FFmpeg
aacdec.c
Go to the documentation of this file.
1 /*
2  * Common parts of the AAC decoders
3  * Copyright (c) 2005-2006 Oded Shimon ( ods15 ods15 dyndns org )
4  * Copyright (c) 2006-2007 Maxim Gavrilov ( maxim.gavrilov gmail com )
5  * Copyright (c) 2008-2013 Alex Converse <alex.converse@gmail.com>
6  *
7  * AAC LATM decoder
8  * Copyright (c) 2008-2010 Paul Kendall <paul@kcbbs.gen.nz>
9  * Copyright (c) 2010 Janne Grunau <janne-libav@jannau.net>
10  *
11  * AAC decoder fixed-point implementation
12  * Copyright (c) 2013
13  * MIPS Technologies, Inc., California.
14  *
15  * This file is part of FFmpeg.
16  *
17  * FFmpeg is free software; you can redistribute it and/or
18  * modify it under the terms of the GNU Lesser General Public
19  * License as published by the Free Software Foundation; either
20  * version 2.1 of the License, or (at your option) any later version.
21  *
22  * FFmpeg is distributed in the hope that it will be useful,
23  * but WITHOUT ANY WARRANTY; without even the implied warranty of
24  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
25  * Lesser General Public License for more details.
26  *
27  * You should have received a copy of the GNU Lesser General Public
28  * License along with FFmpeg; if not, write to the Free Software
29  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
30  */
31 
32 /* We use several quantization functions here (Q31, Q30),
33  * for which we need this to be defined for them to work as expected. */
34 #define USE_FIXED 1
35 
36 #include "config_components.h"
37 
38 #include <limits.h>
39 #include <stddef.h>
40 
41 #include "aacdec.h"
42 #include "aacdec_tab.h"
43 #include "aacdec_usac.h"
44 
45 #include "libavcodec/aac.h"
46 #include "libavcodec/aac_defines.h"
47 #include "libavcodec/aacsbr.h"
48 #include "libavcodec/aactab.h"
49 #include "libavcodec/adts_header.h"
50 
51 #include "libavcodec/avcodec.h"
52 #include "libavcodec/internal.h"
54 #include "libavcodec/decode.h"
55 #include "libavcodec/profiles.h"
56 
57 #include "libavutil/attributes.h"
58 #include "libavutil/error.h"
59 #include "libavutil/log.h"
60 #include "libavutil/macros.h"
61 #include "libavutil/mem.h"
62 #include "libavutil/opt.h"
63 #include "libavutil/tx.h"
64 #include "libavutil/version.h"
65 
66 /*
67  * supported tools
68  *
69  * Support? Name
70  * N (code in SoC repo) gain control
71  * Y block switching
72  * Y window shapes - standard
73  * N window shapes - Low Delay
74  * Y filterbank - standard
75  * N (code in SoC repo) filterbank - Scalable Sample Rate
76  * Y Temporal Noise Shaping
77  * Y Long Term Prediction
78  * Y intensity stereo
79  * Y channel coupling
80  * Y frequency domain prediction
81  * Y Perceptual Noise Substitution
82  * Y Mid/Side stereo
83  * N Scalable Inverse AAC Quantization
84  * N Frequency Selective Switch
85  * N upsampling filter
86  * Y quantization & coding - AAC
87  * N quantization & coding - TwinVQ
88  * N quantization & coding - BSAC
89  * N AAC Error Resilience tools
90  * N Error Resilience payload syntax
91  * N Error Protection tool
92  * N CELP
93  * N Silence Compression
94  * N HVXC
95  * N HVXC 4kbits/s VR
96  * N Structured Audio tools
97  * N Structured Audio Sample Bank Format
98  * N MIDI
99  * N Harmonic and Individual Lines plus Noise
100  * N Text-To-Speech Interface
101  * Y Spectral Band Replication
102  * Y (not in this code) Layer-1
103  * Y (not in this code) Layer-2
104  * Y (not in this code) Layer-3
105  * N SinuSoidal Coding (Transient, Sinusoid, Noise)
106  * Y Parametric Stereo
107  * N Direct Stream Transfer
108  * Y (not in fixed point code) Enhanced AAC Low Delay (ER AAC ELD)
109  *
110  * Note: - HE AAC v1 comprises LC AAC with Spectral Band Replication.
111  * - HE AAC v2 comprises LC AAC with Spectral Band Replication and
112  Parametric Stereo.
113  */
114 
115 #define overread_err "Input buffer exhausted before END element found\n"
116 
117 static int count_channels(uint8_t (*layout)[3], int tags)
118 {
119  int i, sum = 0;
120  for (i = 0; i < tags; i++) {
121  int syn_ele = layout[i][0];
122  int pos = layout[i][2];
123  sum += (1 + (syn_ele == TYPE_CPE)) *
125  }
126  return sum;
127 }
128 
129 /**
130  * Check for the channel element in the current channel position configuration.
131  * If it exists, make sure the appropriate element is allocated and map the
132  * channel order to match the internal FFmpeg channel layout.
133  *
134  * @param che_pos current channel position configuration
135  * @param type channel element type
136  * @param id channel element id
137  * @param channels count of the number of channels in the configuration
138  *
139  * @return Returns error status. 0 - OK, !0 - error
140  */
142  enum ChannelPosition che_pos,
143  int type, int id, int *channels)
144 {
145  if (*channels >= MAX_CHANNELS)
146  return AVERROR_INVALIDDATA;
147  if (che_pos) {
148  if (!ac->che[type][id]) {
149  int ret = ac->proc.sbr_ctx_alloc_init(ac, &ac->che[type][id], type);
150  if (ret < 0)
151  return ret;
152  }
153  if (type != TYPE_CCE) {
154  if (*channels >= MAX_CHANNELS - (type == TYPE_CPE || (type == TYPE_SCE && ac->oc[1].m4ac.ps == 1))) {
155  av_log(ac->avctx, AV_LOG_ERROR, "Too many channels\n");
156  return AVERROR_INVALIDDATA;
157  }
158  ac->output_element[(*channels)++] = &ac->che[type][id]->ch[0];
159  if (type == TYPE_CPE ||
160  (type == TYPE_SCE && ac->oc[1].m4ac.ps == 1)) {
161  ac->output_element[(*channels)++] = &ac->che[type][id]->ch[1];
162  }
163  }
164  } else {
165  if (ac->che[type][id]) {
166  ac->proc.sbr_ctx_close(ac->che[type][id]);
167  }
168  av_freep(&ac->che[type][id]);
169  }
170  return 0;
171 }
172 
174 {
175  AACDecContext *ac = avctx->priv_data;
176  int type, id, ch, ret;
177 
178  /* set channel pointers to internal buffers by default */
179  for (type = 0; type < 4; type++) {
180  for (id = 0; id < MAX_ELEM_ID; id++) {
181  ChannelElement *che = ac->che[type][id];
182  if (che) {
183  che->ch[0].output = che->ch[0].ret_buf;
184  che->ch[1].output = che->ch[1].ret_buf;
185  }
186  }
187  }
188 
189  /* get output buffer */
190  av_frame_unref(ac->frame);
191  if (!avctx->ch_layout.nb_channels)
192  return 1;
193 
194  ac->frame->nb_samples = 2048;
195  if ((ret = ff_get_buffer(avctx, ac->frame, 0)) < 0)
196  return ret;
197 
198  /* map output channel pointers to AVFrame data */
199  for (ch = 0; ch < avctx->ch_layout.nb_channels; ch++) {
200  if (ac->output_element[ch])
201  ac->output_element[ch]->output = (void *)ac->frame->extended_data[ch];
202  }
203 
204  return 0;
205 }
206 
208  uint64_t av_position;
209  uint8_t syn_ele;
210  uint8_t elem_id;
211  uint8_t aac_position;
212 };
213 
214 static int assign_pair(struct elem_to_channel e2c_vec[MAX_ELEM_ID],
215  uint8_t (*layout_map)[3], int offset, uint64_t left,
216  uint64_t right, int pos, uint64_t *layout)
217 {
218  if (layout_map[offset][0] == TYPE_CPE) {
219  e2c_vec[offset] = (struct elem_to_channel) {
220  .av_position = left | right,
221  .syn_ele = TYPE_CPE,
222  .elem_id = layout_map[offset][1],
223  .aac_position = pos
224  };
225  if (e2c_vec[offset].av_position != UINT64_MAX)
226  *layout |= e2c_vec[offset].av_position;
227 
228  return 1;
229  } else {
230  e2c_vec[offset] = (struct elem_to_channel) {
231  .av_position = left,
232  .syn_ele = TYPE_SCE,
233  .elem_id = layout_map[offset][1],
234  .aac_position = pos
235  };
236  e2c_vec[offset + 1] = (struct elem_to_channel) {
237  .av_position = right,
238  .syn_ele = TYPE_SCE,
239  .elem_id = layout_map[offset + 1][1],
240  .aac_position = pos
241  };
242  if (left != UINT64_MAX)
243  *layout |= left;
244 
245  if (right != UINT64_MAX)
246  *layout |= right;
247 
248  return 2;
249  }
250 }
251 
252 static int count_paired_channels(uint8_t (*layout_map)[3], int tags, int pos,
253  int current)
254 {
255  int num_pos_channels = 0;
256  int first_cpe = 0;
257  int sce_parity = 0;
258  int i;
259  for (i = current; i < tags; i++) {
260  if (layout_map[i][2] != pos)
261  break;
262  if (layout_map[i][0] == TYPE_CPE) {
263  if (sce_parity) {
264  if (pos == AAC_CHANNEL_FRONT && !first_cpe) {
265  sce_parity = 0;
266  } else {
267  return -1;
268  }
269  }
270  num_pos_channels += 2;
271  first_cpe = 1;
272  } else {
273  num_pos_channels++;
274  sce_parity ^= (pos != AAC_CHANNEL_LFE);
275  }
276  }
277  if (sce_parity &&
278  (pos == AAC_CHANNEL_FRONT && first_cpe))
279  return -1;
280 
281  return num_pos_channels;
282 }
283 
284 static int assign_channels(struct elem_to_channel e2c_vec[MAX_ELEM_ID], uint8_t (*layout_map)[3],
285  uint64_t *layout, int tags, int layer, int pos, int *current)
286 {
287  int i = *current, j = 0;
288  int nb_channels = count_paired_channels(layout_map, tags, pos, i);
289 
290  if (nb_channels < 0 || nb_channels > 5)
291  return 0;
292 
293  if (pos == AAC_CHANNEL_LFE) {
294  while (nb_channels) {
295  if (ff_aac_channel_map[layer][pos - 1][j] == AV_CHAN_NONE)
296  return -1;
297  e2c_vec[i] = (struct elem_to_channel) {
298  .av_position = 1ULL << ff_aac_channel_map[layer][pos - 1][j],
299  .syn_ele = layout_map[i][0],
300  .elem_id = layout_map[i][1],
301  .aac_position = pos
302  };
303  *layout |= e2c_vec[i].av_position;
304  i++;
305  j++;
306  nb_channels--;
307  }
308  *current = i;
309 
310  return 0;
311  }
312 
313  while (nb_channels & 1) {
314  if (ff_aac_channel_map[layer][pos - 1][0] == AV_CHAN_NONE)
315  return -1;
316  if (ff_aac_channel_map[layer][pos - 1][0] == AV_CHAN_UNUSED)
317  break;
318  e2c_vec[i] = (struct elem_to_channel) {
319  .av_position = 1ULL << ff_aac_channel_map[layer][pos - 1][0],
320  .syn_ele = layout_map[i][0],
321  .elem_id = layout_map[i][1],
322  .aac_position = pos
323  };
324  *layout |= e2c_vec[i].av_position;
325  i++;
326  nb_channels--;
327  }
328 
329  j = (pos != AAC_CHANNEL_SIDE) && nb_channels <= 3 ? 3 : 1;
330  while (nb_channels >= 2) {
331  if (ff_aac_channel_map[layer][pos - 1][j] == AV_CHAN_NONE ||
332  ff_aac_channel_map[layer][pos - 1][j+1] == AV_CHAN_NONE)
333  return -1;
334  i += assign_pair(e2c_vec, layout_map, i,
335  1ULL << ff_aac_channel_map[layer][pos - 1][j],
336  1ULL << ff_aac_channel_map[layer][pos - 1][j+1],
337  pos, layout);
338  j += 2;
339  nb_channels -= 2;
340  }
341  while (nb_channels & 1) {
342  if (ff_aac_channel_map[layer][pos - 1][5] == AV_CHAN_NONE)
343  return -1;
344  e2c_vec[i] = (struct elem_to_channel) {
345  .av_position = 1ULL << ff_aac_channel_map[layer][pos - 1][5],
346  .syn_ele = layout_map[i][0],
347  .elem_id = layout_map[i][1],
348  .aac_position = pos
349  };
350  *layout |= e2c_vec[i].av_position;
351  i++;
352  nb_channels--;
353  }
354  if (nb_channels)
355  return -1;
356 
357  *current = i;
358 
359  return 0;
360 }
361 
362 static uint64_t sniff_channel_order(uint8_t (*layout_map)[3], int tags)
363 {
364  int i, n, total_non_cc_elements;
365  struct elem_to_channel e2c_vec[4 * MAX_ELEM_ID] = { { 0 } };
366  uint64_t layout = 0;
367 
368  if (FF_ARRAY_ELEMS(e2c_vec) < tags)
369  return 0;
370 
371  for (n = 0, i = 0; n < 3 && i < tags; n++) {
372  int ret = assign_channels(e2c_vec, layout_map, &layout, tags, n, AAC_CHANNEL_FRONT, &i);
373  if (ret < 0)
374  return 0;
375  ret = assign_channels(e2c_vec, layout_map, &layout, tags, n, AAC_CHANNEL_SIDE, &i);
376  if (ret < 0)
377  return 0;
378  ret = assign_channels(e2c_vec, layout_map, &layout, tags, n, AAC_CHANNEL_BACK, &i);
379  if (ret < 0)
380  return 0;
381  ret = assign_channels(e2c_vec, layout_map, &layout, tags, n, AAC_CHANNEL_LFE, &i);
382  if (ret < 0)
383  return 0;
384  }
385 
386  total_non_cc_elements = n = i;
387 
388  if (layout == AV_CH_LAYOUT_22POINT2) {
389  // For 22.2 reorder the result as needed
390  FFSWAP(struct elem_to_channel, e2c_vec[2], e2c_vec[0]); // FL & FR first (final), FC third
391  FFSWAP(struct elem_to_channel, e2c_vec[2], e2c_vec[1]); // FC second (final), FLc & FRc third
392  FFSWAP(struct elem_to_channel, e2c_vec[6], e2c_vec[2]); // LFE1 third (final), FLc & FRc seventh
393  FFSWAP(struct elem_to_channel, e2c_vec[4], e2c_vec[3]); // BL & BR fourth (final), SiL & SiR fifth
394  FFSWAP(struct elem_to_channel, e2c_vec[6], e2c_vec[4]); // FLc & FRc fifth (final), SiL & SiR seventh
395  FFSWAP(struct elem_to_channel, e2c_vec[7], e2c_vec[6]); // LFE2 seventh (final), SiL & SiR eight (final)
396  FFSWAP(struct elem_to_channel, e2c_vec[9], e2c_vec[8]); // TpFL & TpFR ninth (final), TFC tenth (final)
397  FFSWAP(struct elem_to_channel, e2c_vec[11], e2c_vec[10]); // TC eleventh (final), TpSiL & TpSiR twelth
398  FFSWAP(struct elem_to_channel, e2c_vec[12], e2c_vec[11]); // TpBL & TpBR twelth (final), TpSiL & TpSiR thirteenth (final)
399  } else {
400  // For everything else, utilize the AV channel position define as a
401  // stable sort.
402  do {
403  int next_n = 0;
404  for (i = 1; i < n; i++)
405  if (e2c_vec[i - 1].av_position > e2c_vec[i].av_position) {
406  FFSWAP(struct elem_to_channel, e2c_vec[i - 1], e2c_vec[i]);
407  next_n = i;
408  }
409  n = next_n;
410  } while (n > 0);
411 
412  }
413 
414  for (i = 0; i < total_non_cc_elements; i++) {
415  layout_map[i][0] = e2c_vec[i].syn_ele;
416  layout_map[i][1] = e2c_vec[i].elem_id;
417  layout_map[i][2] = e2c_vec[i].aac_position;
418  }
419 
420  return layout;
421 }
422 
423 /**
424  * Save current output configuration if and only if it has been locked.
425  */
427 {
428  int pushed = 0;
429 
430  if (ac->oc[1].status == OC_LOCKED || ac->oc[0].status == OC_NONE) {
431  ac->oc[0] = ac->oc[1];
432  pushed = 1;
433  }
434  ac->oc[1].status = OC_NONE;
435  return pushed;
436 }
437 
438 /**
439  * Restore the previous output configuration if and only if the current
440  * configuration is unlocked.
441  */
443 {
444  if (ac->oc[1].status != OC_LOCKED && ac->oc[0].status != OC_NONE) {
445  ac->oc[1] = ac->oc[0];
446  ac->avctx->ch_layout = ac->oc[1].ch_layout;
448  ac->oc[1].status, 0);
449  }
450 }
451 
452 /**
453  * Configure output channel order based on the current program
454  * configuration element.
455  *
456  * @return Returns error status. 0 - OK, !0 - error
457  */
459  uint8_t layout_map[MAX_ELEM_ID * 4][3], int tags,
460  enum OCStatus oc_type, int get_new_frame)
461 {
462  AVCodecContext *avctx = ac->avctx;
463  int i, channels = 0, ret;
464  uint64_t layout = 0;
465  uint8_t id_map[TYPE_END][MAX_ELEM_ID] = {{ 0 }};
466  uint8_t type_counts[TYPE_END] = { 0 };
467 
468  if (ac->oc[1].layout_map != layout_map) {
469  memcpy(ac->oc[1].layout_map, layout_map, tags * sizeof(layout_map[0]));
470  ac->oc[1].layout_map_tags = tags;
471  }
472  for (i = 0; i < tags; i++) {
473  int type = layout_map[i][0];
474  int id = layout_map[i][1];
475  id_map[type][id] = type_counts[type]++;
476  if (id_map[type][id] >= MAX_ELEM_ID) {
477  avpriv_request_sample(ac->avctx, "Too large remapped id");
478  return AVERROR_PATCHWELCOME;
479  }
480  }
481  // Try to sniff a reasonable channel order, otherwise output the
482  // channels in the order the PCE declared them.
484  layout = sniff_channel_order(layout_map, tags);
485  for (i = 0; i < tags; i++) {
486  int type = layout_map[i][0];
487  int id = layout_map[i][1];
488  int iid = id_map[type][id];
489  int position = layout_map[i][2];
490  // Allocate or free elements depending on if they are in the
491  // current program configuration.
