Go to the documentation of this file.
27 #include "config_components.h"
101 s->macroblocks =
NULL;
141 memset(
s->framep, 0,
sizeof(
s->framep));
161 for (
i = 0;
i < 5;
i++)
182 #if CONFIG_VP8_VAAPI_HWACCEL
185 #if CONFIG_VP8_NVDEC_HWACCEL
199 int i,
ret, dim_reset = 0;
201 if (
width !=
s->avctx->width || ((
width+15)/16 !=
s->mb_width || (
height+15)/16 !=
s->mb_height) &&
s->macroblocks_base ||
209 dim_reset = (
s->macroblocks_base !=
NULL);
213 !
s->actually_webp && !is_vp7) {
220 s->mb_width = (
s->avctx->coded_width + 15) / 16;
221 s->mb_height = (
s->avctx->coded_height + 15) / 16;
226 s->macroblocks_base =
av_mallocz((
s->mb_width +
s->mb_height * 2 + 1) *
227 sizeof(*
s->macroblocks));
228 s->intra4x4_pred_mode_top =
av_mallocz(
s->mb_width * 4);
230 s->macroblocks_base =
av_mallocz((
s->mb_width + 2) * (
s->mb_height + 2) *
231 sizeof(*
s->macroblocks));
233 s->top_border =
av_mallocz((
s->mb_width + 1) *
sizeof(*
s->top_border));
236 if (!
s->macroblocks_base || !
s->top_nnz || !
s->top_border ||
237 !
s->thread_data || (!
s->intra4x4_pred_mode_top && !
s->mb_layout)) {
243 s->thread_data[
i].filter_strength =
244 av_mallocz(
s->mb_width *
sizeof(*
s->thread_data[0].filter_strength));
245 if (!
s->thread_data[
i].filter_strength) {
263 s->macroblocks =
s->macroblocks_base + 1;
287 if (
s->segmentation.update_feature_data) {
290 for (
i = 0;
i < 4;
i++)
293 for (
i = 0;
i < 4;
i++)
296 if (
s->segmentation.update_map)
297 for (
i = 0;
i < 3;
i++)
306 for (
i = 0;
i < 4;
i++) {
311 s->lf_delta.ref[
i] = -
s->lf_delta.ref[
i];
320 s->lf_delta.mode[
i] = -
s->lf_delta.mode[
i];
327 const uint8_t *
sizes = buf;
333 buf += 3 * (
s->num_coeff_partitions - 1);
334 buf_size -= 3 * (
s->num_coeff_partitions - 1);
338 for (
i = 0;
i <
s->num_coeff_partitions - 1;
i++) {
340 if (buf_size -
size < 0)
342 s->coeff_partition_size[
i] =
size;
351 s->coeff_partition_size[
i] = buf_size;
387 for (
i = 0;
i < 4;
i++) {
388 if (
s->segmentation.enabled) {
389 base_qi =
s->segmentation.base_quant[
i];
390 if (!
s->segmentation.absolute_vals)
391 base_qi +=
s->quant.yac_qi;
393 base_qi =
s->quant.yac_qi;
403 s->qmat[
i].luma_dc_qmul[1] =
FFMAX(
s->qmat[
i].luma_dc_qmul[1], 8);
404 s->qmat[
i].chroma_qmul[0] =
FFMIN(
s->qmat[
i].chroma_qmul[0], 132);
440 for (
i = 0;
i < 4;
i++)
441 for (j = 0; j < 16; j++)
443 sizeof(
s->prob->token[
i][j]));
451 for (
i = 0;
i < 4;
i++)
452 for (j = 0; j < 8; j++)
453 for (k = 0; k < 3; k++)
462 #define VP7_MVC_SIZE 17
463 #define VP8_MVC_SIZE 19
472 for (
i = 0;
i < 4;
i++)
475 for (
i = 0;
i < 3;
i++)
479 for (
i = 0;
i < 2;
i++)
480 for (j = 0; j < mvc_size; j++)
500 for (j = 1; j < 3; j++) {
507 static void fade(uint8_t *dst, ptrdiff_t dst_linesize,
508 const uint8_t *
src, ptrdiff_t src_linesize,
513 for (j = 0; j <
height; j++) {
514 const uint8_t *
src2 =
src + j * src_linesize;
515 uint8_t *dst2 = dst + j * dst_linesize;
527 if (!
