_t)-(int16_t)low;
289 ac->
value = bytestream2_get_byteu(&ac->
gb) | (ac->
value << 8);
291 low = ac->
low = ac->
low << 8;
301 x =
c->bprob[0][idx];
302 if (x +
c->bprob[1][idx] > 4096) {
303 c->bprob[0][idx] = (x >> 1) + 1;
304 c->bprob[1][idx] = (
c->bprob[1][idx] >> 1) + 1;
323 new_high = ac->
high / freq;
342 if (((high + low) ^ low) > 0xffffff) {
345 ac->
high = (uint16_t)-(int16_t)low;
351 ac->
value = (ac->
value << 8) | bytestream2_get_byteu(&ac->
gb);
352 low = ac->
low = ac->
low << 8;
368 }
while (val < am->buf_size);
385 if ((idx2 & idx) != idx2) {
387 prob_idx -=
prob[idx3];
389 }
while ((idx2 & idx) != idx3);
393 diff = ((prob_idx > 0) - prob_idx) >> 1;
407 unsigned freq, size2,
val,
mul;
417 if (am->
total <= 1) {
425 freq = am->
prob[0][0];
426 for (
int j =
size; j > 0; j &= (j - 1) )
427 freq += am->
prob[0][j];
434 for (j = freq -
val; size2; size2 >>= 1) {
435 unsigned v = am->
prob[0][size2 + sum];
450 for (
int k =
val - 1; (
val & (
val - 1)) != k; k &= k - 1)
462 for (dst[0] = 0; dst[0] <
size; dst[0]++) {
463 if (!am->
prob[1][dst[0]])
471 for (dst[0] = 0; dst[0] <
size & freq <
val; dst[0]++) {
472 if (!am->
prob[1][dst[0]])
476 if (am->
prob[1][dst[0]]) {
482 am->
prob[1][dst[0]]++;
505 if (((idx == 8) || (idx == 20)) && (0 <
bits))
537 }
while (idx < dst->
size);
548 if (ac->
value - low < high) {
550 if (((high + low) ^ low) > 0xffffff) {
553 ac->
high = (uint16_t)-(int16_t)low;
559 ac->
value = (ac->
value << 8) | bytestream2_get_byteu(&ac->
gb);
561 ac->
low = low = ac->
low << 8;
566 ac->
low = low = low + high;
568 if (((high + low) ^ low) > 0xffffff) {
571 ac->
high = (uint16_t)-(int16_t)low;
577 ac->
value = (ac->
value << 8) | bytestream2_get_byteu(&ac->
gb);
579 ac->
low = low = ac->
low << 8;
590 if (
ctx->zero[0] +
ctx->zero[1] > 4000
U) {
591 ctx->zero[0] = (
ctx->zero[0] >> 1) + 1;
592 ctx->zero[1] = (
ctx->zero[1] >> 1) + 1;
594 if (
ctx->sign[0] +
ctx->sign[1] > 4000
U) {
595 ctx->sign[0] = (
ctx->sign[0] >> 1) + 1;
596 ctx->sign[1] = (
ctx->sign[1] >> 1) + 1;
603 }
else if (sign < 0) {
618 int hbits =
bits / 2;
630 uint16_t *val4 =
ctx->val4;
633 if (val4[idx] +
ctx->val1[idx] > 2000
U) {
634 val4[idx] = (val4[idx] >> 1) + 1;
635 ctx->val1[idx] = (
ctx->val1[idx] >> 1) + 1;
646 }
while (idx <= ctx->
size);
649 dst[0] =
val + 1 + (idx <<
ctx->bits);
661 dst[0] =
val + 1 + (idx <<
ctx->bits);
668 static const uint8_t
tab[16] = {
669 0, 3, 3, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0
677 unsigned idx = 3,
bits = 0;
679 if (
ctx->cmode == 0) {
697 for (
int x = 0; x <
size;) {
701 idx = (
ctx->pos_idx + idx) % 11;
705 int midx,
shift = idx, *
src, sum = 16;
712 mdl64 = &
ctx->mdl64[3][idx];
713 }
else if (midx >= 7) {
714 mdl64 = &
