Go to the documentation of this file.
54 int k, previous, present;
57 base =
powf((
float)stop / start, 1.0
f / num_bands);
61 for (k = 0; k < num_bands-1; k++) {
64 bands[k] = present - previous;
67 bands[num_bands-1] = stop - previous;
75 static const double exp2_tab[2] = {1,
M_SQRT2};
80 float temp1, temp2, fac;
95 fac = temp1 / (1.0f + temp2);
101 for (k = 0; k < sbr->
n_q; k++) {
106 fac = temp1 / (1.0f + temp2);
112 for (ch = 0; ch < (id_aac ==
TYPE_CPE) + 1; ch++) {
127 for (k = 0; k < sbr->
n_q; k++)
139 float (*alpha0)[2],
float (*alpha1)[2],
140 const float X_low[32][40][2],
int k0)
143 for (k = 0; k < k0; k++) {
149 dk = phi[2][1][0] * phi[1][0][0] -
150 (phi[1][1][0] * phi[1][1][0] + phi[1][1][1] * phi[1][1][1]) / 1.000001
f;
156 float temp_real, temp_im;
157 temp_real = phi[0][0][0] * phi[1][1][0] -
158 phi[0][0][1] * phi[1][1][1] -
159 phi[0][1][0] * phi[1][0][0];
160 temp_im = phi[0][0][0] * phi[1][1][1] +
161 phi[0][0][1] * phi[1][1][0] -
162 phi[0][1][1] * phi[1][0][0];
164 alpha1[k][0] = temp_real / dk;
165 alpha1[k][1] = temp_im / dk;
172 float temp_real, temp_im;
173 temp_real = phi[0][0][0] + alpha1[k][0] * phi[1][1][0] +
174 alpha1[k][1] * phi[1][1][1];
175 temp_im = phi[0][0][1] + alpha1[k][1] * phi[1][1][0] -
176 alpha1[k][0] * phi[1][1][1];
178 alpha0[k][0] = -temp_real / phi[1][0][0];
179 alpha0[k][1] = -temp_im / phi[1][0][0];
182 if (alpha1[k][0] * alpha1[k][0] + alpha1[k][1] * alpha1[k][1] >= 16.0
f ||
183 alpha0[k][0] * alpha0[k][0] + alpha0[k][1] * alpha0[k][1] >= 16.0
f) {
197 static const float bw_tab[] = { 0.0f, 0.75f, 0.9f, 0.98f };
199 for (
i = 0;
i < sbr->
n_q;
i++) {
205 if (new_bw < ch_data->bw_array[
i]) {
206 new_bw = 0.75f * new_bw + 0.25f * ch_data->
bw_array[
i];
208 new_bw = 0.90625f * new_bw + 0.09375f * ch_data->
bw_array[
i];
209 ch_data->
bw_array[
i] = new_bw < 0.015625f ? 0.0f : new_bw;
218 SBRData *ch_data,
const int e_a[2])
222 static const float limgain[4] = { 0.70795, 1.0, 1.41254, 10000000000 };
225 int delta = !((e == e_a[1]) || (e == e_a[0]));
226 for (k = 0; k < sbr->
n_lim; k++) {
227 float gain_boost, gain_max;
228 float sum[2] = { 0.0f, 0.0f };
229 for (m = sbr->
f_tablelim[k] - sbr->
kx[1]; m < sbr->f_tablelim[k + 1] - sbr->
kx[1]; m++) {
235 ((1.0f + sbr->
e_curr[e][m]) *
239 ((1.0f + sbr->
e_curr[e][m]) *
242 sbr->
gain[e][m] += FLT_MIN;
244 for (m = sbr->
f_tablelim[k] - sbr->
kx[1]; m < sbr->f_tablelim[k + 1] - sbr->
kx[1]; m++) {
246 sum[1] += sbr->
e_curr[e][m];
249 gain_max =
FFMIN(100000.