s->keyframe && (
alpha || beta)) {
528 int width =
s->mb_width * 16;
529 int height =
s->mb_height * 16;
554 src->data[0],
src->linesize[0],
564 int part1_size, hscale, vscale,
i, j,
ret;
565 int width =
s->avctx->width;
569 int fade_present = 1;
575 s->profile = (buf[0] >> 1) & 7;
576 if (
s->profile > 1) {
581 s->keyframe = !(buf[0] & 1);
583 part1_size =
AV_RL24(buf) >> 4;
585 if (buf_size < 4 - s->
profile + part1_size) {
586 av_log(
s->avctx,
AV_LOG_ERROR,
"Buffer size %d is too small, needed : %d\n", buf_size, 4 -
s->profile + part1_size);
590 buf += 4 -
s->profile;
591 buf_size -= 4 -
s->profile;
593 memcpy(
s->put_pixels_tab,
s->vp8dsp.put_vp8_epel_pixels_tab,
sizeof(
s->put_pixels_tab));
599 buf_size -= part1_size;
607 if (hscale || vscale)
613 sizeof(
s->prob->pred16x16));
615 sizeof(
s->prob->pred8x8c));
616 for (
i = 0;
i < 2;
i++)
619 memset(&
s->segmentation, 0,
sizeof(
s->segmentation));
620 memset(&
s->lf_delta, 0,
sizeof(
s->lf_delta));
624 if (
s->keyframe ||
s->profile > 0)
625 memset(
s->inter_dc_pred, 0 ,
sizeof(
s->inter_dc_pred));
628 for (
i = 0;
i < 4;
i++) {
630 if (
s->feature_enabled[
i]) {
633 for (j = 0; j < 3; j++)
634 s->feature_index_prob[
i][j] =
638 for (j = 0; j < 4; j++)
639 s->feature_value[
i][j] =
644 s->segmentation.enabled = 0;
645 s->segmentation.update_map = 0;
646 s->lf_delta.enabled = 0;
648 s->num_coeff_partitions = 1;
653 if (!
s->macroblocks_base ||
655 (
width + 15) / 16 !=
s->mb_width || (
height + 15) / 16 !=
s->mb_height) {
670 s->update_probabilities = 1;
672 if (
s->profile > 0) {
674 if (!
s->update_probabilities)
675 s->prob[1] =
s->prob[0];
695 for (
i = 1;
i < 16;
i++)
707 s->mbskip_enabled = 0;
728 int header_size, hscale, vscale,
ret;
729 int width =
s->avctx->width;
737 s->keyframe = !(buf[0] & 1);
738 s->profile = (buf[0]>>1) & 7;
739 s->invisible = !(buf[0] & 0x10);
740 header_size =
AV_RL24(buf) >> 5;
744 s->header_partition_size = header_size;
750 memcpy(
s->put_pixels_tab,
s->vp8dsp.put_vp8_epel_pixels_tab,
751 sizeof(
s->put_pixels_tab));
753 memcpy(
s->put_pixels_tab,
s->vp8dsp.put_vp8_bilinear_pixels_tab,
754 sizeof(
s->put_pixels_tab));
756 if (header_size > buf_size - 7 *
s->keyframe) {
762 if (
AV_RL24(buf) != 0x2a019d) {
764 "Invalid start code 0x%x\n",
AV_RL24(buf));
769 hscale = buf[4] >> 6;
770 vscale = buf[6] >> 6;
774 if (hscale || vscale)
780 sizeof(
s->prob->pred16x16));
782 sizeof(
s->prob->pred8x8c));
784 sizeof(
s->prob->mvc));
785 memset(&
s->segmentation, 0,
sizeof(
s->segmentation));
786 memset(&
s->lf_delta, 0,
sizeof(
s->lf_delta));
793 buf_size -= header_size;
805 s->segmentation.update_map = 0;
813 if (
s->lf_delta.update)
822 if (!
s->macroblocks_base ||
824 (
width+15)/16 !=
s->mb_width || (
height+15)/16 !=
s->mb_height)
839 s->prob[1] =
s->prob[0];
857 s->coder_state_at_header_end.input =
s->c.buffer - (-
s->c.bits / 8);
858 s->coder_state_at_header_end.range =
s->c.high;
859 s->coder_state_at_header_end.value =
s->c.code_word >> 16;
860 s->coder_state_at_header_end.bit_count = -
s->c.bits % 8;
869 av_clip(
s->mv_max.x, INT16_MIN, INT16_MAX));
871 av_clip(
s->mv_max.y, INT16_MIN, INT16_MAX));
884 for (
i = 0;
i < 3;
i++)
886 for (
i = (vp7 ? 7 : 9);
i > 3;
i--)
892 const uint8_t *ps = p + 2;
941 const uint8_t *mbsplits_top, *mbsplits_cur, *firstidx;
943 const VP8mv *left_mv = left_mb->
bmv;
949 top_mb = &
mb[-
s->mb_width - 1];
951 top_mv = top_mb->
bmv;
965 mb->partitioning = part_idx;
967 for (n = 0; n < num; n++) {
969 uint32_t
left, above;
970 const uint8_t *submv_prob;
977 above =
AV_RN32A(&top_mv[mbsplits_top[k + 12]]);
979 above =
AV_RN32A(&cur_mv[mbsplits_cur[k - 4]]);
986 mb->bmv[n].y =
mb->mv.y +
988 mb->bmv[n].x =
mb->mv.x +
1016 int xoffset,
int yoffset,
int boundary,
1017 int *edge_x,
int *edge_y)
1019 int vwidth = mb_width + 1;
1020 int new = (mb_y + yoffset) * vwidth + mb_x + xoffset;
1021 if (
new < boundary ||
new % vwidth == vwidth - 1)
1023 *edge_y =
new / vwidth;
1024 *edge_x =
new % vwidth;
1035 int mb_x,
int mb_y,
int layout)
1037 enum { CNT_ZERO, CNT_NEAREST, CNT_NEAR };
1038 enum { VP8_EDGE_TOP, VP8_EDGE_LEFT, VP8_EDGE_TOPLEFT };
1041 uint8_t cnt[3] = { 0 };
1054 pred->yoffset, !