492  ret = che_configure(ac, position, type, iid, &channels);
493  if (ret < 0)
494  return ret;
495  ac->tag_che_map[type][id] = ac->che[type][iid];
496  }
497  if (ac->oc[1].m4ac.ps == 1 && channels == 2) {
498  if (layout == AV_CH_FRONT_CENTER) {
500  } else {
501  layout = 0;
502  }
503  }
504 
506  if (layout)
508  else {
510  ac->oc[1].ch_layout.nb_channels = channels;
511  }
512 
513  av_channel_layout_copy(&avctx->ch_layout, &ac->oc[1].ch_layout);
514  ac->oc[1].status = oc_type;
515 
516  if (get_new_frame) {
517  if ((ret = frame_configure_elements(ac->avctx)) < 0)
518  return ret;
519  }
520 
521  return 0;
522 }
523 
524 static av_cold void flush(AVCodecContext *avctx)
525 {
526  AACDecContext *ac= avctx->priv_data;
527  int type, i, j;
528 
529  for (type = 3; type >= 0; type--) {
530  for (i = 0; i < MAX_ELEM_ID; i++) {
531  ChannelElement *che = ac->che[type][i];
532  if (che) {
533  for (j = 0; j <= 1; j++) {
534  memset(che->ch[j].saved, 0, sizeof(che->ch[j].saved));
535  }
536  }
537  }
538  }
539 
540  ff_aac_usac_reset_state(ac, &ac->oc[1]);
541 }
542 
543 /**
544  * Set up channel positions based on a default channel configuration
545  * as specified in table 1.17.
546  *
547  * @return Returns error status. 0 - OK, !0 - error
548  */
550  uint8_t (*layout_map)[3],
551  int *tags,
552  int channel_config)
553 {
554  if (channel_config < 1 || (channel_config > 7 && channel_config < 11) ||
555  channel_config > 14) {
556  av_log(avctx, AV_LOG_ERROR,
557  "invalid default channel configuration (%d)\n",
558  channel_config);
559  return AVERROR_INVALIDDATA;
560  }
561  *tags = ff_tags_per_config[channel_config];
562  memcpy(layout_map, ff_aac_channel_layout_map[channel_config - 1],
563  *tags * sizeof(*layout_map));
564 
565  /*
566  * AAC specification has 7.1(wide) as a default layout for 8-channel streams.
567  * However, at least Nero AAC encoder encodes 7.1 streams using the default
568  * channel config 7, mapping the side channels of the original audio stream
569  * to the second AAC_CHANNEL_FRONT pair in the AAC stream. Similarly, e.g. FAAD
570  * decodes the second AAC_CHANNEL_FRONT pair as side channels, therefore decoding
571  * the incorrect streams as if they were correct (and as the encoder intended).
572  *
573  * As actual intended 7.1(wide) streams are very rare, default to assuming a
574  * 7.1 layout was intended.
575  */
576  if (channel_config == 7 && avctx->strict_std_compliance < FF_COMPLIANCE_STRICT) {
577  layout_map[2][2] = AAC_CHANNEL_BACK;
578 
579  if (!ac || !ac->warned_71_wide++) {
580  av_log(avctx, AV_LOG_INFO, "Assuming an incorrectly encoded 7.1 channel layout"
581  " instead of a spec-compliant 7.1(wide) layout, use -strict %d to decode"
582  " according to the specification instead.\n", FF_COMPLIANCE_STRICT);
583  }
584  }
585 
586  return 0;
587 }
588 
590 {
591  /* For PCE based channel configurations map the channels solely based
592  * on tags. */
593  if (!ac->oc[1].m4ac.chan_config) {
594  return ac->tag_che_map[type][elem_id];
595  }
596  // Allow single CPE stereo files to be signalled with mono configuration.
597  if (!ac->tags_mapped && type == TYPE_CPE &&
598  ac->oc[1].m4ac.chan_config == 1) {
599  uint8_t layout_map[MAX_ELEM_ID*4][3];
600  int layout_map_tags;
602 
603  av_log(ac->avctx, AV_LOG_DEBUG, "mono with CPE\n");
604 
605  if (ff_aac_set_default_channel_config(ac, ac->avctx, layout_map,
606  &layout_map_tags, 2) < 0)
607  return NULL;
608  if (ff_aac_output_configure(ac, layout_map, layout_map_tags,
609  OC_TRIAL_FRAME, 1) < 0)
610  return NULL;
611 
612  ac->oc[1].m4ac.chan_config = 2;
613  ac->oc[1].m4ac.ps = 0;
614  }
615  // And vice-versa
616  if (!ac->tags_mapped && type == TYPE_SCE &&
617  ac->oc[1].m4ac.chan_config == 2) {
618  uint8_t layout_map[MAX_ELEM_ID * 4][3];
619  int layout_map_tags;
621 
622  av_log(ac->avctx, AV_LOG_DEBUG, "stereo with SCE\n");
623 
624  layout_map_tags = 2;
625  layout_map[0][0] = layout_map[1][0] = TYPE_SCE;
626  layout_map[0][2] = layout_map[1][2] = AAC_CHANNEL_FRONT;
627  layout_map[0][1] = 0;
628  layout_map[1][1] = 1;
629  if (ff_aac_output_configure(ac, layout_map, layout_map_tags,
630  OC_TRIAL_FRAME, 1) < 0)
631  return NULL;
632 
633  if (ac->oc[1].m4ac.sbr)
634  ac->oc[1].m4ac.ps = -1;
635  }
636  /* For indexed channel configurations map the channels solely based
637  * on position. */
638  switch (ac->oc[1].m4ac.chan_config) {
639  case 14:
640  if (ac->tags_mapped > 2 && ((type == TYPE_CPE && elem_id < 3) ||
641  (type == TYPE_LFE && elem_id < 1))) {
642  ac->tags_mapped++;
643  return ac->tag_che_map[type][elem_id] = ac->che[type][elem_id];
644  }
645  case 13:
646  if (ac->tags_mapped > 3 && ((type == TYPE_CPE && elem_id < 8) ||
647  (type == TYPE_SCE && elem_id < 6) ||
648  (type == TYPE_LFE && elem_id < 2))) {
649  ac->tags_mapped++;
650  return ac->tag_che_map[type][elem_id] = ac->che[type][elem_id];
651  }
652  case 12:
653  case 7:
654  if (ac->tags_mapped == 3 && type == TYPE_CPE) {
655  ac->tags_mapped++;
656  return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][2];
657  }
658  case 11:
659  if (ac->tags_mapped == 3 && type == TYPE_SCE) {
660  ac->tags_mapped++;
661  return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][1];
662  }
663  case 6:
664  /* Some streams incorrectly code 5.1 audio as
665  * SCE[0] CPE[0] CPE[1] SCE[1]
666  * instead of
667  * SCE[0] CPE[0] CPE[1] LFE[0].
668  * If we seem to have encountered such a stream, transfer
669  * the LFE[0] element to the SCE[1]'s mapping */
670  if (ac->tags_mapped == ff_tags_per_config[ac->oc[1].m4ac.chan_config] - 1 && (type == TYPE_LFE || type == TYPE_SCE)) {
671  if (!ac->warned_remapping_once && (type != TYPE_LFE || elem_id != 0)) {
673  "This stream seems to incorrectly report its last channel as %s[%d], mapping to LFE[0]\n",
674  type == TYPE_SCE ? "SCE" : "LFE", elem_id);
675  ac->warned_remapping_once++;
676  }
677  ac->tags_mapped++;
678  return ac->tag_che_map[type][elem_id] = ac->che[TYPE_LFE][0];
679  }
680  case 5:
681  if (ac->tags_mapped == 2 && type == TYPE_CPE) {
682  ac->tags_mapped++;
683  return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][1];
684  }
685  case 4:
686  /* Some streams incorrectly code 4.0 audio as
687  * SCE[0] CPE[0] LFE[0]
688  * instead of
689  * SCE[0] CPE[0] SCE[1].
690  * If we seem to have encountered such a stream, transfer
691  * the SCE[1] element to the LFE[0]'s mapping */
692  if (ac->tags_mapped == ff_tags_per_config[ac->oc[1].m4ac.chan_config] - 1 && (type == TYPE_LFE || type == TYPE_SCE)) {
693  if (!ac->warned_remapping_once && (type != TYPE_SCE || elem_id != 1)) {
695  "This stream seems to incorrectly report its last channel as %s[%d], mapping to SCE[1]\n",
696  type == TYPE_SCE ? "SCE" : "LFE", elem_id);
697  ac->warned_remapping_once++;
698  }
699  ac->tags_mapped++;
700  return ac->tag_che_map[type][elem_id] = ac->che[TYPE_SCE][1];
701  }
702  if (ac->tags_mapped == 2 &&
703  ac->oc[1].m4ac.chan_config == 4 &&
704  type == TYPE_SCE) {
705  ac->tags_mapped++;
706  return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][1];
707  }
708  case 3:
709  case 2:
710  if (ac->tags_mapped == (ac->oc[1].m4ac.chan_config != 2) &&
711  type == TYPE_CPE) {
712  ac->tags_mapped++;
713  return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][0];
714  } else if (ac->tags_mapped == 1 && ac->oc[1].m4ac.chan_config == 2 &&
715  type == TYPE_SCE) {
716  ac->tags_mapped++;
717  return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][1];
718  }
719  case 1:
720  if (!ac->tags_mapped && type == TYPE_SCE) {
721  ac->tags_mapped++;
722  return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][0];
723  }
724  default:
725  return NULL;
726  }
727 }
728 
729 /**
730  * Decode an array of 4 bit element IDs, optionally interleaved with a
731  * stereo/mono switching bit.
732  *
733  * @param type speaker type/position for these channels
734  */
735 static void decode_channel_map(uint8_t layout_map[][3],
736  enum ChannelPosition type,
737  GetBitContext *gb, int n)
738 {
739  while (n--) {
741  switch (type) {
742  case AAC_CHANNEL_FRONT:
743  case AAC_CHANNEL_BACK:
744  case AAC_CHANNEL_SIDE:
745  syn_ele = get_bits1(gb);
746  break;
747  case AAC_CHANNEL_CC:
748  skip_bits1(gb);
749  syn_ele = TYPE_CCE;
750  break;
751  case AAC_CHANNEL_LFE:
752  syn_ele = TYPE_LFE;
753  break;
754  default:
755  // AAC_CHANNEL_OFF has no channel map
756  av_assert0(0);
757  }
758  layout_map[0][0] = syn_ele;
759  layout_map[0][1] = get_bits(gb, 4);
760  layout_map[0][2] = type;
761  layout_map++;
762  }
763 }
764 
765 static inline void relative_align_get_bits(GetBitContext *gb,
766  int reference_position) {
767  int n = (reference_position - get_bits_count(gb) & 7);
768  if (n)
769  skip_bits(gb, n);
770 }
771 
772 /**
773  * Decode program configuration element; reference: table 4.2.
774  *
775  * @return Returns error status. 0 - OK, !0 - error
776  */
777 static int decode_pce(AVCodecContext *avctx, MPEG4AudioConfig *m4ac,
778  uint8_t (*layout_map)[3],
779  GetBitContext *gb, int byte_align_ref)
780 {
781  int num_front, num_side, num_back, num_lfe, num_assoc_data, num_cc;
782  int sampling_index;
783  int comment_len;
784  int tags;
785 
786  skip_bits(gb, 2); // object_type
787 
788  sampling_index = get_bits(gb, 4);
789  if (m4ac->sampling_index != sampling_index)
790  av_log(avctx, AV_LOG_WARNING,
791  "Sample rate index in program config element does not "
792  "match the sample rate index configured by the container.\n");
793 
794  num_front = get_bits(gb, 4);
795  num_side = get_bits(gb, 4);
796  num_back = get_bits(gb, 4);
797  num_lfe = get_bits(gb, 2);
798  num_assoc_data = get_bits(gb, 3);
799  num_cc = get_bits(gb, 4);
800 
801  if (get_bits1(gb))
802  skip_bits(gb, 4); // mono_mixdown_tag
803  if (get_bits1(gb))
804  skip_bits(gb, 4); // stereo_mixdown_tag
805 
806  if (get_bits1(gb))
807  skip_bits(gb, 3); // mixdown_coeff_index and pseudo_surround
808 
809  if (get_bits_left(gb) < 5 * (num_front + num_side + num_back + num_cc) + 4 *(num_lfe + num_assoc_data + num_cc)) {
810  av_log(avctx, AV_LOG_ERROR, "decode_pce: " overread_err);
811  return -1;
812  }
813  decode_channel_map(layout_map , AAC_CHANNEL_FRONT, gb, num_front);
814  tags = num_front;
815  decode_channel_map(layout_map + tags, AAC_CHANNEL_SIDE, gb, num_side);
816  tags += num_side;
817  decode_channel_map(layout_map + tags, AAC_CHANNEL_BACK, gb, num_back);
818  tags += num_back;
819  decode_channel_map(layout_map + tags, AAC_CHANNEL_LFE, gb, num_lfe);
820  tags += num_lfe;
821 
822  skip_bits_long(gb, 4 * num_assoc_data);
823 
824  decode_channel_map(layout_map + tags, AAC_CHANNEL_CC, gb, num_cc);
825  tags += num_cc;
826 
827  relative_align_get_bits(gb, byte_align_ref);
828 
829  /* comment field, first byte is length */
830  comment_len = get_bits(gb, 8) * 8;
831  if (get_bits_left(gb) < comment_len) {
832  av_log(avctx, AV_LOG_ERROR, "decode_pce: " overread_err);
833  return AVERROR_INVALIDDATA;
834  }
835  skip_bits_long(gb, comment_len);
836  return tags;
837 }
838 
839 /**
840  * Decode GA "General Audio" specific configuration; reference: table 4.1.
841  *
842  * @param ac pointer to AACDecContext, may be null
843  * @param avctx pointer to AVCCodecContext, used for logging
844  *
845  * @return Returns error status. 0 - OK, !0 - error
846  */
848  GetBitContext *gb,
849  int get_bit_alignment,
850  MPEG4AudioConfig *m4ac,
851  int channel_config)
852 {
853  int extension_flag, ret, ep_config, res_flags;
854  uint8_t layout_map[MAX_ELEM_ID*4][3];
855  int tags = 0;
856 
857  m4ac->frame_length_short = get_bits1(gb);
858  if (m4ac->frame_length_short && m4ac->sbr == 1) {
859  avpriv_report_missing_feature(avctx, "SBR with 960 frame length");
860  if (ac) ac->warned_960_sbr = 1;
861  m4ac->sbr = 0;
862  m4ac->ps = 0;
863  }
864 
865  if (get_bits1(gb)) // dependsOnCoreCoder
866  skip_bits(gb, 14); // coreCoderDelay
867  extension_flag = get_bits1(gb);
868 
869  if (m4ac->object_type == AOT_AAC_SCALABLE ||
871  skip_bits(gb, 3); // layerNr
872 
873  if (channel_config == 0) {
874  skip_bits(gb, 4); // element_instance_tag
875  tags = decode_pce(avctx, m4ac, layout_map, gb, get_bit_alignment);
876  if (tags < 0)
877  return tags;
878  } else {
879  if ((ret = ff_aac_set_default_channel_config(ac, avctx, layout_map,
880  &tags, channel_config)))
881  return ret;
882  }
883 
884  if (count_channels(layout_map, tags) > 1) {
885  m4ac->ps = 0;
886  } else if (m4ac->sbr == 1 && m4ac->ps == -1)
887  m4ac->ps = 1;
888 
889  if (ac && (ret = ff_aac_output_configure(ac, layout_map, tags, OC_GLOBAL_HDR, 0)))
890  return ret;
891 
892  if (extension_flag) {
893  switch (m4ac->object_type) {
894  case AOT_ER_BSAC:
895  skip_bits(gb, 5); // numOfSubFrame
896  skip_bits(gb, 11); // layer_length
897  break;
898  case AOT_ER_AAC_LC:
899  case AOT_ER_AAC_LTP:
900  case AOT_ER_AAC_SCALABLE:
901  case AOT_ER_AAC_LD:
902  res_flags = get_bits(gb, 3);
903  if (res_flags) {
905  "AAC data resilience (flags %x)",
906  res_flags);
907  return AVERROR_PATCHWELCOME;
908  }
909  break;
910  }
911  skip_bits1(gb); // extensionFlag3 (TBD in version 3)
912  }
913  switch (m4ac->object_type) {
914  case AOT_ER_AAC_LC:
915  case AOT_ER_AAC_LTP:
916  case AOT_ER_AAC_SCALABLE:
917  case AOT_ER_AAC_LD:
918  ep_config = get_bits(gb, 2);
919  if (ep_config) {
921  "epConfig %d", ep_config);
922  return AVERROR_PATCHWELCOME;
923  }
924  }
925  return 0;
926 }
927 
929  GetBitContext *gb,
930  MPEG4AudioConfig *m4ac,
931  int channel_config)
932 {
933  int ret, ep_config, res_flags;
934  uint8_t layout_map[MAX_ELEM_ID*4][3];
935  int tags = 0;
936  const int ELDEXT_TERM = 0;
937 
938  m4ac->ps = 0;
939  m4ac->sbr = 0;
940  m4ac->frame_length_short = get_bits1(gb);
941 
942  res_flags = get_bits(gb, 3);
943  if (res_flags) {
945  "AAC data resilience (flags %x)",
946  res_flags);
947  return AVERROR_PATCHWELCOME;
948  }
949 
950  if (get_bits1(gb)) { // ldSbrPresentFlag
952  "Low Delay SBR");
953  return AVERROR_PATCHWELCOME;
954  }
955 
956  while (get_bits(gb, 4) != ELDEXT_TERM) {
957  int len = get_bits(gb, 4);
958  if (len == 15)
959  len += get_bits(gb, 8);
960  if (len == 15 + 255)
961  len += get_bits(gb, 16);
962  if (get_bits_left(gb) < len * 8 + 4) {
964  return AVERROR_INVALIDDATA;
965  }
966  skip_bits_long(gb, 8 * len);
967  }
968 
969  if ((ret = ff_aac_set_default_channel_config(ac, avctx, layout_map,
970  &tags, channel_config)))
971  return ret;
972 
973  if (ac && (ret = ff_aac_output_configure(ac, layout_map, tags, OC_GLOBAL_HDR, 0)))
974  return ret;
975 
976  ep_config = get_bits(gb, 2);
977  if (ep_config) {
979  "epConfig %d", ep_config);
980  return AVERROR_PATCHWELCOME;
981  }
982  return 0;
983 }
984 
985 /**
986  * Decode audio specific configuration; reference: table 1.13.