ctx->mdl64[2][idx];
715 }
else if (midx >= 4) {
716 mdl64 = &
ctx->mdl64[1][idx];
718 mdl64 = &
ctx->mdl64[0][idx];
724 src = &
ctx->buf1[off + -1];
725 for (
int i = 0;
i <
filt.size &&
i < 15;
i++)
726 sum +=
filt.coeffs[
i] * (
unsigned)
src[-
i];
728 for (
int i = 15;
i <
filt.size;
i++)
729 sum +=
filt.coeffs[
i] * (
unsigned)
src[-
i];
731 if (
ctx->cmode == 0) {
733 ctx->buf1[off] = sum +
val;
736 (((1
U <<
bits) - 1
U) &
ctx->buf1[off + -1]);
738 ctx->buf0[off] =
ctx->buf1[off] +
ctx->buf0[off + -1];
741 sum +=
ctx->buf0[off + -1] +
val;
746 ctx->buf1[off] = sum -
ctx->buf0[off + -1];
747 ctx->buf0[off] = sum;
751 if (
ctx->cmode2 != 0) {
753 for (
int i = (m << 6) /
split;
i > 0;
i =
i >> 1)
755 sum = sum - (
ctx->cmode2 + 7);
768 int segment_size, offset2,
mode,
ret;
784 segment_size =
ctx->srate_pad;
791 offset2 = segment_size / 4 +
offset;
795 offset2 = segment_size / 4 + offset2;
800 offset2 = segment_size / 2 +
offset;
833 memmove(
c->buf0, &
c->buf0[
c->last_nb_decoded], 2560 *
sizeof(*
c->buf0));
834 memmove(
c->buf1, &
c->buf1[
c->last_nb_decoded], 2560 *
sizeof(*
c->buf1));
839 c->last_nb_decoded = nb_decoded;
845 int *got_frame_ptr,
AVPacket *avpkt)
854 for (
int ch = 0; ch <
s->channels; ch++) {
861 frame->nb_samples =
s->frame_samples;
865 if (
s->channels == 2 &&
s->correlated) {
866 int16_t *l16 = (int16_t *)
frame->extended_data[0];
867 int16_t *r16 = (int16_t *)
frame->extended_data[1];
868 uint8_t *l8 =
frame->extended_data[0];
869 uint8_t *r8 =
frame->extended_data[1];
871 for (
int n = 0; n <
frame->nb_samples;) {
874 frame->nb_samples = n;
877 if (ret < 0 || n + ret >
frame->nb_samples)
882 frame->nb_samples = n;
885 if (ret < 0 || n + ret >
frame->nb_samples)
890 for (
int i = 0;
i <
ret;
i++) {
891 int l =
s->ch[0].buf0[2560 +
i];
892 int r =
s->ch[1].buf0[2560 +
i];
894 l16[n +
i] = (l * 2 +
r + 1) >> 1;
895 r16[n +
i] = (l * 2 -
r + 1) >> 1;
899 for (
int i = 0;
i <
ret;
i++) {
900 int l =
s->ch[0].buf0[2560 +
i];
901 int r =
s->ch[1].buf0[2560 +
i];
903 l8[n +
i] = ((l * 2 +
r + 1) >> 1) + 0x7f;
904 r8[n +
i] = ((l * 2 -
r + 1) >> 1) + 0x7f;
914 for (
int n = 0; n <
frame->nb_samples;) {
915 for (
int ch = 0; ch <
s->channels; ch++) {
916 int16_t *m16 = (int16_t *)
frame->data[ch];
917 uint8_t *m8 =
frame->data[ch];
921 frame->nb_samples = n;
925 if (ret < 0 || n + ret >
frame->nb_samples)
930 for (
int i = 0;
i <
ret;
i++) {
931 int m =
s->ch[ch].buf0[2560 +
i];
937 for (
int i = 0;
i <
ret;
i++) {
938 int m =
s->ch[ch].buf0[2560 +
i];
940 m8[n +
i] = m + 0x7f;
961 for (
int ch = 0; ch < 2; ch++) {
964 for (
int i = 0;
i < 11;
i++)
#define FF_CODEC_CAP_INIT_CLEANUP
The codec allows calling the close function for deallocation even if the init function returned a fai...