s->profile, &edge_x, &edge_y)) {
1056 ?
s->macroblocks_base + 1 + edge_x +
1057 (
s->mb_width + 1) * (edge_y + 1)
1058 :
s->macroblocks + edge_x +
1059 (
s->mb_height - edge_y - 1) * 2;
1062 if (
AV_RN32A(&near_mv[CNT_NEAREST])) {
1065 }
else if (
AV_RN32A(&near_mv[CNT_NEAR])) {
1095 if (cnt[CNT_NEAREST] > cnt[CNT_NEAR])
1096 AV_WN32A(&
mb->mv, cnt[CNT_ZERO] > cnt[CNT_NEAREST] ? 0 :
AV_RN32A(&near_mv[CNT_NEAREST]));
1106 mb->bmv[0] =
mb->mv;
1109 mb->mv = near_mv[CNT_NEAR];
1110 mb->bmv[0] =
mb->mv;
1113 mb->mv = near_mv[CNT_NEAREST];
1114 mb->bmv[0] =
mb->mv;
1119 mb->bmv[0] =
mb->mv;
1125 int mb_x,
int mb_y,
int layout)
1130 enum { CNT_ZERO, CNT_NEAREST, CNT_NEAR, CNT_SPLITMV };
1131 enum { VP8_EDGE_TOP, VP8_EDGE_LEFT, VP8_EDGE_TOPLEFT };
1133 int cur_sign_bias =
s->sign_bias[
mb->ref_frame];
1134 const int8_t *sign_bias =
s->sign_bias;
1136 uint8_t cnt[4] = { 0 };
1140 mb_edge[0] =
mb + 2;
1141 mb_edge[2] =
mb + 1;
1143 mb_edge[0] =
mb -
s->mb_width - 1;
1144 mb_edge[2] =
mb -
s->mb_width - 2;
1152 #define MV_EDGE_CHECK(n) \
1154 const VP8Macroblock *edge = mb_edge[n]; \
1155 int edge_ref = edge->ref_frame; \
1156 if (edge_ref != VP8_FRAME_CURRENT) { \
1157 uint32_t mv = AV_RN32A(&edge->mv); \
1159 if (cur_sign_bias != sign_bias[edge_ref]) { \
1162 mv = ((mv & 0x7fff7fff) + \
1163 0x00010001) ^ (mv & 0x80008000); \
1165 if (!n || mv != AV_RN32A(&near_mv[idx])) \
1166 AV_WN32A(&near_mv[++idx], mv); \
1167 cnt[idx] += 1 + (n != 2); \
1169 cnt[CNT_ZERO] += 1 + (n != 2); \
1182 if (cnt[CNT_SPLITMV] &&
1183 AV_RN32A(&near_mv[1 + VP8_EDGE_TOP]) ==
AV_RN32A(&near_mv[1 + VP8_EDGE_TOPLEFT]))
1184 cnt[CNT_NEAREST] += 1;
1187 if (cnt[CNT_NEAR] > cnt[CNT_NEAREST]) {
1188 FFSWAP(uint8_t, cnt[CNT_NEAREST], cnt[CNT_NEAR]);
1189 FFSWAP(
VP8mv, near_mv[CNT_NEAREST], near_mv[CNT_NEAR]);
1195 clamp_mv(mv_bounds, &
mb->mv, &near_mv[CNT_ZERO + (cnt[CNT_NEAREST] >= cnt[CNT_ZERO])]);
1206 mb->bmv[0] =
mb->mv;
1209 clamp_mv(mv_bounds, &
mb->mv, &near_mv[CNT_NEAR]);
1210 mb->bmv[0] =
mb->mv;
1213 clamp_mv(mv_bounds, &
mb->mv, &near_mv[CNT_NEAREST]);
1214 mb->bmv[0] =
mb->mv;
1219 mb->bmv[0] =
mb->mv;
1225 int mb_x,
int keyframe,
int layout)
1227 uint8_t *intra4x4 =
mb->intra4x4_pred_mode_mb;
1236 uint8_t *
const left =
s->intra4x4_pred_mode_left;
1238 top =
mb->intra4x4_pred_mode_top;
1240 top =
s->intra4x4_pred_mode_top + 4 * mb_x;
1241 for (y = 0; y < 4; y++) {
1242 for (x = 0; x < 4; x++) {
1246 left[y] = top[x] = *intra4x4;
1252 for (
i = 0;
i < 16;
i++)
1264 static const char *
const vp7_feature_name[] = {
"q-index",
1266 "partial-golden-update",
1271 for (
i = 0;
i < 4;
i++) {
1272 if (
s->feature_enabled[
i]) {
1275 s->feature_index_prob[
i]);
1277 "Feature %s present in macroblock (value 0x%x)\n",
1278 vp7_feature_name[
i],
s->feature_value[
i][
index]);
1282 }
else if (
s->segmentation.update_map) {
1285 }
else if (
s->segmentation.enabled)
1318 s->ref_count[
mb->ref_frame - 1]++;
1328 s->prob->pred16x16);
1354 int i,
const uint8_t *token_prob,
const int16_t qmul[2],
1355 const uint8_t scan[16],
int vp7)
1369 token_prob = probs[
i][0];
1377 token_prob = probs[
i + 1][1];
1397 int cat = (
a << 1) +
b;
1402 token_prob = probs[
i + 1][2];
1437 int i,
const uint8_t *token_prob,