987  *
988  * @param ac pointer to AACDecContext, may be null
989  * @param avctx pointer to AVCCodecContext, used for logging
990  * @param m4ac pointer to MPEG4AudioConfig, used for parsing
991  * @param gb buffer holding an audio specific config
992  * @param get_bit_alignment relative alignment for byte align operations
993  * @param sync_extension look for an appended sync extension
994  *
995  * @return Returns error status or number of consumed bits. <0 - error
996  */
998  AVCodecContext *avctx,
1000  GetBitContext *gb,
1001  int get_bit_alignment,
1002  int sync_extension)
1003 {
1004  int i, ret;
1005  GetBitContext gbc = *gb;
1006  MPEG4AudioConfig *m4ac = &oc->m4ac;
1007  MPEG4AudioConfig m4ac_bak = *m4ac;
1008 
1009  if ((i = ff_mpeg4audio_get_config_gb(m4ac, &gbc, sync_extension, avctx)) < 0) {
1010  *m4ac = m4ac_bak;
1011  return AVERROR_INVALIDDATA;
1012  }
1013 
1014  if (m4ac->sampling_index > 12) {
1015  av_log(avctx, AV_LOG_ERROR,
1016  "invalid sampling rate index %d\n",
1017  m4ac->sampling_index);
1018  *m4ac = m4ac_bak;
1019  return AVERROR_INVALIDDATA;
1020  }
1021  if (m4ac->object_type == AOT_ER_AAC_LD &&
1022  (m4ac->sampling_index < 3 || m4ac->sampling_index > 7)) {
1023  av_log(avctx, AV_LOG_ERROR,
1024  "invalid low delay sampling rate index %d\n",
1025  m4ac->sampling_index);
1026  *m4ac = m4ac_bak;
1027  return AVERROR_INVALIDDATA;
1028  }
1029 
1030  skip_bits_long(gb, i);
1031 
1032  switch (m4ac->object_type) {
1033  case AOT_AAC_MAIN:
1034  case AOT_AAC_LC:
1035  case AOT_AAC_SSR:
1036  case AOT_AAC_LTP:
1037  case AOT_ER_AAC_LC:
1038  case AOT_ER_AAC_LD:
1039  if ((ret = decode_ga_specific_config(ac, avctx, gb, get_bit_alignment,
1040  &oc->m4ac, m4ac->chan_config)) < 0)
1041  return ret;
1042  break;
1043  case AOT_ER_AAC_ELD:
1044  if ((ret = decode_eld_specific_config(ac, avctx, gb,
1045  &oc->m4ac, m4ac->chan_config)) < 0)
1046  return ret;
1047  break;
1048 #if CONFIG_AAC_DECODER
1049  case AOT_USAC:
1050  if ((ret = ff_aac_usac_config_decode(ac, avctx, gb,
1051  oc, m4ac->chan_config)) < 0)
1052  return ret;
1053  break;
1054 #endif
1055  default:
1057  "Audio object type %s%d",
1058  m4ac->sbr == 1 ? "SBR+" : "",
1059  m4ac->object_type);
1060  return AVERROR(ENOSYS);
1061  }
1062 
1063  ff_dlog(avctx,
1064  "AOT %d chan config %d sampling index %d (%d) SBR %d PS %d\n",
1065  m4ac->object_type, m4ac->chan_config, m4ac->sampling_index,
1066  m4ac->sample_rate, m4ac->sbr,
1067  m4ac->ps);
1068 
1069  return get_bits_count(gb);
1070 }
1071 
1073  AVCodecContext *avctx,
1074  OutputConfiguration *oc,
1075  const uint8_t *data, int64_t bit_size,
1076  int sync_extension)
1077 {
1078  int i, ret;
1079  GetBitContext gb;
1080 
1081  if (bit_size < 0 || bit_size > INT_MAX) {
1082  av_log(avctx, AV_LOG_ERROR, "Audio specific config size is invalid\n");
1083  return AVERROR_INVALIDDATA;
1084  }
1085 
1086  ff_dlog(avctx, "audio specific config size %d\n", (int)bit_size >> 3);
1087  for (i = 0; i < bit_size >> 3; i++)
1088  ff_dlog(avctx, "%02x ", data[i]);
1089  ff_dlog(avctx, "\n");
1090 
1091  if ((ret = init_get_bits(&gb, data, bit_size)) < 0)
1092  return ret;
1093 
1094  return decode_audio_specific_config_gb(ac, avctx, oc, &gb, 0,
1095  sync_extension);
1096 }
1097 
1099 {
1100  AACDecContext *ac = avctx->priv_data;
1101 
1102  for (int i = 0; i < 2; i++) {
1103  OutputConfiguration *oc = &ac->oc[i];
1104  AACUSACConfig *usac = &oc->usac;
1105  for (int j = 0; j < usac->nb_elems; j++) {
1106  AACUsacElemConfig *ec = &usac->elems[i];
1107  av_freep(&ec->ext.pl_data);
1108  }
1109  }
1110 
1111  for (int type = 0; type < FF_ARRAY_ELEMS(ac->che); type++) {
1112  for (int i = 0; i < MAX_ELEM_ID; i++) {
1113  if (ac->che[type][i]) {
1114  ac->proc.sbr_ctx_close(ac->che[type][i]);
1115  av_freep(&ac->che[type][i]);
1116  }
1117  }
1118  }
1119 
1120  av_tx_uninit(&ac->mdct96);
1121  av_tx_uninit(&ac->mdct120);
1122  av_tx_uninit(&ac->mdct128);
1123  av_tx_uninit(&ac->mdct480);
1124  av_tx_uninit(&ac->mdct512);
1125  av_tx_uninit(&ac->mdct768);
1126  av_tx_uninit(&ac->mdct960);
1127  av_tx_uninit(&ac->mdct1024);
1128  av_tx_uninit(&ac->mdct_ltp);
1129 
1130  // Compiler will optimize this branch away.
1131  if (ac->is_fixed)
1132  av_freep(&ac->RENAME_FIXED(fdsp));
1133  else
1134  av_freep(&ac->fdsp);
1135 
1136  return 0;
1137 }
1138 
1139 static av_cold int init_dsp(AVCodecContext *avctx)
1140 {
1141  AACDecContext *ac = avctx->priv_data;
1142  int is_fixed = ac->is_fixed, ret;
1143  float scale_fixed, scale_float;
1144  const float *const scalep = is_fixed ? &scale_fixed : &scale_float;
1145  enum AVTXType tx_type = is_fixed ? AV_TX_INT32_MDCT : AV_TX_FLOAT_MDCT;
1146 
1147 #define MDCT_INIT(s, fn, len, sval) \
1148  scale_fixed = (sval) * 128.0f; \
1149  scale_float = (sval) / 32768.0f; \
1150  ret = av_tx_init(&s, &fn, tx_type, 1, len, scalep, 0); \
1151  if (ret < 0) \
1152  return ret
1153 
1154  MDCT_INIT(ac->mdct96, ac->mdct96_fn, 96, 1.0/96);
1155  MDCT_INIT(ac->mdct120, ac->mdct120_fn, 120, 1.0/120);
1156  MDCT_INIT(ac->mdct128, ac->mdct128_fn, 128, 1.0/128);
1157  MDCT_INIT(ac->mdct480, ac->mdct480_fn, 480, 1.0/480);
1158  MDCT_INIT(ac->mdct512, ac->mdct512_fn, 512, 1.0/512);
1159  MDCT_INIT(ac->mdct768, ac->mdct768_fn, 768, 1.0/768);
1160  MDCT_INIT(ac->mdct960, ac->mdct960_fn, 960, 1.0/960);
1161  MDCT_INIT(ac->mdct1024, ac->mdct1024_fn, 1024, 1.0/1024);
1162 #undef MDCT_INIT
1163 
1164  /* LTP forward MDCT */
1165  scale_fixed = -1.0;
1166  scale_float = -32786.0*2 + 36;
1167  ret = av_tx_init(&ac->mdct_ltp, &ac->mdct_ltp_fn, tx_type, 0, 1024, scalep, 0);
1168  if (ret < 0)
1169  return ret;
1170 
1171  return 0;
1172 }
1173 
1175 {
1176  AACDecContext *ac = avctx->priv_data;
1177  int ret;
1178 
1179  if (avctx->sample_rate > 96000)
1180  return AVERROR_INVALIDDATA;
1181 
1183 
1184  ac->avctx = avctx;
1185  ac->oc[1].m4ac.sample_rate = avctx->sample_rate;
1186 
1187  if (avctx->extradata_size > 0) {
1188  if ((ret = decode_audio_specific_config(ac, ac->avctx, &ac->oc[1],
1189  avctx->extradata,
1190  avctx->extradata_size * 8LL,
1191  1)) < 0)
1192  return ret;
1193  } else {
1194  int sr, i;
1195  uint8_t layout_map[MAX_ELEM_ID*4][3];
1196  int layout_map_tags;
1197 
1198  sr = ff_aac_sample_rate_idx(avctx->sample_rate);
1199  ac->oc[1].m4ac.sampling_index = sr;
1200  ac->oc[1].m4ac.channels = avctx->ch_layout.nb_channels;
1201  ac->oc[1].m4ac.sbr = -1;
1202  ac->oc[1].m4ac.ps = -1;
1203 
1204  for (i = 0; i < FF_ARRAY_ELEMS(ff_mpeg4audio_channels); i++)
1206  break;
1208  i = 0;
1209  }
1210  ac->oc[1].m4ac.chan_config = i;
1211 
1212  if (ac->oc[1].m4ac.chan_config) {
1213  int ret = ff_aac_set_default_channel_config(ac, avctx, layout_map,
1214  &layout_map_tags,
1215  ac->oc[1].m4ac.chan_config);
1216  if (!ret)
1217  ff_aac_output_configure(ac, layout_map, layout_map_tags,
1218  OC_GLOBAL_HDR, 0);
1219  else if (avctx->err_recognition & AV_EF_EXPLODE)
1220  return AVERROR_INVALIDDATA;
1221  }
1222  }
1223 
1224  if (avctx->ch_layout.nb_channels > MAX_CHANNELS) {
1225  av_log(avctx, AV_LOG_ERROR, "Too many channels\n");
1226  return AVERROR_INVALIDDATA;
1227  }
1228 
1229  ac->random_state = 0x1f2e3d4c;
1230 
1231  return init_dsp(avctx);
1232 }
1233 
1234 /**
1235  * Skip data_stream_element; reference: table 4.10.
1236  */
1238 {
1239  int byte_align = get_bits1(gb);
1240  int count = get_bits(gb, 8);
1241  if (count == 255)
1242  count += get_bits(gb, 8);
1243  if (byte_align)
1244  align_get_bits(gb);
1245 
1246  if (get_bits_left(gb) < 8 * count) {
1247  av_log(ac->avctx, AV_LOG_ERROR, "skip_data_stream_element: "overread_err);
1248  return AVERROR_INVALIDDATA;
1249  }
1250  skip_bits_long(gb, 8 * count);
1251  return 0;
1252 }
1253 
1255  GetBitContext *gb)
1256 {
1257  int sfb;
1258  if (get_bits1(gb)) {
1259  ics->predictor_reset_group = get_bits(gb, 5);
1260  if (ics->predictor_reset_group == 0 ||
1261  ics->predictor_reset_group > 30) {
1262  av_log(ac->avctx, AV_LOG_ERROR,
1263  "Invalid Predictor Reset Group.\n");
1264  return AVERROR_INVALIDDATA;
1265  }
1266  }
1267  for (sfb = 0; sfb < FFMIN(ics->max_sfb, ff_aac_pred_sfb_max[ac->oc[1].m4ac.sampling_index]); sfb++) {
1268  ics->prediction_used[sfb] = get_bits1(gb);
1269  }
1270  return 0;
1271 }
1272 
1273 /**
1274  * Decode Long Term Prediction data; reference: table 4.xx.
1275  */
1277  GetBitContext *gb, uint8_t max_sfb)
1278 {
1279  int sfb;
1280 
1281  ltp->lag = get_bits(gb, 11);
1282  if (CONFIG_AAC_FIXED_DECODER && ac->is_fixed)
1283  ltp->coef_fixed = Q30(ff_ltp_coef[get_bits(gb, 3)]);
1284  else if (CONFIG_AAC_DECODER)
1285  ltp->coef = ff_ltp_coef[get_bits(gb, 3)];
1286 
1287  for (sfb = 0; sfb < FFMIN(max_sfb, MAX_LTP_LONG_SFB); sfb++)
1288  ltp->used[sfb] = get_bits1(gb);
1289 }
1290 
1291 /**
1292  * Decode Individual Channel Stream info; reference: table 4.6.
1293  */
1295  GetBitContext *gb)
1296 {
1297  const MPEG4AudioConfig *const m4ac = &ac->oc[1].m4ac;
1298  const int aot = m4ac->object_type;
1299  const int sampling_index = m4ac->sampling_index;
1300  int ret_fail = AVERROR_INVALIDDATA;
1301 
1302  if (aot != AOT_ER_AAC_ELD) {
1303  if (get_bits1(gb)) {
1304  av_log(ac->avctx, AV_LOG_ERROR, "Reserved bit set.\n");
1306  return AVERROR_INVALIDDATA;
1307  }
1308  ics->window_sequence[1] = ics->window_sequence[0];
1309  ics->window_sequence[0] = get_bits(gb, 2);
1310  if (aot == AOT_ER_AAC_LD &&
1311  ics->window_sequence[0] != ONLY_LONG_SEQUENCE) {
1312  av_log(ac->avctx, AV_LOG_ERROR,
1313  "AAC LD is only defined for ONLY_LONG_SEQUENCE but "
1314  "window sequence %d found.\n", ics->window_sequence[0]);
1316  return AVERROR_INVALIDDATA;
1317  }
1318  ics->use_kb_window[1] = ics->use_kb_window[0];
1319  ics->use_kb_window[0] = get_bits1(gb);
1320  }
1322  ics->num_window_groups = 1;
1323  ics->group_len[0] = 1;
1324  if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
1325  int i;
1326  ics->max_sfb = get_bits(gb, 4);
1327  for (i = 0; i < 7; i++) {
1328  if (get_bits1(gb)) {
1329  ics->group_len[ics->num_window_groups - 1]++;
1330  } else {
1331  ics->num_window_groups++;
1332  ics->group_len[ics->num_window_groups - 1] = 1;
1333  }
1334  }
1335  ics->num_windows = 8;
1336  if (m4ac->frame_length_short) {
1337  ics->swb_offset = ff_swb_offset_120[sampling_index];
1338  ics->num_swb = ff_aac_num_swb_120[sampling_index];
1339  } else {
1340  ics->swb_offset = ff_swb_offset_128[sampling_index];
1341  ics->num_swb = ff_aac_num_swb_128[sampling_index];
1342  }
1343  ics->tns_max_bands = ff_tns_max_bands_128[sampling_index];
1344  ics->predictor_present = 0;
1345  } else {
1346  ics->max_sfb = get_bits(gb, 6);
1347  ics->num_windows = 1;
1348  if (aot == AOT_ER_AAC_LD || aot == AOT_ER_AAC_ELD) {
1349  if (m4ac->frame_length_short) {
1350  ics->swb_offset = ff_swb_offset_480[sampling_index];
1351  ics->num_swb = ff_aac_num_swb_480[sampling_index];
1352  ics->tns_max_bands = ff_tns_max_bands_480[sampling_index];
1353  } else {
1354  ics->swb_offset = ff_swb_offset_512[sampling_index];
1355  ics->num_swb = ff_aac_num_swb_512[sampling_index];
1356  ics->tns_max_bands = ff_tns_max_bands_512[sampling_index];
1357  }
1358  if (!ics->num_swb || !ics->swb_offset) {
1359  ret_fail = AVERROR_BUG;
1360  goto fail;
1361  }
1362  } else {
1363  if (m4ac->frame_length_short) {
1364  ics->num_swb = ff_aac_num_swb_960[sampling_index];
1365  ics->swb_offset = ff_swb_offset_960[sampling_index];
1366  } else {
1367  ics->num_swb = ff_aac_num_swb_1024[sampling_index];
1368  ics->swb_offset = ff_swb_offset_1024[sampling_index];
1369  }
1370  ics->tns_max_bands = ff_tns_max_bands_1024[sampling_index];
1371  }
1372  if (aot != AOT_ER_AAC_ELD) {
1373  ics->predictor_present = get_bits1(gb);
1374  ics->predictor_reset_group = 0;
1375  }
1376  if (ics->predictor_present) {
1377  if (aot == AOT_AAC_MAIN) {
1378  if (decode_prediction(ac, ics, gb)) {
1379  goto fail;
1380  }
1381  } else if (aot == AOT_AAC_LC ||
1382  aot == AOT_ER_AAC_LC) {
1383  av_log(ac->avctx, AV_LOG_ERROR,
1384  "Prediction is not allowed in AAC-LC.\n");
1385  goto fail;
1386  } else {
1387  if (aot == AOT_ER_AAC_LD) {
1388  av_log(ac->avctx, AV_LOG_ERROR,
1389  "LTP in ER AAC LD not yet implemented.\n");
1390  ret_fail = AVERROR_PATCHWELCOME;
1391  goto fail;
1392  }
1393  if ((ics->ltp.present = get_bits(gb, 1)))
1394  decode_ltp(ac, &ics->ltp, gb, ics->max_sfb);
1395  }
1396  }
1397  }
1398 
1399  if (ics->max_sfb > ics->num_swb) {
1400  av_log(ac->avctx, AV_LOG_ERROR,
1401  "Number of scalefactor bands in group (%d) "
1402  "exceeds limit (%d).\n",
1403  ics->max_sfb, ics->num_swb);
1404  goto fail;
1405  }
1406 
1407  return 0;
1408 fail:
1409  ics->max_sfb = 0;
1410  return ret_fail;
1411 }
1412 
1413 /**
1414  * Decode band types (section_data payload); reference: table 4.46.
1415  *
1416  * @param band_type array of the used band type
1417  * @param band_type_run_end array of the last scalefactor band of a band type run
1418  *
1419  * @return Returns error status. 0 - OK, !0 - error
1420  */
1422  GetBitContext *gb)
1423 {
1424  IndividualChannelStream *ics = &sce->ics;
1425  const int bits = (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) ? 3 : 5;
1426 
1427  for (int g = 0; g < ics->num_window_groups; g++) {
1428  int k = 0;
1429  while (k < ics->max_sfb) {
1430  uint8_t sect_end = k;
1431  int sect_len_incr;
1432  int sect_band_type = get_bits(gb, 4);
1433  if (sect_band_type == 12) {
1434  av_log(ac->avctx, AV_LOG_ERROR, "invalid band type\n");
1435  return AVERROR_INVALIDDATA;
1436  }
1437  do {
1438  sect_len_incr = get_bits(gb, bits);
1439  sect_end += sect_len_incr;
1440  if (get_bits_left(gb) < 0) {
1441  av_log(ac->avctx, AV_LOG_ERROR, "decode_band_types: "overread_err);
1442  return AVERROR_INVALIDDATA;
1443  }
1444  if (sect_end > ics->max_sfb) {
1445  av_log(ac->avctx, AV_LOG_ERROR,
1446  "Number of bands (%d) exceeds limit (%d).\n",
1447  sect_end, ics->max_sfb);
1448  return AVERROR_INVALIDDATA;
1449  }
1450  } while (sect_len_incr == (1 << bits) - 1);
1451  for (; k < sect_end; k++)
1452  sce->band_type[g*ics->max_sfb + k] = sect_band_type;
1453  }
1454  }
1455  return 0;
1456 }
1457 
1458 /**
1459  * Decode scalefactors; reference: table 4.47.
1460  *
1461  * @param global_gain first scalefactor value as scalefactors are differentially coded
1462  * @param band_type array of the used band type
1463  * @param band_type_run_end array of the last scalefactor band of a band type run
1464  * @param sf array of scalefactors or intensity stereo positions
1465  *
1466  * @return Returns error status. 0 - OK, !0 - error
1467  */
1469  GetBitContext *gb, unsigned int global_gain)
1470 {
1471  IndividualChannelStream *ics = &sce->ics;
1472  int offset[3] = { global_gain, global_gain - NOISE_OFFSET, 0 };
1473  int clipped_offset;
1474  int noise_flag = 1;
1475 
1476  for (int g = 0; g < ics->num_window_groups; g++) {
1477  for (int sfb = 0; sfb < ics->max_sfb; sfb++) {
1478  switch (sce->band_type[g*ics->max_sfb + sfb]) {
1479  case ZERO_BT:
1480  sce->sfo[g*ics->max_sfb + sfb] = 0;
1481  break;
1482  case INTENSITY_BT: /* fallthrough */
1483  case INTENSITY_BT2:
1485  clipped_offset = av_clip(offset[2], -155, 100);
1486  if (offset[2] != clipped_offset) {
1488  "If you heard an audible artifact, there may be a bug in the decoder. "
1489  "Clipped intensity stereo position (%d -> %d)",
1490  offset[2], clipped_offset);
1491  }
1492  sce->sfo[g*ics->max_sfb + sfb] = clipped_offset - 100;
1493  break;
1494  case NOISE_BT:
1495  if (noise_flag-- > 0)
1496  offset[1] += get_bits(gb, NOISE_PRE_BITS) - NOISE_PRE;
1497  else
1499  clipped_offset = av_clip(offset[1], -100, 155);
1500  if (offset[1] != clipped_offset) {
1502  "If you heard an audible artifact, there may be a bug in the decoder. "
1503  "Clipped noise gain (%d -> %d)",
1504  offset[1], clipped_offset);
1505  }
1506  sce->sfo[g*ics->max_sfb + sfb] = clipped_offset;
1507  break;
1508  default:
1510  if (offset[0] > 255U) {
1511  av_log(ac->avctx, AV_LOG_ERROR,
1512  "Scalefactor (%d) out of range.\n", offset[0]);
1513  return AVERROR_INVALIDDATA;
1514  }
1515  sce->sfo[g*ics->max_sfb + sfb] = offset[0] - 100;
1516  break;
1517  }
1518  }
1519  }
1520 
1521  return 0;
1522 }
1523 
1524 /**
1525  * Decode pulse data; reference: table 4.7.