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
int32_t buf1[131072+2560]
int sample_rate
samples per second
static int ac_update(ACoder *ac, int freq, int mul)
This structure describes decoded (raw) audio or video data.
static void adaptive_model_free(AdaptiveModel *am)
int nb_channels
Number of channels in this layout.
AVCodec p
The public AVCodec.
AVChannelLayout ch_layout
Audio channel layout.
static int decode_filt_coeffs(RKAContext *s, ChContext *ctx, ACoder *ac, FiltCoeffs *dst)
uint32_t total_nb_samples
static double val(void *priv, double ch)
#define FF_ARRAY_ELEMS(a)
static int decode_filter(RKAContext *s, ChContext *ctx, ACoder *ac, int off, unsigned size)
#define FF_CODEC_DECODE_CB(func)
int(* init)(AVBSFContext *ctx)
int bits_per_raw_sample
Bits per sample/pixel of internal libavcodec pixel/sample format.
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
#define CODEC_LONG_NAME(str)
static float mul(float src0, float src1)
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
static int ac_dec_bit(ACoder *ac)
Describe the class of an AVClass context structure.
and forward the result(frame or status change) to the corresponding input. If nothing is possible
static void update_ch_subobj(AdaptiveModel *am)
static void init_acoder(ACoder *ac)
int32_t buf0[131072+2560]
static int adaptive_model_init(AdaptiveModel *am, int buf_size)
static void amdl_update_prob(AdaptiveModel *am, int val, int diff)
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
static av_always_inline int bytestream2_get_bytes_left(GetByteContext *g)
#define AV_CODEC_CAP_CHANNEL_CONF
Codec should fill in channel configuration and samplerate instead of container.
static const uint8_t tab[16]
static int decode_bool(ACoder *ac, ChContext *c, int idx)
AdaptiveModel * filt_size
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame.
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() or get_encode_buffer() for allocating buffers and supports custom allocators.
const FFCodec ff_rka_decoder
@ AV_SAMPLE_FMT_U8P
unsigned 8 bits, planar
static int shift(int a, int b)
enum AVSampleFormat sample_fmt
audio sample format
static av_always_inline int diff(const struct color_info *a, const struct color_info *b, const int trans_thresh)
static char * split(char *message, char delim)
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf offset
static int ac_decode_bool(ACoder *ac, int freq1, int freq2)
AdaptiveModel * filt_bits
@ AV_SAMPLE_FMT_S16P
signed 16 bits, planar
static void model64_init(Model64 *m, unsigned bits)
#define i(width, name, range_min, range_max)
uint8_t * extradata
some codecs need / can use extradata like Huffman tables.
static int amdl_decode_int(AdaptiveModel *am, ACoder *ac, unsigned *dst, unsigned size)
static int chctx_init(RKAContext *s, ChContext *c, int sample_rate, int bps)
#define av_malloc_array(a, b)
#define xf(width, name, var, range_min, range_max, subs,...)
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf default value
const char * name
Name of the codec implementation.
AdaptiveModel nb_segments
static const int8_t filt[NUMTAPS *2]
AdaptiveModel coeff_bits[11]
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
#define prob(name, subs,...)
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_RL32
main external API structure.
void av_channel_layout_uninit(AVChannelLayout *channel_layout)
Free any allocated data in the channel layout and reset the channel count to 0.
static int ac_get_freq(ACoder *ac, unsigned freq, int *result)
static float add(float src0, float src1)
static int rka_decode_frame(AVCodecContext *avctx, AVFrame *frame, int *got_frame_ptr, AVPacket *avpkt)
static int mdl64_decode(ACoder *ac, Model64 *ctx, int *dst)
static av_cold int rka_decode_init(AVCodecContext *avctx)
static av_cold int rka_decode_close(AVCodecContext *avctx)
This structure stores compressed data.
static av_always_inline void bytestream2_init(GetByteContext *g, const uint8_t *buf, int buf_size)
static int decode_ch_samples(AVCodecContext *avctx, ChContext *c)
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
static int decode_samples(AVCodecContext *avctx, ACoder *ac, ChContext *ctx, int offset)