1438 const int16_t qmul[2],
1439 const uint8_t scan[16])
1442 token_prob, qmul, scan,
IS_VP7);
1445 #ifndef vp8_decode_block_coeffs_internal
1449 int i,
const uint8_t *token_prob,
1450 const int16_t qmul[2])
1473 int i,
int zero_nhood,
const int16_t qmul[2],
1474 const uint8_t scan[16],
int vp7)
1476 const uint8_t *token_prob = probs[
i][zero_nhood];
1480 token_prob, qmul, scan)
1490 int i, x, y, luma_start = 0, luma_ctx = 3;
1491 int nnz_pred, nnz, nnz_total = 0;
1496 nnz_pred = t_nnz[8] + l_nnz[8];
1500 nnz_pred,
s->qmat[
segment].luma_dc_qmul,
1502 l_nnz[8] = t_nnz[8] = !!nnz;
1506 s->inter_dc_pred[
mb->ref_frame - 1]);
1522 for (y = 0; y < 4; y++)
1523 for (x = 0; x < 4; x++) {
1524 nnz_pred = l_nnz[y] + t_nnz[x];
1526 s->prob->token[luma_ctx],
1527 luma_start, nnz_pred,
1529 s->prob[0].scan, is_vp7);
1533 t_nnz[x] = l_nnz[y] = !!nnz;
1540 for (
i = 4;
i < 6;
i++)
1541 for (y = 0; y < 2; y++)
1542 for (x = 0; x < 2; x++) {
1543 nnz_pred = l_nnz[
i + 2 * y] + t_nnz[
i + 2 * x];
1545 s->prob->token[2], 0, nnz_pred,
1547 s->prob[0].scan, is_vp7);
1549 t_nnz[
i + 2 * x] = l_nnz[
i + 2 * y] = !!nnz;
1562 const uint8_t *src_cb,
const uint8_t *src_cr,
1563 ptrdiff_t linesize, ptrdiff_t uvlinesize,
int simple)
1565 AV_COPY128(top_border, src_y + 15 * linesize);
1567 AV_COPY64(top_border + 16, src_cb + 7 * uvlinesize);
1568 AV_COPY64(top_border + 24, src_cr + 7 * uvlinesize);
1574 uint8_t *src_cr, ptrdiff_t linesize, ptrdiff_t uvlinesize,
int mb_x,
1575 int mb_y,
int mb_width,
int simple,
int xchg)
1577 uint8_t *top_border_m1 = top_border - 32;
1579 src_cb -= uvlinesize;
1580 src_cr -= uvlinesize;
1582 #define XCHG(a, b, xchg) \
1590 XCHG(top_border_m1 + 8, src_y - 8, xchg);
1591 XCHG(top_border, src_y, xchg);
1592 XCHG(top_border + 8, src_y + 8, 1);
1593 if (mb_x < mb_width - 1)
1594 XCHG(top_border + 32, src_y + 16, 1);
1598 if (!simple || !mb_y) {
1599 XCHG(top_border_m1 + 16, src_cb - 8, xchg);
1600 XCHG(top_border_m1 + 24, src_cr - 8, xchg);
1601 XCHG(top_border + 16, src_cb, 1);
1602 XCHG(top_border + 24, src_cr, 1);
1652 int *copy_buf,
int vp7)
1656 if (!mb_x && mb_y) {
1690 int x, y,
mode, nnz;
1695 if (mb_y && (
s->deblock_filter || !mb_y) && td->
thread_nr == 0)
1697 s->linesize,
s->uvlinesize, mb_x, mb_y,
s->mb_width,
1698 s->filter.simple, 1);
1702 s->hpc.pred16x16[
mode](dst[0],
s->linesize);
1704 uint8_t *ptr = dst[0];
1705 const uint8_t *intra4x4 =
mb->intra4x4_pred_mode_mb;
1706 const uint8_t lo = is_vp7 ? 128 : 127;
1707 const uint8_t hi = is_vp7 ? 128 : 129;
1708 const uint8_t tr_top[4] = { lo, lo, lo, lo };
1712 const uint8_t *tr_right = ptr -
s->linesize + 16;
1716 if (mb_y && mb_x ==
s->mb_width - 1) {
1717 tr = tr_right[-1] * 0x01010101
u;
1718 tr_right = (uint8_t *) &tr;
1724 for (y = 0; y < 4; y++) {
1725 const uint8_t *topright = ptr + 4 -
s->linesize;
1726 for (x = 0; x < 4; x++) {
1728 ptrdiff_t linesize =
s->linesize;
1729 uint8_t *dst = ptr + 4 * x;
1732 if ((y == 0 || x == 3) && mb_y == 0) {
1735 topright = tr_right;
1738 mb_y + y, &
copy, is_vp7);
1740 dst = copy_dst + 12;
1744 AV_WN32A(copy_dst + 4, lo * 0x01010101U);
1746 AV_COPY32(copy_dst + 4, ptr + 4 * x -
s->linesize);
1750 copy_dst[3] = ptr[4 * x -