1526  */
1527 static int decode_pulses(Pulse *pulse, GetBitContext *gb,
1528  const uint16_t *swb_offset, int num_swb)
1529 {
1530  int i, pulse_swb;
1531  pulse->num_pulse = get_bits(gb, 2) + 1;
1532  pulse_swb = get_bits(gb, 6);
1533  if (pulse_swb >= num_swb)
1534  return -1;
1535  pulse->pos[0] = swb_offset[pulse_swb];
1536  pulse->pos[0] += get_bits(gb, 5);
1537  if (pulse->pos[0] >= swb_offset[num_swb])
1538  return -1;
1539  pulse->amp[0] = get_bits(gb, 4);
1540  for (i = 1; i < pulse->num_pulse; i++) {
1541  pulse->pos[i] = get_bits(gb, 5) + pulse->pos[i - 1];
1542  if (pulse->pos[i] >= swb_offset[num_swb])
1543  return -1;
1544  pulse->amp[i] = get_bits(gb, 4);
1545  }
1546  return 0;
1547 }
1548 
1549 /**
1550  * Decode Temporal Noise Shaping data; reference: table 4.48.
1551  *
1552  * @return Returns error status. 0 - OK, !0 - error
1553  */
1555  GetBitContext *gb, const IndividualChannelStream *ics)
1556 {
1557  int tns_max_order = INT32_MAX;
1558  const int is_usac = ac->oc[1].m4ac.object_type == AOT_USAC;
1559  int w, filt, i, coef_len, coef_res, coef_compress;
1560  const int is8 = ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE;
1561 
1562  /* USAC doesn't seem to have a limit */
1563  if (!is_usac)
1564  tns_max_order = is8 ? 7 : ac->oc[1].m4ac.object_type == AOT_AAC_MAIN ? 20 : 12;
1565 
1566  for (w = 0; w < ics->num_windows; w++) {
1567  if ((tns->n_filt[w] = get_bits(gb, 2 - is8))) {
1568  coef_res = get_bits1(gb);
1569 
1570  for (filt = 0; filt < tns->n_filt[w]; filt++) {
1571  int tmp2_idx;
1572  tns->length[w][filt] = get_bits(gb, 6 - 2 * is8);
1573 
1574  if (is_usac)
1575  tns->order[w][filt] = get_bits(gb, 4 - is8);
1576  else
1577  tns->order[w][filt] = get_bits(gb, 5 - (2 * is8));
1578 
1579  if (tns->order[w][filt] > tns_max_order) {
1580  av_log(ac->avctx, AV_LOG_ERROR,
1581  "TNS filter order %d is greater than maximum %d.\n",
1582  tns->order[w][filt], tns_max_order);
1583  tns->order[w][filt] = 0;
1584  return AVERROR_INVALIDDATA;
1585  }
1586  if (tns->order[w][filt]) {
1587  tns->direction[w][filt] = get_bits1(gb);
1588  coef_compress = get_bits1(gb);
1589  coef_len = coef_res + 3 - coef_compress;
1590  tmp2_idx = 2 * coef_compress + coef_res;
1591 
1592  for (i = 0; i < tns->order[w][filt]; i++) {
1593  if (CONFIG_AAC_FIXED_DECODER && ac->is_fixed)
1594  tns->coef_fixed[w][filt][i] = Q31(ff_tns_tmp2_map[tmp2_idx][get_bits(gb, coef_len)]);
1595  else if (CONFIG_AAC_DECODER)
1596  tns->coef[w][filt][i] = ff_tns_tmp2_map[tmp2_idx][get_bits(gb, coef_len)];
1597  }
1598  }
1599  }
1600  }
1601  }
1602  return 0;
1603 }
1604 
1605 /**
1606  * Decode Mid/Side data; reference: table 4.54.
1607  *
1608  * @param ms_present Indicates mid/side stereo presence. [0] mask is all 0s;
1609  * [1] mask is decoded from bitstream; [2] mask is all 1s;
1610  * [3] reserved for scalable AAC
1611  */
1613  int ms_present)
1614 {
1615  int idx;
1616  int max_idx = cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb;
1617  cpe->max_sfb_ste = cpe->ch[0].ics.max_sfb;
1618  if (ms_present == 1) {
1619  for (idx = 0; idx < max_idx; idx++)
1620  cpe->ms_mask[idx] = get_bits1(gb);
1621  } else if (ms_present == 2) {
1622  memset(cpe->ms_mask, 1, max_idx * sizeof(cpe->ms_mask[0]));
1623  }
1624 }
1625 
1627 {
1628  // wd_num, wd_test, aloc_size
1629  static const uint8_t gain_mode[4][3] = {
1630  {1, 0, 5}, // ONLY_LONG_SEQUENCE = 0,
1631  {2, 1, 2}, // LONG_START_SEQUENCE,
1632  {8, 0, 2}, // EIGHT_SHORT_SEQUENCE,
1633  {2, 1, 5}, // LONG_STOP_SEQUENCE
1634  };
1635 
1636  const int mode = sce->ics.window_sequence[0];
1637  uint8_t bd, wd, ad;
1638 
1639  // FIXME: Store the gain control data on |sce| and do something with it.
1640  uint8_t max_band = get_bits(gb, 2);
1641  for (bd = 0; bd < max_band; bd++) {
1642  for (wd = 0; wd < gain_mode[mode][0]; wd++) {
1643  uint8_t adjust_num = get_bits(gb, 3);
1644  for (ad = 0; ad < adjust_num; ad++) {
1645  skip_bits(gb, 4 + ((wd == 0 && gain_mode[mode][1])
1646  ? 4
1647  : gain_mode[mode][2]));
1648  }
1649  }
1650  }
1651 }
1652 
1653 /**
1654  * Decode an individual_channel_stream payload; reference: table 4.44.
1655  *
1656  * @param common_window Channels have independent [0], or shared [1], Individual Channel Stream information.
1657  * @param scale_flag scalable [1] or non-scalable [0] AAC (Unused until scalable AAC is implemented.)
1658  *
1659  * @return Returns error status. 0 - OK, !0 - error
1660  */
1662  GetBitContext *gb, int common_window, int scale_flag)
1663 {
1664  Pulse pulse;
1665  TemporalNoiseShaping *tns = &sce->tns;
1666  IndividualChannelStream *ics = &sce->ics;
1667  int global_gain, eld_syntax, er_syntax, pulse_present = 0;
1668  int ret;
1669 
1670  eld_syntax = ac->oc[1].m4ac.object_type == AOT_ER_AAC_ELD;
1671  er_syntax = ac->oc[1].m4ac.object_type == AOT_ER_AAC_LC ||
1672  ac->oc[1].m4ac.object_type == AOT_ER_AAC_LTP ||
1673  ac->oc[1].m4ac.object_type == AOT_ER_AAC_LD ||
1674  ac->oc[1].m4ac.object_type == AOT_ER_AAC_ELD;
1675 
1676  /* This assignment is to silence a GCC warning about the variable being used
1677  * uninitialized when in fact it always is.
1678  */
1679  pulse.num_pulse = 0;
1680 
1681  global_gain = get_bits(gb, 8);
1682 
1683  if (!common_window && !scale_flag) {
1684  ret = decode_ics_info(ac, ics, gb);
1685  if (ret < 0)
1686  goto fail;
1687  }
1688 
1689  if ((ret = decode_band_types(ac, sce, gb)) < 0)
1690  goto fail;
1691  if ((ret = decode_scalefactors(ac, sce, gb, global_gain)) < 0)
1692  goto fail;
1693 
1694  ac->dsp.dequant_scalefactors(sce);
1695 
1696  pulse_present = 0;
1697  if (!scale_flag) {
1698  if (!eld_syntax && (pulse_present = get_bits1(gb))) {
1699  if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
1700  av_log(ac->avctx, AV_LOG_ERROR,
1701  "Pulse tool not allowed in eight short sequence.\n");
1703  goto fail;
1704  }
1705  if (decode_pulses(&pulse, gb, ics->swb_offset, ics->num_swb)) {
1706  av_log(ac->avctx, AV_LOG_ERROR,
1707  "Pulse data corrupt or invalid.\n");
1709  goto fail;
1710  }
1711  }
1712  tns->present = get_bits1(gb);
1713  if (tns->present && !er_syntax) {
1714  ret = ff_aac_decode_tns(ac, tns, gb, ics);
1715  if (ret < 0)
1716  goto fail;
1717  }
1718  if (!eld_syntax && get_bits1(gb)) {
1719  decode_gain_control(sce, gb);
1720  if (!ac->warned_gain_control) {
1721  avpriv_report_missing_feature(ac->avctx, "Gain control");
1722  ac->warned_gain_control = 1;
1723  }
1724  }
1725  // I see no textual basis in the spec for this occurring after SSR gain
1726  // control, but this is what both reference and real implmentations do
1727  if (tns->present && er_syntax) {
1728  ret = ff_aac_decode_tns(ac, tns, gb, ics);
1729  if (ret < 0)
1730  goto fail;
1731  }
1732  }
1733 
1734  ret = ac->proc.decode_spectrum_and_dequant(ac, gb,
1735  pulse_present ? &pulse : NULL,
1736  sce);
1737  if (ret < 0)
1738  goto fail;
1739 
1740  if (ac->oc[1].m4ac.object_type == AOT_AAC_MAIN && !common_window)
1741  ac->dsp.apply_prediction(ac, sce);
1742 
1743  return 0;
1744 fail:
1745  tns->present = 0;
1746  return ret;
1747 }
1748 
1749 /**
1750  * Decode a channel_pair_element; reference: table 4.4.
1751  *
1752  * @return Returns error status. 0 - OK, !0 - error
1753  */
1755 {
1756  int i, ret, common_window, ms_present = 0;
1757  int eld_syntax = ac->oc[1].m4ac.object_type == AOT_ER_AAC_ELD;
1758 
1759  common_window = eld_syntax || get_bits1(gb);
1760  if (common_window) {
1761  if (decode_ics_info(ac, &cpe->ch[0].ics, gb))
1762  return AVERROR_INVALIDDATA;
1763  i = cpe->ch[1].ics.use_kb_window[0];
1764  cpe->ch[1].ics = cpe->ch[0].ics;
1765  cpe->ch[1].ics.use_kb_window[1] = i;
1766  if (cpe->ch[1].ics.predictor_present &&
1767  (ac->oc[1].m4ac.object_type != AOT_AAC_MAIN))
1768  if ((cpe->ch[1].ics.ltp.present = get_bits(gb, 1)))
1769  decode_ltp(ac, &cpe->ch[1].ics.ltp, gb, cpe->ch[1].ics.max_sfb);
1770  ms_present = get_bits(gb, 2);
1771  if (ms_present == 3) {
1772  av_log(ac->avctx, AV_LOG_ERROR, "ms_present = 3 is reserved.\n");
1773  return AVERROR_INVALIDDATA;
1774  } else if (ms_present)
1775  decode_mid_side_stereo(cpe, gb, ms_present);
1776  }
1777  if ((ret = ff_aac_decode_ics(ac, &cpe->ch[0], gb, common_window, 0)))
1778  return ret;
1779  if ((ret = ff_aac_decode_ics(ac, &cpe->ch[1], gb, common_window, 0)))
1780  return ret;
1781 
1782  if (common_window) {
1783  if (ms_present)
1784  ac->dsp.apply_mid_side_stereo(ac, cpe);
1785  if (ac->oc[1].m4ac.object_type == AOT_AAC_MAIN) {
1786  ac->dsp.apply_prediction(ac, &cpe->ch[0]);
1787  ac->dsp.apply_prediction(ac, &cpe->ch[1]);
1788  }
1789  }
1790 
1791  ac->dsp.apply_intensity_stereo(ac, cpe, ms_present);
1792  return 0;
1793 }
1794 
1795 /**
1796  * Parse whether channels are to be excluded from Dynamic Range Compression; reference: table 4.53.
1797  *
1798  * @return Returns number of bytes consumed.
1799  */
1801  GetBitContext *gb)
1802 {
1803  int i;
1804  int num_excl_chan = 0;
1805 
1806  do {
1807  for (i = 0; i < 7; i++)
1808  che_drc->exclude_mask[num_excl_chan++] = get_bits1(gb);
1809  } while (num_excl_chan < MAX_CHANNELS - 7 && get_bits1(gb));
1810 
1811  return num_excl_chan / 7;
1812 }
1813 
1814 /**
1815  * Decode dynamic range information; reference: table 4.52.
1816  *
1817  * @return Returns number of bytes consumed.
1818  */
1820  GetBitContext *gb)
1821 {
1822  int n = 1;
1823  int drc_num_bands = 1;
1824  int i;
1825 
1826  /* pce_tag_present? */
1827  if (get_bits1(gb)) {
1828  che_drc->pce_instance_tag = get_bits(gb, 4);
1829  skip_bits(gb, 4); // tag_reserved_bits
1830  n++;
1831  }
1832 
1833  /* excluded_chns_present? */
1834  if (get_bits1(gb)) {
1835  n += decode_drc_channel_exclusions(che_drc, gb);
1836  }
1837 
1838  /* drc_bands_present? */
1839  if (get_bits1(gb)) {
1840  che_drc->band_incr = get_bits(gb, 4);
1841  che_drc->interpolation_scheme = get_bits(gb, 4);
1842  n++;
1843  drc_num_bands += che_drc->band_incr;
1844  for (i = 0; i < drc_num_bands; i++) {
1845  che_drc->band_top[i] = get_bits(gb, 8);
1846  n++;
1847  }
1848  }
1849 
1850  /* prog_ref_level_present? */
1851  if (get_bits1(gb)) {
1852  che_drc->prog_ref_level = get_bits(gb, 7);
1853  skip_bits1(gb); // prog_ref_level_reserved_bits
1854  n++;
1855  }
1856 
1857  for (i = 0; i < drc_num_bands; i++) {
1858  che_drc->dyn_rng_sgn[i] = get_bits1(gb);
1859  che_drc->dyn_rng_ctl[i] = get_bits(gb, 7);
1860  n++;
1861  }
1862 
1863  return n;
1864 }
1865 
1866 static int decode_fill(AACDecContext *ac, GetBitContext *gb, int len) {
1867  uint8_t buf[256];
1868  int i, major, minor;
1869 
1870  if (len < 13+7*8)
1871  goto unknown;
1872 
1873  get_bits(gb, 13); len -= 13;
1874 
1875  for(i=0; i+1<sizeof(buf) && len>=8; i++, len-=8)
1876  buf[i] = get_bits(gb, 8);
1877 
1878  buf[i] = 0;
1879  if (ac->avctx->debug & FF_DEBUG_PICT_INFO)
1880  av_log(ac->avctx, AV_LOG_DEBUG, "FILL:%s\n", buf);
1881 
1882  if (sscanf(buf, "libfaac %d.%d", &major, &minor) == 2){
1883  ac->avctx->internal->skip_samples = 1024;
1884  }
1885 
1886 unknown:
1887  skip_bits_long(gb, len);
1888 
1889  return 0;
1890 }
1891 
1892 /**
1893  * Decode extension data (incomplete); reference: table 4.51.
1894  *
1895  * @param cnt length of TYPE_FIL syntactic element in bytes
1896  *
1897  * @return Returns number of bytes consumed
1898  */
1900  ChannelElement *che, enum RawDataBlockType elem_type)
1901 {
1902  int crc_flag = 0;
1903  int res = cnt;
1904  int type = get_bits(gb, 4);
1905 
1906  if (ac->avctx->debug & FF_DEBUG_STARTCODE)
1907  av_log(ac->avctx, AV_LOG_DEBUG, "extension type: %d len:%d\n", type, cnt);
1908 
1909  switch (type) { // extension type
1910  case EXT_SBR_DATA_CRC:
1911  crc_flag++;
1912  case EXT_SBR_DATA:
1913  if (!che) {
1914  av_log(ac->avctx, AV_LOG_ERROR, "SBR was found before the first channel element.\n");
1915  return res;
1916  } else if (ac->oc[1].m4ac.frame_length_short) {
1917  if (!ac->warned_960_sbr)
1919  "SBR with 960 frame length");
1920  ac->warned_960_sbr = 1;
1921  skip_bits_long(gb, 8 * cnt - 4);
1922  return res;
1923  } else if (!ac->oc[1].m4ac.sbr) {
1924  av_log(ac->avctx, AV_LOG_ERROR, "SBR signaled to be not-present but was found in the bitstream.\n");
1925  skip_bits_long(gb, 8 * cnt - 4);
1926  return res;
1927  } else if (ac->oc[1].m4ac.sbr == -1 && ac->oc[1].status == OC_LOCKED) {
1928  av_log(ac->avctx, AV_LOG_ERROR, "Implicit SBR was found with a first occurrence after the first frame.\n");
1929  skip_bits_long(gb, 8 * cnt - 4);
1930  return res;
1931  } else if (ac->oc[1].m4ac.ps == -1 && ac->oc[1].status < OC_LOCKED &&
1932  ac->avctx->ch_layout.nb_channels == 1) {
1933  ac->oc[1].m4ac.sbr = 1;
1934  ac->oc[1].m4ac.ps = 1;
1937  ac->oc[1].status, 1);
1938  } else {
1939  ac->oc[1].m4ac.sbr = 1;
1941  }
1942 
1943  ac->proc.sbr_decode_extension(ac, che, gb, crc_flag, cnt, elem_type);
1944 
1945  if (ac->oc[1].m4ac.ps == 1 && !ac->warned_he_aac_mono) {
1946  av_log(ac->avctx, AV_LOG_VERBOSE, "Treating HE-AAC mono as stereo.\n");
1947  ac->warned_he_aac_mono = 1;
1948  }
1949  break;
1950  case EXT_DYNAMIC_RANGE:
1951  res = decode_dynamic_range(&ac->che_drc, gb);
1952  break;
1953  case EXT_FILL:
1954  decode_fill(ac, gb, 8 * cnt - 4);
1955  break;
1956  case EXT_FILL_DATA:
1957  case EXT_DATA_ELEMENT:
1958  default:
1959  skip_bits_long(gb, 8 * cnt - 4);
1960  break;
1961  };
1962  return res;
1963 }
1964 
1965 /**
1966  * channel coupling transformation interface
1967  *
1968  * @param apply_coupling_method pointer to (in)dependent coupling function
1969  */
1971  enum RawDataBlockType type, int elem_id,
1972  enum CouplingPoint coupling_point,
1973  void (*apply_coupling_method)(AACDecContext *ac, SingleChannelElement *target, ChannelElement *cce, int index))
1974 {
1975  int i, c;
1976 
1977  for (i = 0; i < MAX_ELEM_ID; i++) {
1978  ChannelElement *cce = ac->che[TYPE_CCE][i];
1979  int index = 0;
1980 
1981  if (cce && cce->coup.coupling_point == coupling_point) {
1982  ChannelCoupling *coup = &cce->coup;
1983 
1984  for (c = 0; c <= coup->num_coupled; c++) {
1985  if (coup->type[c] == type && coup->id_select[c] == elem_id) {
1986  if (coup->ch_select[c] != 1) {
1987  apply_coupling_method(ac, &cc->ch[0], cce, index);
1988  if (coup->ch_select[c] != 0)
1989  index++;
1990  }
1991  if (coup->ch_select[c] != 2)
1992  apply_coupling_method(ac, &cc->ch[1], cce, index++);
1993  } else
1994  index += 1 + (coup->ch_select[c] == 3);
1995  }
1996  }
1997  }
1998 }
1999 
2000 /**
2001  * Convert spectral data to samples, applying all supported tools as appropriate.