f, gain_max);
250 for (m = sbr->
f_tablelim[k] - sbr->
kx[1]; m < sbr->f_tablelim[k + 1] - sbr->
kx[1]; m++) {
251 float q_m_max = sbr->
q_m[e][m] * gain_max / sbr->
gain[e][m];
255 sum[0] = sum[1] = 0.0f;
256 for (m = sbr->
f_tablelim[k] - sbr->
kx[1]; m < sbr->f_tablelim[k + 1] - sbr->
kx[1]; m++) {
259 + sbr->
s_m[e][m] * sbr->
s_m[e][m]
262 gain_boost =
sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
263 gain_boost =
FFMIN(1.584893192
f, gain_boost);
264 for (m = sbr->
f_tablelim[k] - sbr->
kx[1]; m < sbr->f_tablelim[k + 1] - sbr->
kx[1]; m++) {
265 sbr->
gain[e][m] *= gain_boost;
266 sbr->
q_m[e][m] *= gain_boost;
267 sbr->
s_m[e][m] *= gain_boost;
275 const float X_high[64][40][2],
281 const int kx = sbr->
kx[1];
282 const int m_max = sbr->
m[1];
283 static const float h_smooth[5] = {
295 for (
i = 0;
i < h_SL;
i++) {
296 memcpy(g_temp[
i + 2*ch_data->
t_env[0]], sbr->
gain[0], m_max *
sizeof(sbr->
gain[0][0]));
297 memcpy(q_temp[
i + 2*ch_data->
t_env[0]], sbr->
q_m[0], m_max *
sizeof(sbr->
q_m[0][0]));
300 for (
i = 0;
i < 4;
i++) {
301 memcpy(g_temp[
i + 2 * ch_data->
t_env[0]],
304 memcpy(q_temp[
i + 2 * ch_data->
t_env[0]],
311 for (
i = 2 * ch_data->
t_env[e]; i < 2 * ch_data->t_env[e + 1];
i++) {
312 memcpy(g_temp[h_SL +
i], sbr->
gain[e], m_max *
sizeof(sbr->
gain[0][0]));
313 memcpy(q_temp[h_SL +
i], sbr->
q_m[e], m_max *
sizeof(sbr->
q_m[0][0]));
318 for (
i = 2 * ch_data->
t_env[e]; i < 2 * ch_data->t_env[e + 1];
i++) {
321 float *g_filt, *q_filt;
323 if (h_SL && e != e_a[0] && e != e_a[1]) {
326 for (m = 0; m < m_max; m++) {
327 const int idx1 =
i + h_SL;
330 for (j = 0; j <= h_SL; j++) {
331 g_filt[m] += g_temp[idx1 - j][m] * h_smooth[j];
332 q_filt[m] += q_temp[idx1 - j][m] * h_smooth[j];
336 g_filt = g_temp[
i + h_SL];
343 if (e != e_a[0] && e != e_a[1]) {
348 int idx = indexsine&1;
349 int A = (1-((indexsine+(kx & 1))&2));
350 int B = (
A^(-idx)) + idx;
351 float *
out = &Y1[
i][kx][idx];
352 float *in = sbr->
s_m[e];
353 for (m = 0; m+1 < m_max; m+=2) {
354 out[2*m ] += in[m ] *
A;
355 out[2*m+2] += in[m+1] *
B;
358 out[2*m ] += in[m ] *
A;
360 indexnoise = (indexnoise + m_max) & 0x1ff;
361 indexsine = (indexsine + 1) & 3;
unsigned bs_limiter_gains
AAC_FLOAT e_origmapped[7][48]
Dequantized envelope scalefactors, remapped.
AAC_FLOAT env_facs[6][48]
static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data)
Chirp Factors (14496-3 sp04 p214)
static void sbr_hf_inverse_filter(SBRDSPContext *dsp, float(*alpha0)[2], float(*alpha1)[2], const float X_low[32][40][2], int k0)
High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering (14496-3 sp04 p214) Warning: Thi...
AAC_SIGNE m[2]
M' and M respectively, M is the number of QMF subbands that use SBR.
AAC_FLOAT q_m[7][48]
Amplitude adjusted noise scalefactors.
uint8_t t_env_num_env_old
Envelope time border of the last envelope of the previous frame.
uint8_t t_env[8]
Envelope time borders.
AAC_FLOAT noise_facs[3][5]
static void sbr_hf_assemble(float Y1[38][64][2], const float X_high[64][40][2], SpectralBandReplication *sbr, SBRData *ch_data, const int e_a[2])
Assembling HF Signals (14496-3 sp04 p220)
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
static av_always_inline float ff_exp2fi(int x)
2^(x) for integer x
#define LOCAL_ALIGNED_16(t, v,...)
#define av_assert0(cond)
assert() equivalent, that is always enabled.
#define NOISE_FLOOR_OFFSET
void(* autocorrelate)(const INTFLOAT x[40][2], AAC_FLOAT phi[3][2][2])
static const float bands[]
AAC_FLOAT s_m[7][48]
Sinusoidal levels.
AAC_SIGNE n_lim
Number of limiter bands.
uint8_t env_facs_q[6][48]
Envelope scalefactors.
uint16_t f_tablelim[30]
Frequency borders for the limiter.
aacsbr functions pointers
static __device__ float sqrtf(float a)
void(* hf_g_filt)(INTFLOAT(*Y)[2], const INTFLOAT(*X_high)[40][2], const AAC_FLOAT *g_filt, int m_max, intptr_t ixh)
static void make_bands(int16_t *bands, int start, int stop, int num_bands)
AAC_SIGNE n[2]
N_Low and N_High respectively, the number of frequency bands for low and high resolution.
uint8_t s_indexmapped[8][48]
unsigned bs_smoothing_mode
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
Spectral Band Replication.
uint8_t bs_invf_mode[2][5]
void(* hf_apply_noise[4])(INTFLOAT(*Y)[2], const AAC_FLOAT *s_m, const AAC_FLOAT *q_filt, int noise, int kx, int m_max)
AAC_SIGNE n_q
Number of noise floor bands.
AAC_FLOAT e_curr[7][48]
Estimated envelope.
#define i(width, name, range_min, range_max)
Spectral Band Replication per channel data.
INTFLOAT bw_array[5]
Chirp factors.
static void aacsbr_func_ptr_init(AACSBRContext *c)
static void sbr_dequant(SpectralBandReplication *sbr, int id_aac)
Dequantization and stereo decoding (14496-3 sp04 p203)
uint8_t noise_facs_q[3][5]
Noise scalefactors.
static void sbr_gain_calc(AACContext *ac, SpectralBandReplication *sbr, SBRData *ch_data, const int e_a[2])
Calculation of levels of additional HF signal components (14496-3 sp04 p219) and Calculation of gain ...
#define ENVELOPE_ADJUSTMENT_OFFSET
AAC_FLOAT q_mapped[7][48]
Dequantized noise scalefactors, remapped.
AAC_SIGNE kx[2]
kx', and kx respectively, kx is the first QMF subband where SBR is used.
uint8_t s_mapped[7][48]
Sinusoidal presence, remapped.