s->linesize - 1];
1759 copy_dst[11] = ptr[4 * x - 1];
1760 copy_dst[19] = ptr[4 * x +
s->linesize - 1];
1761 copy_dst[27] = ptr[4 * x +
s->linesize * 2 - 1];
1762 copy_dst[35] = ptr[4 * x +
s->linesize * 3 - 1];
1765 s->hpc.pred4x4[
mode](dst, topright, linesize);
1768 AV_COPY32(ptr + 4 * x +
s->linesize, copy_dst + 20);
1769 AV_COPY32(ptr + 4 * x +
s->linesize * 2, copy_dst + 28);
1770 AV_COPY32(ptr + 4 * x +
s->linesize * 3, copy_dst + 36);
1776 s->vp8dsp.vp8_idct_dc_add(ptr + 4 * x,
1777 td->
block[y][x],
s->linesize);
1779 s->vp8dsp.vp8_idct_add(ptr + 4 * x,
1780 td->
block[y][x],
s->linesize);
1785 ptr += 4 *
s->linesize;
1791 mb_x, mb_y, is_vp7);
1792 s->hpc.pred8x8[
mode](dst[1],
s->uvlinesize);
1793 s->hpc.pred8x8[
mode](dst[2],
s->uvlinesize);
1795 if (mb_y && (
s->deblock_filter || !mb_y) && td->
thread_nr == 0)
1797 s->linesize,
s->uvlinesize, mb_x, mb_y,
s->mb_width,
1798 s->filter.simple, 0);
1802 { 0, 1, 2, 1, 2, 1, 2, 1 },
1804 { 0, 3, 5, 3, 5, 3, 5, 3 },
1805 { 0, 2, 3, 2, 3, 2, 3, 2 },
1827 int x_off,
int y_off,
int block_w,
int block_h,
1831 const uint8_t *
src =
ref->f->data[0];
1834 ptrdiff_t src_linesize = linesize;
1839 x_off +=
mv->x >> 2;
1840 y_off +=
mv->y >> 2;
1844 src += y_off * linesize + x_off;
1848 src - my_idx * linesize - mx_idx,
1852 x_off - mx_idx, y_off - my_idx,
1857 mc_func[my_idx][mx_idx](dst, linesize,
src, src_linesize, block_h, mx, my);
1860 mc_func[0][0](dst, linesize,
src + y_off * linesize + x_off,
1861 linesize, block_h, 0, 0);
1885 int x_off,
int y_off,
int block_w,
int block_h,
1895 x_off +=
mv->x >> 3;
1896 y_off +=
mv->y >> 3;
1899 src1 += y_off * linesize + x_off;
1900 src2 += y_off * linesize + x_off;
1905 src1 - my_idx * linesize - mx_idx,
1914 src2 - my_idx * linesize - mx_idx,
1922 mc_func[my_idx][mx_idx](dst1, linesize,
src1, linesize, block_h, mx, my);
1923 mc_func[my_idx][mx_idx](dst2, linesize,
src2, linesize, block_h, mx, my);
1927 mc_func[0][0](dst1, linesize,
src1 + y_off * linesize + x_off, linesize, block_h, 0, 0);
1928 mc_func[0][0](dst2, linesize,
src2 + y_off * linesize + x_off, linesize, block_h, 0, 0);
1935 int bx_off,
int by_off,
int block_w,
int block_h,
1944 s->put_pixels_tab[block_w == 8]);
1947 if (
s->profile == 3) {
1962 dst[2] + by_off *
s->uvlinesize + bx_off,
ref_frame,
1963 &uvmv, x_off + bx_off, y_off + by_off,
1965 s->put_pixels_tab[1 + (block_w == 4)]);
1972 int mb_x,
int mb_y,
int mb_xy,
int ref)
1975 if (
s->ref_count[
ref - 1] > (mb_xy >> 5)) {
1976 int x_off = mb_x << 4, y_off = mb_y << 4;
1977 int mx = (
mb->mv.x >> 2) + x_off + 8;
1978 int my = (
mb->mv.y >> 2) + y_off;
1979 uint8_t **
src =
s->framep[
ref]->tf.f->data;
1980 int off = mx + (my + (mb_x & 3) * 4) *
s->linesize + 64;
1984 s->vdsp.prefetch(
src[0] + off,
s->linesize, 4);
1985 off = (mx >> 1) + ((my >> 1) + (mb_x & 7)) *
s->uvlinesize + 64;
1986 s->vdsp.prefetch(
src[1] + off,
src[2] -
src[1], 2);
1997 int x_off = mb_x << 4, y_off = mb_y << 4;
2002 switch (
mb->partitioning) {
2012 for (y = 0; y < 4; y++) {
2013 for (x = 0; x < 4; x++) {
2015 ref, &bmv[4 * y + x],
2016 4 * x + x_off, 4 * y + y_off, 4, 4,
2018 s->put_pixels_tab[2]);
2027 for (y = 0; y < 2; y++) {
2028 for (x = 0; x < 2; x++) {
2029 uvmv.