2002  */
2004 {
2005  int i, type;
2007  switch (ac->oc[1].m4ac.object_type) {
2008  case AOT_ER_AAC_LD:
2010  break;
2011  case AOT_ER_AAC_ELD:
2013  break;
2014  default:
2015  if (ac->oc[1].m4ac.frame_length_short)
2017  else
2019  }
2020  for (type = 3; type >= 0; type--) {
2021  for (i = 0; i < MAX_ELEM_ID; i++) {
2022  ChannelElement *che = ac->che[type][i];
2023  if (che && che->present) {
2024  if (type <= TYPE_CPE)
2026  if (ac->oc[1].m4ac.object_type == AOT_AAC_LTP) {
2027  if (che->ch[0].ics.predictor_present) {
2028  if (che->ch[0].ics.ltp.present)
2029  ac->dsp.apply_ltp(ac, &che->ch[0]);
2030  if (che->ch[1].ics.ltp.present && type == TYPE_CPE)
2031  ac->dsp.apply_ltp(ac, &che->ch[1]);
2032  }
2033  }
2034  if (che->ch[0].tns.present)
2035  ac->dsp.apply_tns(che->ch[0].coeffs,
2036  &che->ch[0].tns, &che->ch[0].ics, 1);
2037  if (che->ch[1].tns.present)
2038  ac->dsp.apply_tns(che->ch[1].coeffs,
2039  &che->ch[1].tns, &che->ch[1].ics, 1);
2040  if (type <= TYPE_CPE)
2042  if (type != TYPE_CCE || che->coup.coupling_point == AFTER_IMDCT) {
2043  imdct_and_window(ac, &che->ch[0]);
2044  if (ac->oc[1].m4ac.object_type == AOT_AAC_LTP)
2045  ac->dsp.update_ltp(ac, &che->ch[0]);
2046  if (type == TYPE_CPE) {
2047  imdct_and_window(ac, &che->ch[1]);
2048  if (ac->oc[1].m4ac.object_type == AOT_AAC_LTP)
2049  ac->dsp.update_ltp(ac, &che->ch[1]);
2050  }
2051  if (ac->oc[1].m4ac.sbr > 0) {
2052  ac->proc.sbr_apply(ac, che, type,
2053  che->ch[0].output,
2054  che->ch[1].output);
2055  }
2056  }
2057  if (type <= TYPE_CCE)
2059  ac->dsp.clip_output(ac, che, type, samples);
2060  che->present = 0;
2061  } else if (che) {
2062  av_log(ac->avctx, AV_LOG_VERBOSE, "ChannelElement %d.%d missing \n", type, i);
2063  }
2064  }
2065  }
2066 }
2067 
2069 {
2070  int size;
2071  AACADTSHeaderInfo hdr_info;
2072  uint8_t layout_map[MAX_ELEM_ID*4][3];
2073  int layout_map_tags, ret;
2074 
2075  size = ff_adts_header_parse(gb, &hdr_info);
2076  if (size > 0) {
2077  if (!ac->warned_num_aac_frames && hdr_info.num_aac_frames != 1) {
2078  // This is 2 for "VLB " audio in NSV files.
2079  // See samples/nsv/vlb_audio.
2081  "More than one AAC RDB per ADTS frame");
2082  ac->warned_num_aac_frames = 1;
2083  }
2085  if (hdr_info.chan_config) {
2086  ac->oc[1].m4ac.chan_config = hdr_info.chan_config;
2088  layout_map,
2089  &layout_map_tags,
2090  hdr_info.chan_config)) < 0)
2091  return ret;
2092  if ((ret = ff_aac_output_configure(ac, layout_map, layout_map_tags,
2093  FFMAX(ac->oc[1].status,
2094  OC_TRIAL_FRAME), 0)) < 0)
2095  return ret;
2096  } else {
2097  ac->oc[1].m4ac.chan_config = 0;
2098  /**
2099  * dual mono frames in Japanese DTV can have chan_config 0
2100  * WITHOUT specifying PCE.
2101  * thus, set dual mono as default.
2102  */
2103  if (ac->dmono_mode && ac->oc[0].status == OC_NONE) {
2104  layout_map_tags = 2;
2105  layout_map[0][0] = layout_map[1][0] = TYPE_SCE;
2106  layout_map[0][2] = layout_map[1][2] = AAC_CHANNEL_FRONT;
2107  layout_map[0][1] = 0;
2108  layout_map[1][1] = 1;
2109  if (ff_aac_output_configure(ac, layout_map, layout_map_tags,
2110  OC_TRIAL_FRAME, 0))
2111  return -7;
2112  }
2113  }
2114  ac->oc[1].m4ac.sample_rate = hdr_info.sample_rate;
2115  ac->oc[1].m4ac.sampling_index = hdr_info.sampling_index;
2116  ac->oc[1].m4ac.object_type = hdr_info.object_type;
2117  ac->oc[1].m4ac.frame_length_short = 0;
2118  if (ac->oc[0].status != OC_LOCKED ||
2119  ac->oc[0].m4ac.chan_config != hdr_info.chan_config ||
2120  ac->oc[0].m4ac.sample_rate != hdr_info.sample_rate) {
2121  ac->oc[1].m4ac.sbr = -1;
2122  ac->oc[1].m4ac.ps = -1;
2123  }
2124  if (!hdr_info.crc_absent)
2125  skip_bits(gb, 16);
2126  }
2127  return size;
2128 }
2129 
2131  int *got_frame_ptr, GetBitContext *gb)
2132 {
2133  AACDecContext *ac = avctx->priv_data;
2134  const MPEG4AudioConfig *const m4ac = &ac->oc[1].m4ac;
2135  ChannelElement *che;
2136  int err, i;
2137  int samples = m4ac->frame_length_short ? 960 : 1024;
2138  int chan_config = m4ac->chan_config;
2139  int aot = m4ac->object_type;
2140 
2141  if (aot == AOT_ER_AAC_LD || aot == AOT_ER_AAC_ELD)
2142  samples >>= 1;
2143 
2144  ac->frame = frame;
2145 
2146  if ((err = frame_configure_elements(avctx)) < 0)
2147  return err;
2148 
2149  // The AV_PROFILE_AAC_* defines are all object_type - 1
2150  // This may lead to an undefined profile being signaled
2151  ac->avctx->profile = aot - 1;
2152 
2153  ac->tags_mapped = 0;
2154 
2155  if (chan_config < 0 || (chan_config >= 8 && chan_config < 11) || chan_config >= 13) {
2156  avpriv_request_sample(avctx, "Unknown ER channel configuration %d",
2157  chan_config);
2158  return AVERROR_INVALIDDATA;
2159  }
2160  for (i = 0; i < ff_tags_per_config[chan_config]; i++) {
2161  const int elem_type = ff_aac_channel_layout_map[chan_config-1][i][0];
2162  const int elem_id = ff_aac_channel_layout_map[chan_config-1][i][1];
2163  if (!(che=ff_aac_get_che(ac, elem_type, elem_id))) {
2164  av_log(ac->avctx, AV_LOG_ERROR,
2165  "channel element %d.%d is not allocated\n",
2166  elem_type, elem_id);
2167  return AVERROR_INVALIDDATA;
2168  }
2169  che->present = 1;
2170  if (aot != AOT_ER_AAC_ELD)
2171  skip_bits(gb, 4);
2172  switch (elem_type) {
2173  case TYPE_SCE:
2174  err = ff_aac_decode_ics(ac, &che->ch[0], gb, 0, 0);
2175  break;
2176  case TYPE_CPE:
2177  err = decode_cpe(ac, gb, che);
2178  break;
2179  case TYPE_LFE:
2180  err = ff_aac_decode_ics(ac, &che->ch[0], gb, 0, 0);
2181  break;
2182  }
2183  if (err < 0)
2184  return err;
2185  }
2186 
2188 
2189  if (!ac->frame->data[0] && samples) {
2190  av_log(avctx, AV_LOG_ERROR, "no frame data found\n");
2191  return AVERROR_INVALIDDATA;
2192  }
2193 
2194  ac->frame->nb_samples = samples;
2195  ac->frame->sample_rate = avctx->sample_rate;
2196  *got_frame_ptr = 1;
2197 
2198  skip_bits_long(gb, get_bits_left(gb));
2199  return 0;
2200 }
2201 
2203  GetBitContext *gb, int *got_frame_ptr)
2204 {
2205  int err;
2206  int is_dmono;
2207  int elem_id;
2208  enum RawDataBlockType elem_type, che_prev_type = TYPE_END;
2209  uint8_t che_presence[4][MAX_ELEM_ID] = {{0}};
2210  ChannelElement *che = NULL, *che_prev = NULL;
2211  int samples = 0, multiplier, audio_found = 0, pce_found = 0, sce_count = 0;
2212  AVFrame *frame = ac->frame;
2213 
2214  int payload_alignment = get_bits_count(gb);
2215  // parse
2216  while ((elem_type = get_bits(gb, 3)) != TYPE_END) {
2217  elem_id = get_bits(gb, 4);
2218 
2219  if (avctx->debug & FF_DEBUG_STARTCODE)
2220  av_log(avctx, AV_LOG_DEBUG, "Elem type:%x id:%x\n", elem_type, elem_id);
2221 
2222  if (!avctx->ch_layout.nb_channels && elem_type != TYPE_PCE)
2223  return AVERROR_INVALIDDATA;
2224 
2225  if (elem_type < TYPE_DSE) {
2226  if (che_presence[elem_type][elem_id]) {
2227  int error = che_presence[elem_type][elem_id] > 1;
2228  av_log(ac->avctx, error ? AV_LOG_ERROR : AV_LOG_DEBUG, "channel element %d.%d duplicate\n",
2229  elem_type, elem_id);
2230  if (error)
2231  return AVERROR_INVALIDDATA;
2232  }
2233  che_presence[elem_type][elem_id]++;
2234 
2235  if (!(che=ff_aac_get_che(ac, elem_type, elem_id))) {
2236  av_log(ac->avctx, AV_LOG_ERROR, "channel element %d.%d is not allocated\n",
2237  elem_type, elem_id);
2238  return AVERROR_INVALIDDATA;
2239  }
2240  samples = ac->oc[1].m4ac.frame_length_short ? 960 : 1024;
2241  che->present = 1;
2242  }
2243 
2244  switch (elem_type) {
2245 
2246  case TYPE_SCE:
2247  err = ff_aac_decode_ics(ac, &che->ch[0], gb, 0, 0);
2248  audio_found = 1;
2249  sce_count++;
2250  break;
2251 
2252  case TYPE_CPE:
2253  err = decode_cpe(ac, gb, che);
2254  audio_found = 1;
2255  break;
2256 
2257  case TYPE_CCE:
2258  err = ac->proc.decode_cce(ac, gb, che);
2259  break;
2260 
2261  case TYPE_LFE:
2262  err = ff_aac_decode_ics(ac, &che->ch[0], gb, 0, 0);
2263  audio_found = 1;
2264  break;
2265 
2266  case TYPE_DSE:
2267  err = skip_data_stream_element(ac, gb);
2268  break;
2269 
2270  case TYPE_PCE: {
2271  uint8_t layout_map[MAX_ELEM_ID*4][3] = {{0}};
2272  int tags;
2273 
2274  int pushed = push_output_configuration(ac);
2275  if (pce_found && !pushed)
2276  return AVERROR_INVALIDDATA;
2277 
2278  tags = decode_pce(avctx, &ac->oc[1].m4ac, layout_map, gb,
2279  payload_alignment);
2280  if (tags < 0) {
2281  err = tags;
2282  break;
2283  }
2284  if (pce_found) {
2285  av_log(avctx, AV_LOG_ERROR,
2286  "Not evaluating a further program_config_element as this construct is dubious at best.\n");
2288  } else {
2289  err = ff_aac_output_configure(ac, layout_map, tags, OC_TRIAL_PCE, 1);
2290  if (!err)
2291  ac->oc[1].m4ac.chan_config = 0;
2292  pce_found = 1;
2293  }
2294  break;
2295  }
2296 
2297  case TYPE_FIL:
2298  if (elem_id == 15)
2299  elem_id += get_bits(gb, 8) - 1;
2300  if (get_bits_left(gb) < 8 * elem_id) {
2301  av_log(avctx, AV_LOG_ERROR, "TYPE_FIL: "overread_err);
2302  return AVERROR_INVALIDDATA;
2303  }
2304  err = 0;
2305  while (elem_id > 0) {
2306  int ret = decode_extension_payload(ac, gb, elem_id, che_prev, che_prev_type);
2307  if (ret < 0) {
2308  err = ret;
2309  break;
2310  }
2311  elem_id -= ret;
2312  }
2313  break;
2314 
2315  default:
2316  err = AVERROR_BUG; /* should not happen, but keeps compiler happy */
2317  break;
2318  }
2319 
2320  if (elem_type < TYPE_DSE) {
2321  che_prev = che;
2322  che_prev_type = elem_type;
2323  }
2324 
2325  if (err)
2326  return err;
2327 
2328  if (get_bits_left(gb) < 3) {
2329  av_log(avctx, AV_LOG_ERROR, overread_err);
2330  return AVERROR_INVALIDDATA;
2331  }
2332  }
2333 
2334  if (!avctx->ch_layout.nb_channels)
2335  return 0;
2336 
2337  multiplier = (ac->oc[1].m4ac.sbr == 1) ? ac->oc[1].m4ac.ext_sample_rate > ac->oc[1].m4ac.sample_rate : 0;
2338  samples <<= multiplier;
2339 
2341 
2342  if (ac->oc[1].status && audio_found) {
2343  avctx->sample_rate = ac->oc[1].m4ac.sample_rate << multiplier;
2344  avctx->frame_size = samples;
2345  ac->oc[1].status = OC_LOCKED;
2346  }
2347 
2348  if (!ac->frame->data[0] && samples) {
2349  av_log(avctx, AV_LOG_ERROR, "no frame data found\n");
2350  return AVERROR_INVALIDDATA;
2351  }
2352 
2353  if (samples) {
2354  ac->frame->nb_samples = samples;
2355  ac->frame->sample_rate = avctx->sample_rate;
2356  *got_frame_ptr = 1;
2357  } else {
2358  av_frame_unref(ac->frame);
2359  *got_frame_ptr = 0;
2360  }
2361 
2362  /* for dual-mono audio (SCE + SCE) */
2363  is_dmono = ac->dmono_mode && sce_count == 2 &&
2366  if (is_dmono) {
2367  if (ac->dmono_mode == 1)
2368  frame->data[1] = frame->data[0];
2369  else if (ac->dmono_mode == 2)
2370  frame->data[0] = frame->data[1];
2371  }
2372 
2373  return 0;
2374 }
2375 
2377  int *got_frame_ptr, GetBitContext *gb,
2378  const AVPacket *avpkt)
2379 {
2380  int err;
2381  AACDecContext *ac = avctx->priv_data;
2382 
2383  ac->frame = frame;
2384  *got_frame_ptr = 0;
2385 
2386  if (show_bits(gb, 12) == 0xfff) {
2387  if ((err = parse_adts_frame_header(ac, gb)) < 0) {
2388  av_log(avctx, AV_LOG_ERROR, "Error decoding AAC frame header.\n");
2389  goto fail;
2390  }
2391  if (ac->oc[1].m4ac.sampling_index > 12) {
2392  av_log(ac->avctx, AV_LOG_ERROR, "invalid sampling rate index %d\n", ac->oc[1].m4ac.sampling_index);
2393  err = AVERROR_INVALIDDATA;
2394  goto fail;
2395  }
2396  }
2397 
2398  if ((err = frame_configure_elements(avctx)) < 0)
2399  goto fail;
2400 
2401  // The AV_PROFILE_AAC_* defines are all object_type - 1
2402  // This may lead to an undefined profile being signaled
2403  ac->avctx->profile = ac->oc[1].m4ac.object_type - 1;
2404 
2405  ac->tags_mapped = 0;
2406 
2407  if (ac->oc[1].m4ac.object_type == AOT_USAC) {
2408  if (ac->is_fixed) {
2410  "AAC USAC fixed-point decoding");
2411  return AVERROR_PATCHWELCOME;
2412  }
2413 #if CONFIG_AAC_DECODER
2414  err = ff_aac_usac_decode_frame(avctx, ac, gb, got_frame_ptr);
2415  if (err < 0)
2416  goto fail;
2417 #endif
2418  } else {
2419  err = decode_frame_ga(avctx, ac, gb, got_frame_ptr);
2420  if (err < 0)
2421  goto fail;
2422  }
2423 
2424  return err;
2425 
2426 fail:
2428  return err;
2429 }
2430 
2432  int *got_frame_ptr, AVPacket *avpkt)
2433 {
2434  AACDecContext *ac = avctx->priv_data;
2435  const uint8_t *buf = avpkt->data;
2436  int buf_size = avpkt->size;
2437  GetBitContext gb;
2438  int buf_consumed;
2439  int buf_offset;
2440  int err;
2441  size_t new_extradata_size;
2442  const uint8_t *new_extradata = av_packet_get_side_data(avpkt,
2444  &new_extradata_size);
2445  size_t jp_dualmono_size;
2446  const uint8_t *jp_dualmono = av_packet_get_side_data(avpkt,
2448  &jp_dualmono_size);
2449 
2450  if (new_extradata) {
2451  /* discard previous configuration */
2452  ac->oc[1].status = OC_NONE;
2453  err = decode_audio_specific_config(ac, ac->avctx, &ac->oc[1],
2454  new_extradata,
2455  new_extradata_size * 8LL, 1);
2456  if (err < 0) {
2457  return err;
2458  }
2459  }
2460 
2461  ac->dmono_mode = 0;
2462  if (jp_dualmono && jp_dualmono_size > 0)
2463  ac->dmono_mode = 1 + *jp_dualmono;
2464  if (ac->force_dmono_mode >= 0)
2465  ac->dmono_mode = ac->force_dmono_mode;
2466 
2467  if (INT_MAX / 8 <= buf_size)
2468  return AVERROR_INVALIDDATA;
2469 
2470  if ((err = init_get_bits8(&gb, buf, buf_size)) < 0)
2471  return err;
2472 
2473  switch (ac->oc[1].m4ac.object_type) {
2474  case AOT_ER_AAC_LC:
2475  case AOT_ER_AAC_LTP:
2476  case AOT_ER_AAC_LD:
2477  case AOT_ER_AAC_ELD:
2478  err = aac_decode_er_frame(avctx, frame, got_frame_ptr, &gb);
2479  break;
2480  default:
2481  err = aac_decode_frame_int(avctx, frame, got_frame_ptr, &gb, avpkt);
2482  }
2483  if (err < 0)
2484  return err;
2485 
2486  buf_consumed = (get_bits_count(&gb) + 7) >> 3;
2487  for (buf_offset = buf_consumed; buf_offset < buf_size; buf_offset++)
2488  if (buf[buf_offset])
2489  break;
2490 
2491  return buf_size > buf_offset ? buf_consumed : buf_size;
2492 }
2493 
2494 #if CONFIG_AAC_LATM_DECODER
2495 #include "aacdec_latm.h"
2496 #endif
2497 
2498 #define AACDEC_FLAGS AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM
2499 #define OFF(field) offsetof(AACDecContext, field)
2500 static const AVOption options[] = {
2501  /**
2502  * AVOptions for Japanese DTV specific extensions (ADTS only)
2503  */
2504  {"dual_mono_mode", "Select the channel to decode for dual mono",
2505  OFF(force_dmono_mode), AV_OPT_TYPE_INT, {.i64=-1}, -1, 2,
2506  AACDEC_FLAGS, .unit = "dual_mono_mode"},
2507 
2508  {"auto", "autoselection", 0, AV_OPT_TYPE_CONST, {.i64=-1}, INT_MIN, INT_MAX, AACDEC_FLAGS, .unit = "dual_mono_mode"},
2509  {"main", "Select Main/Left channel", 0, AV_OPT_TYPE_CONST, {.i64= 1}, INT_MIN, INT_MAX, AACDEC_FLAGS, .unit = "dual_mono_mode"},
2510  {"sub" , "Select Sub/Right channel", 0, AV_OPT_TYPE_CONST, {.i64= 2}, INT_MIN, INT_MAX, AACDEC_FLAGS, .unit = "dual_mono_mode"},
2511  {"both", "Select both channels", 0, AV_OPT_TYPE_CONST, {.i64= 0}, INT_MIN, INT_MAX, AACDEC_FLAGS, .unit = "dual_mono_mode"},
2512 
2513  { "channel_order", "Order in which the channels are to be exported",
2514  OFF(output_channel_order), AV_OPT_TYPE_INT,
2515  { .i64 = CHANNEL_ORDER_DEFAULT }, 0, 1, AACDEC_FLAGS, .unit = "channel_order" },
2516  { "default", "normal libavcodec channel order", 0, AV_OPT_TYPE_CONST,
2517  { .i64 = CHANNEL_ORDER_DEFAULT }, .flags = AACDEC_FLAGS, .unit = "channel_order" },
2518  { "coded", "order in which the channels are coded in the bitstream",
2519  0, AV_OPT_TYPE_CONST, { .i64 = CHANNEL_ORDER_CODED }, .flags = AACDEC_FLAGS, .unit = "channel_order" },
2520 
2521  {NULL},
2522 };
2523 
2524 static const AVClass decoder_class = {
2525  .class_name = "AAC decoder",
2526  .item_name = av_default_item_name,
2527  .option = options,
2528  .version = LIBAVUTIL_VERSION_INT,
2529 };
2530 
2531 #if CONFIG_AAC_DECODER
2532 const FFCodec ff_aac_decoder = {
2533  .p.name = "aac",
2534  CODEC_LONG_NAME("AAC (Advanced Audio Coding)"),
2535  .p.type = AVMEDIA_TYPE_AUDIO,
2536  .p.id = AV_CODEC_ID_AAC,
2537  .p.priv_class = &decoder_class,
2538  .priv_data_size = sizeof(AACDecContext),
2540  .close = decode_close,
2542  .p.sample_fmts = (const enum AVSampleFormat[]) {
2544  },
2545  .p.capabilities = AV_CODEC_CAP_CHANNEL_CONF | AV_CODEC_CAP_DR1,
2546  .caps_internal = FF_CODEC_CAP_INIT_CLEANUP,
2547  .p.ch_layouts = ff_aac_ch_layout,
2548  .flush = flush,
2549  .p.profiles = NULL_IF_CONFIG_SMALL(ff_aac_profiles),
2550 };
2551 #endif
2552 
2553 #if CONFIG_AAC_FIXED_DECODER
2554 const FFCodec ff_aac_fixed_decoder = {
2555  .p.name = "aac_fixed",
2556  CODEC_LONG_NAME("AAC (Advanced Audio Coding)"),
2557  .p.type = AVMEDIA_TYPE_AUDIO,
2558  .p.id = AV_CODEC_ID_AAC,
2559  .p.priv_class = &decoder_class,
2560  .priv_data_size = sizeof(AACDecContext),
2562  .close = decode_close,
2564  .p.sample_fmts = (const enum AVSampleFormat[]) {
2566  },
2567  .p.capabilities = AV_CODEC_CAP_CHANNEL_CONF | AV_CODEC_CAP_DR1,
2568  .caps_internal = FF_CODEC_CAP_INIT_CLEANUP,
2569  .p.ch_layouts = ff_aac_ch_layout,
2570  .p.profiles = NULL_IF_CONFIG_SMALL(ff_aac_profiles),
2571  .flush = flush,
2572 };
2573 #endif
error
static void error(const char *err)
Definition: target_bsf_fuzzer.c:32
ChannelCoupling::type
enum RawDataBlockType type[8]
Type of channel element to be coupled - SCE or CPE.