x =
mb->bmv[2 * y * 4 + 2 * x ].x +
2030 mb->bmv[2 * y * 4 + 2 * x + 1].x +
2031 mb->bmv[(2 * y + 1) * 4 + 2 * x ].x +
2032 mb->bmv[(2 * y + 1) * 4 + 2 * x + 1].x;
2033 uvmv.
y =
mb->bmv[2 * y * 4 + 2 * x ].y +
2034 mb->bmv[2 * y * 4 + 2 * x + 1].y +
2035 mb->bmv[(2 * y + 1) * 4 + 2 * x ].y +
2036 mb->bmv[(2 * y + 1) * 4 + 2 * x + 1].y;
2039 if (
s->profile == 3) {
2044 dst[2] + 4 * y *
s->uvlinesize + x * 4,
ref,
2045 &uvmv, 4 * x + x_off, 4 * y + y_off, 4, 4,
2047 s->put_pixels_tab[2]);
2084 uint8_t *y_dst = dst[0];
2085 for (y = 0; y < 4; y++) {
2088 if (nnz4 & ~0x01010101) {
2089 for (x = 0; x < 4; x++) {
2090 if ((uint8_t) nnz4 == 1)
2091 s->vp8dsp.vp8_idct_dc_add(y_dst + 4 * x,
2094 else if ((uint8_t) nnz4 > 1)
2095 s->vp8dsp.vp8_idct_add(y_dst + 4 * x,
2103 s->vp8dsp.vp8_idct_dc_add4y(y_dst, td->
block[y],
s->linesize);
2106 y_dst += 4 *
s->linesize;
2110 for (ch = 0; ch < 2; ch++) {
2113 uint8_t *ch_dst = dst[1 + ch];
2114 if (nnz4 & ~0x01010101) {
2115 for (y = 0; y < 2; y++) {
2116 for (x = 0; x < 2; x++) {
2117 if ((uint8_t) nnz4 == 1)
2118 s->vp8dsp.vp8_idct_dc_add(ch_dst + 4 * x,
2119 td->
block[4 + ch][(y << 1) + x],
2121 else if ((uint8_t) nnz4 > 1)
2122 s->vp8dsp.vp8_idct_add(ch_dst + 4 * x,
2123 td->
block[4 + ch][(y << 1) + x],
2127 goto chroma_idct_end;
2129 ch_dst += 4 *
s->uvlinesize;
2132 s->vp8dsp.vp8_idct_dc_add4uv(ch_dst, td->
block[4 + ch],
s->uvlinesize);
2144 int interior_limit, filter_level;
2146 if (
s->segmentation.enabled) {
2147 filter_level =
s->segmentation.filter_level[
mb->segment];
2148 if (!
s->segmentation.absolute_vals)
2149 filter_level +=
s->filter.level;
2151 filter_level =
s->filter.level;
2153 if (
s->lf_delta.enabled) {
2154 filter_level +=
s->lf_delta.ref[
mb->ref_frame];
2155 filter_level +=
s->lf_delta.mode[
mb->mode];
2160 interior_limit = filter_level;
2161 if (
s->filter.sharpness) {
2162 interior_limit >>= (
s->filter.sharpness + 3) >> 2;
2163 interior_limit =
FFMIN(interior_limit, 9 -
s->filter.sharpness);
2165 interior_limit =
FFMAX(interior_limit, 1);
2167 f->filter_level = filter_level;
2168 f->inner_limit = interior_limit;
2169 f->inner_filter = is_vp7 || !