Definition: aacdec.h:199
CouplingPoint
CouplingPoint
The point during decoding at which channel coupling is applied.
Definition: aacdec.h:68
MAX_ELEM_ID
#define MAX_ELEM_ID
Definition: aac.h:34
AVCodecContext::frame_size
int frame_size
Number of samples per channel in an audio frame.
Definition: avcodec.h:1077
AAC_CHANNEL_BACK
@ AAC_CHANNEL_BACK
Definition: aac.h:80
AV_SAMPLE_FMT_FLTP
@ AV_SAMPLE_FMT_FLTP
float, planar
Definition: samplefmt.h:66
decode_close
static av_cold int decode_close(AVCodecContext *avctx)
Definition: aacdec.c:1098
decode_frame_ga
static int decode_frame_ga(AVCodecContext *avctx, AACDecContext *ac, GetBitContext *gb, int *got_frame_ptr)
Definition: aacdec.c:2202
AACDecProc::decode_spectrum_and_dequant
int(* decode_spectrum_and_dequant)(AACDecContext *ac, GetBitContext *gb, const Pulse *pulse, SingleChannelElement *sce)
Definition: aacdec.h:396
skip_bits_long
static void skip_bits_long(GetBitContext *s, int n)
Skips the specified number of bits.
Definition: get_bits.h:278
AV_LOG_WARNING
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:186
pop_output_configuration
static void pop_output_configuration(AACDecContext *ac)
Restore the previous output configuration if and only if the current configuration is unlocked.
Definition: aacdec.c:442
AACDecContext::mdct960_fn
av_tx_fn mdct960_fn
Definition: aacdec.h:499
ff_tns_max_bands_128
const uint8_t ff_tns_max_bands_128[]
Definition: aactab.c:2000
AV_EF_EXPLODE
#define AV_EF_EXPLODE
abort decoding on minor error detection
Definition: defs.h:51
av_clip
#define av_clip
Definition: common.h:100
BETWEEN_TNS_AND_IMDCT
@ BETWEEN_TNS_AND_IMDCT
Definition: aacdec.h:70
FF_CODEC_CAP_INIT_CLEANUP
#define FF_CODEC_CAP_INIT_CLEANUP
The codec allows calling the close function for deallocation even if the init function returned a fai...
Definition: codec_internal.h:42
get_bits_left
static int get_bits_left(GetBitContext *gb)
Definition: get_bits.h:695
AVERROR
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
opt.h
AACDecDSP::apply_intensity_stereo
void(* apply_intensity_stereo)(AACDecContext *ac, ChannelElement *cpe, int ms_present)
Definition: aacdec.h:418
AACUSACConfig
Definition: aacdec.h:351
assign_channels
static int assign_channels(struct elem_to_channel e2c_vec[MAX_ELEM_ID], uint8_t(*layout_map)[3], uint64_t *layout, int tags, int layer, int pos, int *current)
Definition: aacdec.c:284
TYPE_FIL
@ TYPE_FIL
Definition: aac.h:46
EXT_FILL
@ EXT_FILL
Definition: aac.h:51
AV_CHANNEL_LAYOUT_STEREO
#define AV_CHANNEL_LAYOUT_STEREO
Definition: channel_layout.h:387
AVCodecContext::sample_rate
int sample_rate
samples per second
Definition: avcodec.h:1050
AACDecContext::mdct1024_fn
av_tx_fn mdct1024_fn
Definition: aacdec.h:500
decode_scalefactors
static int decode_scalefactors(AACDecContext *ac, SingleChannelElement *sce, GetBitContext *gb, unsigned int global_gain)
Decode scalefactors; reference: table 4.47.
Definition: aacdec.c:1468
AACDecContext::warned_he_aac_mono
int warned_he_aac_mono
Definition: aacdec.h:532
AACDecContext::mdct96
AVTXContext * mdct96
Definition: aacdec.h:483
AV_PKT_DATA_NEW_EXTRADATA
@ AV_PKT_DATA_NEW_EXTRADATA
The AV_PKT_DATA_NEW_EXTRADATA is used to notify the codec or the format that the extradata buffer was...
Definition: packet.h:56
ff_aac_usac_config_decode
int ff_aac_usac_config_decode(AACDecContext *ac, AVCodecContext *avctx, GetBitContext *gb, OutputConfiguration *oc, int channel_config)
Definition: aacdec_usac.c:333
AVCodecInternal::skip_samples
int skip_samples
Number of audio samples to skip at the start of the next decoded frame.
Definition: internal.h:118
AACDecProc::sbr_ctx_alloc_init
int(* sbr_ctx_alloc_init)(AACDecContext *ac, ChannelElement **che, int id_aac)
Definition: aacdec.h:403
AVCodecContext::err_recognition
int err_recognition
Error recognition; may misdetect some more or less valid parts as errors.
Definition: avcodec.h:1420
Pulse::num_pulse
int num_pulse
Definition: aac.h:100
ff_ltp_coef
const float ff_ltp_coef[8]
Definition: aactab.c:110
decode_audio_specific_config
static int decode_audio_specific_config(AACDecContext *ac, AVCodecContext *avctx, OutputConfiguration *oc, const uint8_t *data, int64_t bit_size, int sync_extension)
Definition: aacdec.c:1072
get_bits_count
static int get_bits_count(const GetBitContext *s)
Definition: get_bits.h:266
LongTermPrediction::used
int8_t used[MAX_LTP_LONG_SFB]
Definition: aacdec.h:121
AACDecContext::mdct768
AVTXContext * mdct768
Definition: aacdec.h:488
OC_TRIAL_PCE
@ OC_TRIAL_PCE
Output configuration under trial specified by an inband PCE.
Definition: aacdec.h:54
aacsbr.h
AVFrame
This structure describes decoded (raw) audio or video data.
Definition: frame.h:374
LongTermPrediction::coef
float coef
Definition: aacenc.h:84
aac_decode_frame_int
static int aac_decode_frame_int(AVCodecContext *avctx, AVFrame *frame, int *got_frame_ptr, GetBitContext *gb, const AVPacket *avpkt)
Definition: aacdec.c:2376
decode_drc_channel_exclusions
static int decode_drc_channel_exclusions(DynamicRangeControl *che_drc, GetBitContext *gb)
Parse whether channels are to be excluded from Dynamic Range Compression; reference: table 4....
Definition: aacdec.c:1800
w
uint8_t w
Definition: llviddspenc.c:38
internal.h
AVPacket::data
uint8_t * data
Definition: packet.h:520
ff_aac_num_swb_960
const uint8_t ff_aac_num_swb_960[]
Definition: aactab.c:153
AVOption
AVOption.
Definition: opt.h:357
AACDecContext::mdct960
AVTXContext * mdct960
Definition: aacdec.h:489
AOT_ER_AAC_LTP
@ AOT_ER_AAC_LTP
N Error Resilient Long Term Prediction.
Definition: mpeg4audio.h:90
TYPE_PCE
@ TYPE_PCE
Definition: aac.h:45
AV_SAMPLE_FMT_S32P
@ AV_SAMPLE_FMT_S32P
signed 32 bits, planar
Definition: samplefmt.h:65
data
const char data[16]
Definition: mxf.c:148
aacdec_usac.h
FF_COMPLIANCE_STRICT
#define FF_COMPLIANCE_STRICT
Strictly conform to all the things in the spec no matter what consequences.
Definition: defs.h:59
TemporalNoiseShaping::present
int present
Definition: aacdec.h:185
FFCodec
Definition: codec_internal.h:126
parse_adts_frame_header
static int parse_adts_frame_header(AACDecContext *ac, GetBitContext *gb)
Definition: aacdec.c:2068
ff_aac_profiles
const AVProfile ff_aac_profiles[]
Definition: profiles.c:27
ff_aac_num_swb_120
const uint8_t ff_aac_num_swb_120[]
Definition: aactab.c:173
AV_LOG_VERBOSE
#define AV_LOG_VERBOSE
Detailed information.
Definition: log.h:196
AACDecContext::tag_che_map
ChannelElement * tag_che_map[4][MAX_ELEM_ID]
Definition: aacdec.h:465
AACDecDSP::apply_tns
void(* apply_tns)(void *_coef_param, TemporalNoiseShaping *tns, IndividualChannelStream *ics, int decode)
Definition: aacdec.h:421
AVChannelLayout::order
enum AVChannelOrder order
Channel order used in this layout.
Definition: channel_layout.h:316
FFMAX
#define FFMAX(a, b)
Definition: macros.h:47
ff_aac_num_swb_480
const uint8_t ff_aac_num_swb_480[]
Definition: aactab.c:165
AACDecContext::warned_remapping_once
int warned_remapping_once
Definition: aacdec.h:467
AACDecContext::proc
AACDecProc proc
Definition: aacdec.h:453
AVChannelLayout::nb_channels
int nb_channels
Number of channels in this layout.
Definition: channel_layout.h:321
AACDecContext::mdct512_fn
av_tx_fn mdct512_fn
Definition: aacdec.h:497
AACDecDSP::apply_prediction
void(* apply_prediction)(AACDecContext *ac, SingleChannelElement *sce)
Definition: aacdec.h:427
ChannelElement::ch
SingleChannelElement ch[2]
Definition: aacdec.h:266
ff_aac_sample_rate_idx
static int ff_aac_sample_rate_idx(int rate)
Definition: aac.h:106
EXT_DYNAMIC_RANGE
@ EXT_DYNAMIC_RANGE
Definition: aac.h:54
ff_swb_offset_128
const uint16_t *const ff_swb_offset_128[]
Definition: aactab.c:1950
init_get_bits
static int init_get_bits(GetBitContext *s, const uint8_t *buffer, int bit_size)
Initialize GetBitContext.
Definition: get_bits.h:514
av_tx_init
av_cold int av_tx_init(AVTXContext **ctx, av_tx_fn *tx, enum AVTXType type, int inv, int len, const void *scale, uint64_t flags)
Initialize a transform context with the given configuration (i)MDCTs with an odd length are currently...
Definition: tx.c:903
ff_aac_decode_ics
int ff_aac_decode_ics(AACDecContext *ac, SingleChannelElement *sce, GetBitContext *gb, int common_window, int scale_flag)
Decode an individual_channel_stream payload; reference: table 4.44.
Definition: aacdec.c:1661
ChannelElement::present
int present
Definition: aacdec.h:261
FF_DEBUG_PICT_INFO
#define FF_DEBUG_PICT_INFO
Definition: avcodec.h:1397
AVFrame::data
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:395
ff_tns_max_bands_1024
const uint8_t ff_tns_max_bands_1024[]
Definition: aactab.c:1984
ff_aac_decode_init_float
int ff_aac_decode_init_float(AVCodecContext *avctx)
Definition: aacdec_float.c:164
AACDecContext::dmono_mode
int dmono_mode
0->not dmono, 1->use first channel, 2->use second channel
Definition: aacdec.h:522
MPEG4AudioConfig
Definition: mpeg4audio.h:29
skip_bits
static void skip_bits(GetBitContext *s, int n)
Definition: get_bits.h:381
DynamicRangeControl
Dynamic Range Control - decoded from the bitstream but not processed further.
Definition: aacdec.h:379
IndividualChannelStream::num_swb
int num_swb
number of scalefactor window bands
Definition: aacdec.h:171
options
static const AVOption options[]
Definition: aacdec.c:2500
ff_aac_decode_init_fixed
int ff_aac_decode_init_fixed(AVCodecContext *avctx)
Dequantization-related.
Definition: aacdec_fixed.c:87
get_bits
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
Definition: get_bits.h:335
ChannelCoupling::coupling_point
enum CouplingPoint coupling_point
The point during decoding at which coupling is applied.
Definition: aacdec.h:197
SingleChannelElement::coeffs
float coeffs[1024]
coefficients for IMDCT, maybe processed
Definition: aacenc.h:139
ff_aac_num_swb_512
const uint8_t ff_aac_num_swb_512[]
Definition: aactab.c:161
AACDecContext::force_dmono_mode
int force_dmono_mode
0->not dmono, 1->use first channel, 2->use second channel
Definition: aacdec.h:521
AACDecContext::warned_960_sbr
int warned_960_sbr
Definition: aacdec.h:529
FFCodec::p
AVCodec p
The public AVCodec.
Definition: codec_internal.h:130
AACDecContext::mdct480
AVTXContext * mdct480
Definition: aacdec.h:486
AVCodecContext::ch_layout
AVChannelLayout ch_layout
Audio channel layout.
Definition: avcodec.h:1065
macros.h
fail
#define fail()
Definition: checkasm.h:185
ChannelElement::coup
ChannelCoupling coup
Definition: aacdec.h:268
ChannelCoupling::id_select
int id_select[8]
element id
Definition: aacdec.h:200
SingleChannelElement::ret_buf
float ret_buf[2048]
PCM output buffer.
Definition: aacenc.h:140
ff_adts_header_parse
int ff_adts_header_parse(GetBitContext *gbc, AACADTSHeaderInfo *hdr)
Parse the ADTS frame header to the end of the variable header, which is the first 54 bits.
Definition: adts_header.c:30
AACDecContext::warned_71_wide
unsigned warned_71_wide
Definition: aacdec.h:530
TYPE_CPE
@ TYPE_CPE
Definition: aac.h:41
GetBitContext
Definition: get_bits.h:108
AV_EF_BITSTREAM
#define AV_EF_BITSTREAM
detect bitstream specification deviations
Definition: defs.h:49
AACDecContext::tags_mapped
int tags_mapped
Definition: aacdec.h:466
Pulse::amp
int amp[4]
Definition: aac.h:103
Pulse::pos
int pos[4]
Definition: aac.h:102
AACDecProc::sbr_apply
void(* sbr_apply)(AACDecContext *ac, ChannelElement *che, int id_aac, void *L, void *R)
Definition: aacdec.h:406
OutputConfiguration::status
enum OCStatus status
Definition: aacdec.h:372
type
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf type
Definition: writing_filters.txt:86
AACDecContext::che_drc
DynamicRangeControl che_drc
Definition: aacdec.h:458
MAX_LTP_LONG_SFB
#define MAX_LTP_LONG_SFB
Definition: aac.h:37
SingleChannelElement::ics
IndividualChannelStream ics
Definition: aacdec.h:211
AACDecContext::mdct480_fn
av_tx_fn mdct480_fn
Definition: aacdec.h:496
AACUSACConfig::elems
AACUsacElemConfig elems[64]
Definition: aacdec.h:356
decode_cpe
static int decode_cpe(AACDecContext *ac, GetBitContext *gb, ChannelElement *cpe)
Decode a channel_pair_element; reference: table 4.4.
Definition: aacdec.c:1754
decode_pulses
static int decode_pulses(Pulse *pulse, GetBitContext *gb, const uint16_t *swb_offset, int num_swb)
Decode pulse data; reference: table 4.7.
Definition: aacdec.c:1527
AACUsacElemConfig
Definition: aacdec.h:297
AOT_ER_AAC_LC
@ AOT_ER_AAC_LC
N Error Resilient Low Complexity.
Definition: mpeg4audio.h:88
AACADTSHeaderInfo::chan_config
uint8_t chan_config
Definition: adts_header.h:42
decode_fill
static int decode_fill(AACDecContext *ac, GetBitContext *gb, int len)
Definition: aacdec.c:1866
AV_LOG_ERROR
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:180
ZERO_BT
@ ZERO_BT
Scalefactors and spectral data are all zero.
Definition: aac.h:67
FF_ARRAY_ELEMS
#define FF_ARRAY_ELEMS(a)
Definition: sinewin_tablegen.c:29
AACDecDSP::dequant_scalefactors
void(* dequant_scalefactors)(SingleChannelElement *sce)
Definition: aacdec.h:415
av_cold
#define av_cold
Definition: attributes.h:90
init_get_bits8
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
Definition: get_bits.h:545
DynamicRangeControl::exclude_mask
int exclude_mask[MAX_CHANNELS]
Channels to be excluded from DRC processing.
Definition: aacdec.h:383
AV_CH_LAYOUT_22POINT2
#define AV_CH_LAYOUT_22POINT2
Definition: channel_layout.h:248
ff_aac_decode_init
av_cold int ff_aac_decode_init(AVCodecContext *avctx)
Definition: aacdec.c:1174
OC_GLOBAL_HDR
@ OC_GLOBAL_HDR
Output configuration set in a global header but not yet locked.
Definition: aacdec.h:56
AACDecContext::mdct_ltp
AVTXContext * mdct_ltp
Definition: aacdec.h:491
AVCodecContext::extradata_size
int extradata_size
Definition: avcodec.h:524
NOISE_BT
@ NOISE_BT
Spectral data are scaled white noise not coded in the bitstream.
Definition: aac.h:71
AV_TX_FLOAT_MDCT
@ AV_TX_FLOAT_MDCT
Standard MDCT with a sample data type of float, double or int32_t, respecively.
Definition: tx.h:68
AOT_ER_AAC_LD
@ AOT_ER_AAC_LD
N Error Resilient Low Delay.
Definition: mpeg4audio.h:94
FF_CODEC_DECODE_CB
#define FF_CODEC_DECODE_CB(func)
Definition: codec_internal.h:286
AACDecDSP::apply_mid_side_stereo
void(* apply_mid_side_stereo)(AACDecContext *ac, ChannelElement *cpe)
Definition: aacdec.h:417
ff_swb_offset_960
const uint16_t *const ff_swb_offset_960[]
Definition: aactab.c:1918
ChannelCoupling::num_coupled
int num_coupled
number of target elements
Definition: aacdec.h:198
AV_TX_INT32_MDCT
@ AV_TX_INT32_MDCT
Definition: tx.h:70
g
const char * g
Definition: vf_curves.c:128
AVMEDIA_TYPE_AUDIO
@ AVMEDIA_TYPE_AUDIO
Definition: avutil.h:202
EIGHT_SHORT_SEQUENCE
@ EIGHT_SHORT_SEQUENCE
Definition: aac.h:62
AV_CHANNEL_ORDER_UNSPEC
@ AV_CHANNEL_ORDER_UNSPEC
Only the channel count is specified, without any further information about the channel order.
Definition: channel_layout.h:116
TemporalNoiseShaping::direction
int direction[8][4]
Definition: aacdec.h:188
av_channel_layout_from_mask
int av_channel_layout_from_mask(AVChannelLayout *channel_layout, uint64_t mask)
Initialize a native channel layout from a bitmask indicating which channels are present.
Definition: channel_layout.c:247
AACUsacElemConfig::pl_data
uint8_t * pl_data
Definition: aacdec.h:347
INTENSITY_BT2
@ INTENSITY_BT2
Scalefactor data are intensity stereo positions (out of phase).
Definition: aac.h:72
bits
uint8_t bits
Definition: vp3data.h:128
AACDecProc::decode_cce
int(* decode_cce)(AACDecContext *ac, GetBitContext *gb, ChannelElement *che)
Definition: aacdec.h:401
TYPE_DSE
@ TYPE_DSE
Definition: aac.h:44
av_assert0
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:40
elem_to_channel::av_position
uint64_t av_position
Definition: aacdec.c:208
ff_aac_get_che
ChannelElement * ff_aac_get_che(AACDecContext *ac, int type, int elem_id)
Definition: aacdec.c:589
AV_LOG_DEBUG
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:201
flush
static av_cold void flush(AVCodecContext *avctx)
Definition: aacdec.c:524
ChannelPosition
ChannelPosition
Definition: aac.h:76
AACDecDSP::imdct_and_windowing_ld
void(* imdct_and_windowing_ld)(AACDecContext *ac, SingleChannelElement *sce)
Definition: aacdec.h:439
channels
channels
Definition: aptx.h:31
decode.h
limits.h
LongTermPrediction::present
int8_t present
Definition: aacdec.h:118
IndividualChannelStream
Individual Channel Stream.
Definition: aacdec.h:162
AACDecContext::che
ChannelElement * che[4][MAX_ELEM_ID]
Definition: aacdec.h:464
SCALE_DIFF_ZERO
#define SCALE_DIFF_ZERO
codebook index corresponding to zero scalefactor indices difference
Definition: aac.h:91
NOISE_PRE
#define NOISE_PRE
preamble for NOISE_BT, put in bitstream with the first noise band
Definition: aac.h:95
CODEC_LONG_NAME
#define CODEC_LONG_NAME(str)
Definition: codec_internal.h:271
AACDecContext::fdsp
AVFloatDSPContext * fdsp
Definition: aacdec.h:504
ff_aac_usac_decode_frame
int ff_aac_usac_decode_frame(AVCodecContext *avctx, AACDecContext *ac, GetBitContext *gb, int *got_frame_ptr)
Definition: aacdec_usac.c:1654
AACDecContext::warned_num_aac_frames
int warned_num_aac_frames
Definition: aacdec.h:528
AACADTSHeaderInfo::num_aac_frames
uint8_t num_aac_frames
Definition: adts_header.h:43
INTENSITY_BT
@ INTENSITY_BT
Scalefactor data are intensity stereo positions (in phase).
Definition: aac.h:73
elem_to_channel::syn_ele
uint8_t syn_ele
Definition: aacdec.c:209
LIBAVUTIL_VERSION_INT
#define LIBAVUTIL_VERSION_INT
Definition: version.h:85
decode_extension_payload
static int decode_extension_payload(AACDecContext *ac, GetBitContext *gb, int cnt, ChannelElement *che, enum RawDataBlockType elem_type)
Decode extension data (incomplete); reference: table 4.51.
Definition: aacdec.c:1899
AVClass
Describe the class of an AVClass context structure.
Definition: log.h:66
AACDecContext::mdct96_fn
av_tx_fn mdct96_fn
Definition: aacdec.h:493
NULL
#define NULL
Definition: coverity.c:32
spectral_to_sample
static void spectral_to_sample(AACDecContext *ac, int samples)
Convert spectral data to samples, applying all supported tools as appropriate.
Definition: aacdec.c:2003
AVERROR_PATCHWELCOME
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
Definition: error.h:64
AACDecProc::sbr_decode_extension
int(* sbr_decode_extension)(AACDecContext *ac, ChannelElement *che, GetBitContext *gb, int crc, int cnt, int id_aac)
Definition: aacdec.h:404
IndividualChannelStream::use_kb_window
uint8_t use_kb_window[2]
If set, use Kaiser-Bessel window, otherwise use a sine window.
Definition: aacdec.h:165
ff_aac_num_swb_128
const uint8_t ff_aac_num_swb_128[]
Definition: aactab.c:169
AVCodecContext::internal
struct AVCodecInternal * internal
Private context used for internal data.
Definition: avcodec.h:480
IndividualChannelStream::num_window_groups
int num_window_groups
Definition: aacdec.h:166
AAC_CHANNEL_SIDE
@ AAC_CHANNEL_SIDE
Definition: aac.h:79
BEFORE_TNS
@ BEFORE_TNS
Definition: aacdec.h:69
AACADTSHeaderInfo::sampling_index
uint8_t sampling_index
Definition: adts_header.h:41
av_default_item_name
const char * av_default_item_name(void *ptr)
Return the context name.
Definition: log.c:237
get_bits1
static unsigned int get_bits1(GetBitContext *s)
Definition: get_bits.h:388
ff_aac_ch_layout
const AVChannelLayout ff_aac_ch_layout[]
Definition: aacdec_tab.c:96
profiles.h
MPEG4AudioConfig::sampling_index
int sampling_index
Definition: mpeg4audio.h:31
ff_aac_fixed_decoder
const FFCodec ff_aac_fixed_decoder
AOT_USAC
@ AOT_USAC
Y Unified Speech and Audio Coding.
Definition: mpeg4audio.h:113
ChannelElement::ms_mask
uint8_t ms_mask[128]
Set if mid/side stereo is used for each scalefactor window band.
Definition: aacdec.h:264
aac.h
aactab.h
IndividualChannelStream::predictor_present
int predictor_present
Definition: aacdec.h:174
DynamicRangeControl::band_top
int band_top[17]
Indicates the top of the i-th DRC band in units of 4 spectral lines.
Definition: aacdec.h:386
ff_swb_offset_480
const uint16_t *const ff_swb_offset_480[]
Definition: aactab.c:1942
AAC_CHANNEL_FRONT
@ AAC_CHANNEL_FRONT
Definition: aac.h:78
sniff_channel_order
static uint64_t sniff_channel_order(uint8_t(*layout_map)[3], int tags)
Definition: aacdec.c:362
aac_decode_er_frame
static int aac_decode_er_frame(AVCodecContext *avctx, AVFrame *frame, int *got_frame_ptr, GetBitContext *gb)
Definition: aacdec.c:2130
AV_CH_FRONT_CENTER
#define AV_CH_FRONT_CENTER
Definition: channel_layout.h:174
count_channels
static int count_channels(uint8_t(*layout)[3], int tags)
Definition: aacdec.c:117
AOT_AAC_MAIN
@ AOT_AAC_MAIN
Y Main.
Definition: mpeg4audio.h:73
decode_mid_side_stereo
static void decode_mid_side_stereo(ChannelElement *cpe, GetBitContext *gb, int ms_present)
Decode Mid/Side data; reference: table 4.54.
Definition: aacdec.c:1612
get_vlc2
static av_always_inline int get_vlc2(GetBitContext *s, const VLCElem *table, int bits, int max_depth)
Parse a vlc code.
Definition: get_bits.h:652
AAC_CHANNEL_OFF
@ AAC_CHANNEL_OFF
Definition: aac.h:77
AACDecContext::mdct120
AVTXContext * mdct120
Definition: aacdec.h:484
OC_LOCKED
@ OC_LOCKED
Output configuration locked in place.
Definition: aacdec.h:57
index
int index
Definition: gxfenc.c:90
c
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
Definition: undefined.txt:32
IndividualChannelStream::prev_num_window_groups
int prev_num_window_groups
Previous frame's number of window groups.
Definition: aacdec.h:167
aac_decode_frame
static int aac_decode_frame(AVCodecContext *avctx, AVFrame *frame, int *got_frame_ptr, AVPacket *avpkt)
Definition: aacdec.c:2431
error.h
ff_tns_max_bands_512
const uint8_t ff_tns_max_bands_512[]
Definition: aactab.c:1992
OutputConfiguration::layout_map_tags
int layout_map_tags
Definition: aacdec.h:370
AV_CODEC_CAP_CHANNEL_CONF
#define AV_CODEC_CAP_CHANNEL_CONF
Codec should fill in channel configuration and samplerate instead of container.
Definition: codec.h:106
AV_CODEC_ID_AAC
@ AV_CODEC_ID_AAC
Definition: codec_id.h:442
OutputConfiguration::layout_map
uint8_t layout_map[MAX_ELEM_ID *4][3]
Definition: aacdec.h:369
ff_dlog
#define ff_dlog(a,...)
Definition: tableprint_vlc.h:28
AACDecDSP::update_ltp
void(* update_ltp)(AACDecContext *ac, SingleChannelElement *sce)
Definition: aacdec.h:425
AACDecDSP::apply_independent_coupling
void(* apply_independent_coupling)(AACDecContext *ac, SingleChannelElement *target, ChannelElement *cce, int index)
Definition: aacdec.h:432
frame_configure_elements
static int frame_configure_elements(AVCodecContext *avctx)
Definition: aacdec.c:173
ff_aac_pred_sfb_max
const uint8_t ff_aac_pred_sfb_max[]
Definition: aactab.c:181
IndividualChannelStream::window_sequence
enum WindowSequence window_sequence[2]
Definition: aacdec.h:164
AACDecContext::dsp
AACDecDSP dsp
Definition: aacdec.h:452
AACDecDSP::clip_output
void(* clip_output)(AACDecContext *ac, ChannelElement *che, int type, int samples)
Definition: aacdec.h:442
ff_get_buffer
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame.
Definition: decode.c:1575
init
int(* init)(AVBSFContext *ctx)
Definition: dts2pts.c:366
AOT_ER_AAC_SCALABLE
@ AOT_ER_AAC_SCALABLE
N Error Resilient Scalable.
Definition: mpeg4audio.h:91
AV_CODEC_CAP_DR1
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() or get_encode_buffer() for allocating buffers and supports custom allocators.
Definition: codec.h:52
OC_NONE
@ OC_NONE
Output unconfigured.
Definition: aacdec.h:53
AACDecDSP::apply_dependent_coupling
void(* apply_dependent_coupling)(AACDecContext *ac, SingleChannelElement *target, ChannelElement *cce, int index)
Definition: aacdec.h:429
ff_swb_offset_1024
const uint16_t *const ff_swb_offset_1024[]
Definition: aactab.c:1910
AOT_AAC_SCALABLE
@ AOT_AAC_SCALABLE
N Scalable.
Definition: mpeg4audio.h:78
AVPacket::size
int size
Definition: packet.h:521
skip_data_stream_element
static int skip_data_stream_element(AACDecContext *ac, GetBitContext *gb)
Skip data_stream_element; reference: table 4.10.
Definition: aacdec.c:1237
NULL_IF_CONFIG_SMALL
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
Definition: internal.h:94
AVChannelLayout
An AVChannelLayout holds information about the channel layout of audio data.
Definition: channel_layout.h:311
codec_internal.h
ONLY_LONG_SEQUENCE
@ ONLY_LONG_SEQUENCE
Definition: aac.h:60
TYPE_END
@ TYPE_END
Definition: aac.h:47
AACDecContext::mdct1024
AVTXContext * mdct1024
Definition: aacdec.h:490
AVTXType
AVTXType
Definition: tx.h:39
AVFrame::sample_rate
int sample_rate
Sample rate of the audio data.
Definition: frame.h:573
AACDecDSP::imdct_and_windowing
void(* imdct_and_windowing)(AACDecContext *ac, SingleChannelElement *sce)
Definition: aacdec.h:436
ChannelElement::max_sfb_ste
uint8_t max_sfb_ste
(USAC) Maximum of both max_sfb values
Definition: aacdec.h:263
OCStatus
OCStatus
Output configuration status.
Definition: aacdec.h:52
AV_SAMPLE_FMT_NONE
@ AV_SAMPLE_FMT_NONE
Definition: samplefmt.h:56
size
int size
Definition: twinvq_data.h:10344
SingleChannelElement::sfo
int sfo[128]
scalefactor offsets
Definition: aacdec.h:215
ff_tags_per_config
const int8_t ff_tags_per_config[16]
Definition: aacdec_tab.c:38
DynamicRangeControl::prog_ref_level
int prog_ref_level
A reference level for the long-term program audio level for all channels combined.
Definition: aacdec.h:387
avpriv_report_missing_feature
void avpriv_report_missing_feature(void *avc, const char *msg,...) av_printf_format(2
Log a generic warning message about a missing feature.
AACDecContext::output_element
SingleChannelElement * output_element[MAX_CHANNELS]
Points to each SingleChannelElement.
Definition: aacdec.h:513
ff_mpeg4audio_get_config_gb
int ff_mpeg4audio_get_config_gb(MPEG4AudioConfig *c, GetBitContext *gb, int sync_extension, void *logctx)
Parse MPEG-4 systems extradata from a potentially unaligned GetBitContext to retrieve audio configura...
Definition: mpeg4audio.c:92
AACDecContext::output_channel_order
enum AACOutputChannelOrder output_channel_order
Definition: aacdec.h:525
decode_dynamic_range
static int decode_dynamic_range(DynamicRangeControl *che_drc, GetBitContext *gb)
Decode dynamic range information; reference: table 4.52.
Definition: aacdec.c:1819
OutputConfiguration
Definition: aacdec.h:367
elem_to_channel::elem_id
uint8_t elem_id
Definition: aacdec.c:210
ff_tns_max_bands_480
const uint8_t ff_tns_max_bands_480[]
Definition: aactab.c:1996
elem_to_channel
Definition: aacdec.c:207
ff_swb_offset_512
const uint16_t *const ff_swb_offset_512[]
Definition: aactab.c:1934
offset
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf offset
Definition: writing_filters.txt:86
attributes.h
decoder_class
static const AVClass decoder_class
Definition: aacdec.c:2524
skip_bits1
static void skip_bits1(GetBitContext *s)
Definition: get_bits.h:413
AACADTSHeaderInfo::object_type
uint8_t object_type
Definition: adts_header.h:40
SingleChannelElement::band_type
enum BandType band_type[128]
band types
Definition: aacdec.h:214
MAX_CHANNELS
#define MAX_CHANNELS
Definition: aac.h:33
AV_CHAN_UNUSED
@ AV_CHAN_UNUSED
Channel is empty can be safely skipped.
Definition: channel_layout.h:88
AACDecContext::mdct128
AVTXContext * mdct128
Definition: aacdec.h:485
DynamicRangeControl::dyn_rng_ctl
int dyn_rng_ctl[17]
DRC magnitude information.
Definition: aacdec.h:382
decode_ga_specific_config
static int decode_ga_specific_config(AACDecContext *ac, AVCodecContext *avctx, GetBitContext *gb, int get_bit_alignment, MPEG4AudioConfig *m4ac, int channel_config)
Decode GA "General Audio" specific configuration; reference: table 4.1.
Definition: aacdec.c:847
AACDecDSP::apply_ltp
void(* apply_ltp)(AACDecContext *ac, SingleChannelElement *sce)
Definition: aacdec.h:424
SingleChannelElement::output
float * output
PCM output.
Definition: aacdec.h:227
MPEG4AudioConfig::channels
int channels
Definition: mpeg4audio.h:39
av_tx_uninit
av_cold void av_tx_uninit(AVTXContext **ctx)
Frees a context and sets *ctx to NULL, does nothing when *ctx == NULL.