mb->skip ||
mb->mode ==
MODE_I4x4 ||
2175 int mb_x,
int mb_y,
int is_vp7)
2177 int mbedge_lim, bedge_lim_y, bedge_lim_uv, hev_thresh;
2178 int filter_level =
f->filter_level;
2179 int inner_limit =
f->inner_limit;
2180 int inner_filter =
f->inner_filter;
2181 ptrdiff_t linesize =
s->linesize;
2182 ptrdiff_t uvlinesize =
s->uvlinesize;
2183 static const uint8_t hev_thresh_lut[2][64] = {
2184 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
2185 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2186 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
2188 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
2189 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
2190 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2198 bedge_lim_y = filter_level;
2199 bedge_lim_uv = filter_level * 2;
2200 mbedge_lim = filter_level + 2;
2203 bedge_lim_uv = filter_level * 2 + inner_limit;
2204 mbedge_lim = bedge_lim_y + 4;
2207 hev_thresh = hev_thresh_lut[
s->keyframe][filter_level];
2210 s->vp8dsp.vp8_h_loop_filter16y(dst[0], linesize,
2211 mbedge_lim, inner_limit, hev_thresh);
2212 s->vp8dsp.vp8_h_loop_filter8uv(dst[1], dst[2], uvlinesize,
2213 mbedge_lim, inner_limit, hev_thresh);
2216 #define H_LOOP_FILTER_16Y_INNER(cond) \
2217 if (cond && inner_filter) { \
2218 s->vp8dsp.vp8_h_loop_filter16y_inner(dst[0] + 4, linesize, \
2219 bedge_lim_y, inner_limit, \
2221 s->vp8dsp.vp8_h_loop_filter16y_inner(dst[0] + 8, linesize, \
2222 bedge_lim_y, inner_limit, \
2224 s->vp8dsp.vp8_h_loop_filter16y_inner(dst[0] + 12, linesize, \
2225 bedge_lim_y, inner_limit, \
2227 s->vp8dsp.vp8_h_loop_filter8uv_inner(dst[1] + 4, dst[2] + 4, \
2228 uvlinesize, bedge_lim_uv, \
2229 inner_limit, hev_thresh); \
2235 s->vp8dsp.vp8_v_loop_filter16y(dst[0], linesize,
2236 mbedge_lim, inner_limit, hev_thresh);
2237 s->vp8dsp.vp8_v_loop_filter8uv(dst[1], dst[2], uvlinesize,
2238 mbedge_lim, inner_limit, hev_thresh);
2242 s->vp8dsp.vp8_v_loop_filter16y_inner(dst[0] + 4 * linesize,
2243 linesize, bedge_lim_y,
2244 inner_limit, hev_thresh);
2245 s->vp8dsp.vp8_v_loop_filter16y_inner(dst[0] + 8 * linesize,
2246 linesize, bedge_lim_y,
2247 inner_limit, hev_thresh);
2248 s->vp8dsp.vp8_v_loop_filter16y_inner(dst[0] + 12 * linesize,
2249 linesize, bedge_lim_y,
2250 inner_limit, hev_thresh);
2251 s->vp8dsp.vp8_v_loop_filter8uv_inner(dst[1] + 4 * uvlinesize,
2252 dst[2] + 4 * uvlinesize,
2253 uvlinesize, bedge_lim_uv,
2254 inner_limit, hev_thresh);
2264 int mbedge_lim, bedge_lim;
2265 int filter_level =
f->filter_level;
2266 int inner_limit =
f->inner_limit;
2267 int inner_filter =
f->inner_filter;
2268 ptrdiff_t linesize =
s->linesize;
2273 bedge_lim = 2 * filter_level + inner_limit;
2274 mbedge_lim = bedge_lim + 4;
2277 s->vp8dsp.vp8_h_loop_filter_simple(dst, linesize, mbedge_lim);
2279 s->vp8dsp.vp8_h_loop_filter_simple(dst + 4, linesize, bedge_lim);
2280 s->vp8dsp.vp8_h_loop_filter_simple(dst + 8, linesize, bedge_lim);
2281 s->vp8dsp.vp8_h_loop_filter_simple(dst + 12, linesize, bedge_lim);
2285 s->vp8dsp.vp8_v_loop_filter_simple(dst, linesize, mbedge_lim);
2287 s->vp8dsp.vp8_v_loop_filter_simple(dst + 4 * linesize, linesize, bedge_lim);
2288 s->vp8dsp.vp8_v_loop_filter_simple(dst + 8 * linesize, linesize, bedge_lim);
2289 s->vp8dsp.vp8_v_loop_filter_simple(dst + 12 * linesize, linesize, bedge_lim);
2293 #define MARGIN (16 << 2)
2296 const VP8Frame *prev_frame,
int is_vp7)
2301 s->mv_bounds.mv_min.y = -
MARGIN;
2302 s->mv_bounds.mv_max.y = ((
s->mb_height - 1) << 6) +
MARGIN;
2303 for (mb_y = 0; mb_y <
s->mb_height; mb_y++) {
2305 ((
s->mb_width + 1) * (mb_y + 1) + 1);
2306 int mb_xy = mb_y *
s->mb_width;
2310 s->mv_bounds.mv_min.x = -
MARGIN;
2311 s->mv_bounds.mv_max.x = ((
s->mb_width - 1) << 6) +
MARGIN;
2313 for (mb_x = 0; mb_x <
s->mb_width; mb_x++, mb_xy++,
mb++) {
2318 AV_WN32A((
mb -
s->mb_width - 1)->intra4x4_pred_mode_top,
2321 prev_frame && prev_frame->
seg_map ?