Definition: tx.c:295
decode_eld_specific_config
static int decode_eld_specific_config(AACDecContext *ac, AVCodecContext *avctx, GetBitContext *gb, MPEG4AudioConfig *m4ac, int channel_config)
Definition: aacdec.c:928
av_channel_layout_compare
int av_channel_layout_compare(const AVChannelLayout *chl, const AVChannelLayout *chl1)
Check whether two channel layouts are semantically the same, i.e.
Definition: channel_layout.c:804
EXT_FILL_DATA
@ EXT_FILL_DATA
Definition: aac.h:52
decode_prediction
static int decode_prediction(AACDecContext *ac, IndividualChannelStream *ics, GetBitContext *gb)
Definition: aacdec.c:1254
AV_LOG_INFO
#define AV_LOG_INFO
Standard information.
Definition: log.h:191
AOT_AAC_SSR
@ AOT_AAC_SSR
N (code in SoC repo) Scalable Sample Rate.
Definition: mpeg4audio.h:75
AACDecContext::mdct768_fn
av_tx_fn mdct768_fn
Definition: aacdec.h:498
MDCT_INIT
#define MDCT_INIT(s, fn, len, sval)
AACDecDSP::imdct_and_windowing_960
void(* imdct_and_windowing_960)(AACDecContext *ac, SingleChannelElement *sce)
Definition: aacdec.h:438
layout
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel layout
Definition: filter_design.txt:18
decode_audio_specific_config_gb
static int decode_audio_specific_config_gb(AACDecContext *ac, AVCodecContext *avctx, OutputConfiguration *oc, GetBitContext *gb, int get_bit_alignment, int sync_extension)
Decode audio specific configuration; reference: table 1.13.
Definition: aacdec.c:997
ff_tns_tmp2_map
const float *const ff_tns_tmp2_map[4]
Definition: aactab.c:142
CHANNEL_ORDER_CODED
@ CHANNEL_ORDER_CODED
Definition: aacdec.h:62
AVFrame::nb_samples
int nb_samples
number of audio samples (per channel) described by this frame
Definition: frame.h:454
RawDataBlockType
RawDataBlockType
Definition: aac.h:39
log.h
SingleChannelElement
Single Channel Element - used for both SCE and LFE elements.
Definition: aacdec.h:210
AACDecContext::is_fixed
int is_fixed
Definition: aacdec.h:534
i
#define i(width, name, range_min, range_max)
Definition: cbs_h2645.c:256
IndividualChannelStream::num_windows
int num_windows
Definition: aacdec.h:172
OutputConfiguration::usac
AACUSACConfig usac
Definition: aacdec.h:373
AACDecContext::warned_gain_control
int warned_gain_control
Definition: aacdec.h:531
AVCodecContext::extradata
uint8_t * extradata
some codecs need / can use extradata like Huffman tables.
Definition: avcodec.h:523
show_bits
static unsigned int show_bits(GetBitContext *s, int n)
Show 1-25 bits.
Definition: get_bits.h:371
av_packet_get_side_data
uint8_t * av_packet_get_side_data(const AVPacket *pkt, enum AVPacketSideDataType type, size_t *size)
Get side information from packet.
Definition: packet.c:252
ff_aac_channel_layout_map
const uint8_t ff_aac_channel_layout_map[16][16][3]
Definition: aacdec_tab.c:40
push_output_configuration
static int push_output_configuration(AACDecContext *ac)
Save current output configuration if and only if it has been locked.
Definition: aacdec.c:426
AACDecContext::random_state
int random_state
Definition: aacdec.h:506
relative_align_get_bits
static void relative_align_get_bits(GetBitContext *gb, int reference_position)
Definition: aacdec.c:765
AACDEC_FLAGS
#define AACDEC_FLAGS
Definition: aacdec.c:2498
AVFrame::extended_data
uint8_t ** extended_data
pointers to the data planes/channels.
Definition: frame.h:435
ChannelElement
channel element - generic struct for SCE/CPE/CCE/LFE
Definition: aacdec.h:260
IndividualChannelStream::swb_offset
const uint16_t * swb_offset
table of offsets to the lowest spectral coefficient of a scalefactor band, sfb, for a particular wind...
Definition: aacdec.h:170
AOT_ER_AAC_ELD
@ AOT_ER_AAC_ELD
N Error Resilient Enhanced Low Delay.
Definition: mpeg4audio.h:110
assign_pair
static int assign_pair(struct elem_to_channel e2c_vec[MAX_ELEM_ID], uint8_t(*layout_map)[3], int offset, uint64_t left, uint64_t right, int pos, uint64_t *layout)
Definition: aacdec.c:214
AVSampleFormat
AVSampleFormat
Audio sample formats.
Definition: samplefmt.h:55
NOISE_PRE_BITS
#define NOISE_PRE_BITS
length of preamble
Definition: aac.h:96
FF_DEBUG_STARTCODE
#define FF_DEBUG_STARTCODE
Definition: avcodec.h:1404
FFMIN
#define FFMIN(a, b)
Definition: macros.h:49
AV_CH_FRONT_LEFT
#define AV_CH_FRONT_LEFT
Definition: channel_layout.h:172
TYPE_LFE
@ TYPE_LFE
Definition: aac.h:43
av_frame_unref
void av_frame_unref(AVFrame *frame)
Unreference all the buffers referenced by frame and reset the frame fields.
Definition: frame.c:606
LongTermPrediction::lag
int16_t lag
Definition: aacdec.h:119
ff_aac_decoder
const FFCodec ff_aac_decoder
MPEG4AudioConfig::chan_config
int chan_config
Definition: mpeg4audio.h:33
AVCodec::name
const char * name
Name of the codec implementation.
Definition: codec.h:194
TemporalNoiseShaping::order
int order[8][4]
Definition: aacdec.h:189
TYPE_SCE
@ TYPE_SCE
Definition: aac.h:40
decode_ics_info
static int decode_ics_info(AACDecContext *ac, IndividualChannelStream *ics, GetBitContext *gb)
Decode Individual Channel Stream info; reference: table 4.6.
Definition: aacdec.c:1294
len
int len
Definition: vorbis_enc_data.h:426
filt
static const int8_t filt[NUMTAPS *2]
Definition: af_earwax.c:39
che_configure
static av_cold int che_configure(AACDecContext *ac, enum ChannelPosition che_pos, int type, int id, int *channels)
Check for the channel element in the current channel position configuration.
Definition: aacdec.c:141
AACDecContext::oc
OutputConfiguration oc[2]
Definition: aacdec.h:527
MPEG4AudioConfig::ext_sample_rate
int ext_sample_rate
Definition: mpeg4audio.h:37
IndividualChannelStream::tns_max_bands
int tns_max_bands
Definition: aacdec.h:173
TemporalNoiseShaping::length
int length[8][4]
Definition: aacdec.h:187
AACDecDSP::imdct_and_windowing_eld
void(* imdct_and_windowing_eld)(AACDecContext *ac, SingleChannelElement *sce)
Definition: aacdec.h:440
AACUSACConfig::nb_elems
int nb_elems
Definition: aacdec.h:357
AACADTSHeaderInfo::sample_rate
uint32_t sample_rate
Definition: adts_header.h:36
avcodec.h
ff_swb_offset_120
const uint16_t *const ff_swb_offset_120[]
Definition: aactab.c:1960
AAC_CHANNEL_LFE
@ AAC_CHANNEL_LFE
Definition: aac.h:81
version.h
AOT_ER_BSAC
@ AOT_ER_BSAC
N Error Resilient Bit-Sliced Arithmetic Coding.
Definition: mpeg4audio.h:93
DynamicRangeControl::pce_instance_tag
int pce_instance_tag
Indicates with which program the DRC info is associated.
Definition: aacdec.h:380
decode_ltp
static void decode_ltp(AACDecContext *ac, LongTermPrediction *ltp, GetBitContext *gb, uint8_t max_sfb)
Decode Long Term Prediction data; reference: table 4.xx.
Definition: aacdec.c:1276
ret
ret
Definition: filter_design.txt:187
AV_PKT_DATA_JP_DUALMONO
@ AV_PKT_DATA_JP_DUALMONO
An AV_PKT_DATA_JP_DUALMONO side data packet indicates that the packet may contain "dual mono" audio s...
Definition: packet.h:163
elem_to_channel::aac_position
uint8_t aac_position
Definition: aacdec.c:211
ff_aac_num_swb_1024
const uint8_t ff_aac_num_swb_1024[]
Definition: aactab.c:149
FFSWAP
#define FFSWAP(type, a, b)
Definition: macros.h:52
AVClass::class_name
const char * class_name
The name of the class; usually it is the same name as the context structure type to which the AVClass...
Definition: log.h:71
frame
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
Definition: filter_design.txt:264
AACDecContext::frame
struct AVFrame * frame
Definition: aacdec.h:455
AVCodecContext::strict_std_compliance
int strict_std_compliance
strictly follow the standard (MPEG-4, ...).
Definition: avcodec.h:1379
align_get_bits
static const uint8_t * align_get_bits(GetBitContext *s)
Definition: get_bits.h:561
pos
unsigned int pos
Definition: spdifenc.c:414
count_paired_channels
static int count_paired_channels(uint8_t(*layout_map)[3], int tags, int pos, int current)
Definition: aacdec.c:252
TemporalNoiseShaping::coef
float coef[8][4][TNS_MAX_ORDER]
Definition: aacenc.h:121
CHANNEL_ORDER_DEFAULT
@ CHANNEL_ORDER_DEFAULT
Definition: aacdec.h:61
ChannelCoupling::ch_select
int ch_select[8]
[0] shared list of gains; [1] list of gains for right channel; [2] list of gains for left channel; [3...
Definition: aacdec.h:201
id
enum AVCodecID id
Definition: dts2pts.c:365
left
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled left
Definition: snow.txt:386
MPEG4AudioConfig::object_type
int object_type
Definition: mpeg4audio.h:30
SingleChannelElement::tns
TemporalNoiseShaping tns
Definition: aacdec.h:213
U
#define U(x)
Definition: vpx_arith.h:37
overread_err
#define overread_err
Definition: aacdec.c:115
aacdec.h
imdct_and_window
static void imdct_and_window(TwinVQContext *tctx, enum TwinVQFrameType ftype, int wtype, float *in, float *prev, int ch)
Definition: twinvq.c:329
AACDecContext
main AAC decoding context
Definition: aacdec.h:448
AACADTSHeaderInfo::crc_absent
uint8_t crc_absent
Definition: adts_header.h:39
AV_CHAN_NONE
@ AV_CHAN_NONE
Invalid channel index.
Definition: channel_layout.h:49
init_dsp
static av_cold int init_dsp(AVCodecContext *avctx)
Definition: aacdec.c:1139
EXT_SBR_DATA_CRC
@ EXT_SBR_DATA_CRC
Definition: aac.h:56
AVCodecContext
main external API structure.
Definition: avcodec.h:445
EXT_SBR_DATA
@ EXT_SBR_DATA
Definition: aac.h:55
LongTermPrediction
Long Term Prediction.
Definition: aacdec.h:117
AV_PROFILE_AAC_HE_V2
#define AV_PROFILE_AAC_HE_V2
Definition: defs.h:73
AACDecContext::avctx
struct AVCodecContext * avctx
Definition: aacdec.h:450
MPEG4AudioConfig::ps
int ps
-1 implicit, 1 presence
Definition: mpeg4audio.h:40
aacdec_latm.h
NOISE_OFFSET
#define NOISE_OFFSET
subtracted from global gain, used as offset for the preamble
Definition: aac.h:97
aacdec_tab.h
IndividualChannelStream::prediction_used
uint8_t prediction_used[41]
Definition: aacdec.h:177
mode
mode
Definition: ebur128.h:83
AACUsacElemConfig::ext
struct AACUsacElemConfig::@24 ext
AV_OPT_TYPE_INT
@ AV_OPT_TYPE_INT
Definition: opt.h:245
AVCodecContext::profile
int profile
profile
Definition: avcodec.h:1640
TemporalNoiseShaping
Temporal Noise Shaping.
Definition: aacdec.h:184
ff_mpeg4audio_channels
const uint8_t ff_mpeg4audio_channels[15]
Definition: mpeg4audio.c:59
av_channel_layout_uninit
void av_channel_layout_uninit(AVChannelLayout *channel_layout)
Free any allocated data in the channel layout and reset the channel count to 0.
Definition: channel_layout.c:437
MPEG4AudioConfig::sbr
int sbr
-1 implicit, 1 presence
Definition: mpeg4audio.h:34
samples
Filter the word “frame” indicates either a video frame or a group of audio samples
Definition: filter_design.txt:8
ff_aac_decode_tns
int ff_aac_decode_tns(AACDecContext *ac, TemporalNoiseShaping *tns, GetBitContext *gb, const IndividualChannelStream *ics)
Decode Temporal Noise Shaping data; reference: table 4.48.
Definition: aacdec.c:1554
Q31
#define Q31(x)
Definition: aac_defines.h:111
DynamicRangeControl::band_incr
int band_incr
Number of DRC bands greater than 1 having DRC info.
Definition: aacdec.h:384
AACDecContext::mdct_ltp_fn
av_tx_fn mdct_ltp_fn
Definition: aacdec.h:501
ff_aac_usac_reset_state
int ff_aac_usac_reset_state(AACDecContext *ac, OutputConfiguration *oc)
Definition: aacdec_usac.c:274
decode_gain_control
static void decode_gain_control(SingleChannelElement *sce, GetBitContext *gb)
Definition: aacdec.c:1626
AVCodecContext::debug
int debug
debug
Definition: avcodec.h:1396
AV_CH_FRONT_RIGHT
#define AV_CH_FRONT_RIGHT
Definition: channel_layout.h:173
av_channel_layout_copy
int av_channel_layout_copy(AVChannelLayout *dst, const AVChannelLayout *src)
Make a copy of a channel layout.
Definition: channel_layout.c:444
OutputConfiguration::m4ac
MPEG4AudioConfig m4ac
Definition: aacdec.h:368
TYPE_CCE
@ TYPE_CCE
Definition: aac.h:42
apply_channel_coupling
static void apply_channel_coupling(AACDecContext *ac, ChannelElement *cc, enum RawDataBlockType type, int elem_id, enum CouplingPoint coupling_point, void(*apply_coupling_method)(AACDecContext *ac, SingleChannelElement *target, ChannelElement *cce, int index))
channel coupling transformation interface
Definition: aacdec.c:1970
mem.h
OutputConfiguration::ch_layout
AVChannelLayout ch_layout
Definition: aacdec.h:371
ff_aacdec_common_init_once
av_cold void ff_aacdec_common_init_once(void)
Definition: aacdec_tab.c:304
avpriv_request_sample
#define avpriv_request_sample(...)
Definition: tableprint_vlc.h:36
adts_header.h
MPEG4AudioConfig::frame_length_short
int frame_length_short
Definition: mpeg4audio.h:41
AV_PROFILE_AAC_HE
#define AV_PROFILE_AAC_HE
Definition: defs.h:72
ff_aac_channel_map
const int16_t ff_aac_channel_map[3][4][6]
Definition: aacdec_tab.c:75
DynamicRangeControl::dyn_rng_sgn
int dyn_rng_sgn[17]
DRC sign information; 0 - positive, 1 - negative.
Definition: aacdec.h:381
AVPacket
This structure stores compressed data.
Definition: packet.h:497
AVCodecContext::priv_data
void * priv_data
Definition: avcodec.h:472
ff_vlc_scalefactors
VLCElem ff_vlc_scalefactors[352]
Definition: aacdec_tab.c:111
av_freep
#define av_freep(p)
Definition: tableprint_vlc.h:34
ChannelCoupling
coupling parameters
Definition: aacdec.h:196
EXT_DATA_ELEMENT
@ EXT_DATA_ELEMENT
Definition: aac.h:53
aac_defines.h
AVERROR_BUG
#define AVERROR_BUG
Internal bug, also see AVERROR_BUG2.
Definition: error.h:52
IndividualChannelStream::max_sfb
uint8_t max_sfb
number of scalefactor bands per group
Definition: aacdec.h:163
decode_channel_map
static void decode_channel_map(uint8_t layout_map[][3], enum ChannelPosition type, GetBitContext *gb, int n)
Decode an array of 4 bit element IDs, optionally interleaved with a stereo/mono switching bit.
Definition: aacdec.c:735
Pulse
Definition: aac.h:99
AAC_CHANNEL_CC
@ AAC_CHANNEL_CC
Definition: aac.h:82
av_log
#define av_log(a,...)
Definition: tableprint_vlc.h:27
AVERROR_INVALIDDATA
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:61
OFF
#define OFF(field)
Definition: aacdec.c:2499
AACDecContext::mdct512
AVTXContext * mdct512
Definition: aacdec.h:487
DynamicRangeControl::interpolation_scheme
int interpolation_scheme
Indicates the interpolation scheme used in the SBR QMF domain.
Definition: aacdec.h:385
AFTER_IMDCT
@ AFTER_IMDCT
Definition: aacdec.h:71
ff_aac_set_default_channel_config
int ff_aac_set_default_channel_config(AACDecContext *ac, AVCodecContext *avctx, uint8_t(*layout_map)[3], int *tags, int channel_config)
Set up channel positions based on a default channel configuration as specified in table 1....
Definition: aacdec.c:549
IndividualChannelStream::ltp
LongTermPrediction ltp
Definition: aacdec.h:169
IndividualChannelStream::group_len
uint8_t group_len[8]
Definition: aacdec.h:168
AV_OPT_TYPE_CONST
@ AV_OPT_TYPE_CONST
Definition: opt.h:254
decode_band_types
static int decode_band_types(AACDecContext *ac, SingleChannelElement *sce, GetBitContext *gb)
Decode band types (section_data payload); reference: table 4.46.
Definition: aacdec.c:1421
decode_pce
static int decode_pce(AVCodecContext *avctx, MPEG4AudioConfig *m4ac, uint8_t(*layout_map)[3], GetBitContext *gb, int byte_align_ref)
Decode program configuration element; reference: table 4.2.
Definition: aacdec.c:777
AOT_AAC_LC
@ AOT_AAC_LC
Y Low Complexity.
Definition: mpeg4audio.h:74
TemporalNoiseShaping::n_filt
int n_filt[8]
Definition: aacdec.h:186
AOT_AAC_LTP
@ AOT_AAC_LTP
Y Long Term Prediction.
Definition: mpeg4audio.h:76
OC_TRIAL_FRAME
@ OC_TRIAL_FRAME
Output configuration under trial specified by a frame header.
Definition: aacdec.h:55
Q30
#define Q30(x)
Definition: aac_defines.h:110
ff_aac_output_configure
int ff_aac_output_configure(AACDecContext *ac, uint8_t layout_map[MAX_ELEM_ID *4][3], int tags, enum OCStatus oc_type, int get_new_frame)
Configure output channel order based on the current program configuration element.
Definition: aacdec.c:458
AACDecProc::sbr_ctx_close
void(* sbr_ctx_close)(ChannelElement *che)
Definition: aacdec.h:408
AACADTSHeaderInfo
Definition: adts_header.h:35
IndividualChannelStream::predictor_reset_group
int predictor_reset_group
Definition: aacdec.h:176
tx.h
AACDecContext::mdct120_fn
av_tx_fn mdct120_fn
Definition: aacdec.h:494
MPEG4AudioConfig::sample_rate
int sample_rate
Definition: mpeg4audio.h:32
AACDecContext::mdct128_fn
av_tx_fn mdct128_fn
Definition: aacdec.h:495