2323 s->mv_bounds.mv_min.x -= 64;
2324 s->mv_bounds.mv_max.x -= 64;
2326 s->mv_bounds.mv_min.y -= 64;
2327 s->mv_bounds.mv_max.y -= 64;
2345 #define check_thread_pos(td, otd, mb_x_check, mb_y_check) \
2347 int tmp = (mb_y_check << 16) | (mb_x_check & 0xFFFF); \
2348 if (atomic_load(&otd->thread_mb_pos) < tmp) { \
2349 pthread_mutex_lock(&otd->lock); \
2350 atomic_store(&td->wait_mb_pos, tmp); \
2352 if (atomic_load(&otd->thread_mb_pos) >= tmp) \
2354 pthread_cond_wait(&otd->cond, &otd->lock); \
2356 atomic_store(&td->wait_mb_pos, INT_MAX); \
2357 pthread_mutex_unlock(&otd->lock); \
2361 #define update_pos(td, mb_y, mb_x) \
2363 int pos = (mb_y << 16) | (mb_x & 0xFFFF); \
2364 int sliced_threading = (avctx->active_thread_type == FF_THREAD_SLICE) && \
2366 int is_null = !next_td || !prev_td; \
2367 int pos_check = (is_null) ? 1 : \
2368 (next_td != td && pos >= atomic_load(&next_td->wait_mb_pos)) || \
2369 (prev_td != td && pos >= atomic_load(&prev_td->wait_mb_pos)); \
2370 atomic_store(&td->thread_mb_pos, pos); \
2371 if (sliced_threading && pos_check) { \
2372 pthread_mutex_lock(&td->lock); \
2373 pthread_cond_broadcast(&td->cond); \
2374 pthread_mutex_unlock(&td->lock); \
2378 #define check_thread_pos(td, otd, mb_x_check, mb_y_check) while(0)
2379 #define update_pos(td, mb_y, mb_x) while(0)
2383 int jobnr,
int threadnr,
int is_vp7)
2386 VP8ThreadData *prev_td, *next_td, *td = &
s->thread_data[threadnr];
2388 int mb_x, mb_xy = mb_y *
s->mb_width;
2389 int num_jobs =
s->num_jobs;
2390 const VP8Frame *prev_frame =
s->prev_frame;
2392 VPXRangeCoder *coeff_c = &
s->coeff_partition[mb_y & (
s->num_coeff_partitions - 1)];
2396 curframe->
tf.
f->
data[0] + 16 * mb_y *
s->linesize,
2397 curframe->
tf.
f->
data[1] + 8 * mb_y *
s->uvlinesize,
2398 curframe->
tf.
f->
data[2] + 8 * mb_y *
s->uvlinesize
2407 prev_td = &
s->thread_data[(jobnr + num_jobs - 1) % num_jobs];
2408 if (mb_y ==
s->mb_height - 1)
2411 next_td = &
s->thread_data[(jobnr + 1) % num_jobs];
2412 if (
s->mb_layout == 1)
2413 mb =
s->macroblocks_base + ((
s->mb_width + 1) * (mb_y + 1) + 1);
2417 if (prev_frame &&
s->segmentation.enabled &&
2418 !
s->segmentation.update_map)
2420 mb =
s->macroblocks + (
s->mb_height - mb_y - 1) * 2;
2421 memset(
mb - 1, 0,
sizeof(*
mb));
2425 if (!is_vp7 || mb_y == 0)
2431 for (mb_x = 0; mb_x <
s->mb_width; mb_x++, mb_xy++,
mb++) {
2435 if (prev_td != td) {
2436 if (threadnr != 0) {
2438 mb_x + (is_vp7 ? 2 : 1),
2439 mb_y - (is_vp7 ? 2 : 1));
2442 mb_x + (is_vp7 ? 2 : 1) +
s->mb_width + 3,
2443 mb_y - (is_vp7 ? 2 : 1));
2447 s->vdsp.prefetch(dst[0] + (mb_x & 3) * 4 *
s->linesize + 64,
2449 s->vdsp.prefetch(dst[1] + (mb_x & 7) *
s->uvlinesize + 64,
2450 dst[2] - dst[1], 2);
2454 prev_frame && prev_frame->
seg_map ?
2482 s->top_nnz[mb_x][8] = 0;
2486 if (
s->deblock_filter)
2489 if (
s->deblock_filter && num_jobs != 1 && threadnr == num_jobs - 1) {
2490 if (
s->filter.simple)
2495 dst[1], dst[2],
s->linesize,
s->uvlinesize, 0);
2506 if (mb_x ==
s->mb_width + 1) {
2516 int jobnr,
int threadnr)
2522 int jobnr,
int threadnr)
2528 int jobnr,
int threadnr,
int is_vp7)
2533 AVFrame *curframe =
s->curframe->tf.f;
2537 curframe->
data[0] + 16 * mb_y *
s->linesize,
2538 curframe->
data[1] + 8 * mb_y *
s->uvlinesize,
2539 curframe->
data[2] + 8 * mb_y *
s->uvlinesize
2542 if (
s->mb_layout == 1)
2543 mb =
s->macroblocks_base + ((
s->mb_width + 1) * (mb_y + 1) + 1);
2545 mb =
s->macroblocks + (
s->mb_height - mb_y - 1) * 2;
2550 prev_td = &
s->thread_data[(jobnr + num_jobs - 1) % num_jobs];
2551 if (mb_y ==
s->mb_height - 1)
2554 next_td = &
s->thread_data[(jobnr + 1) % num_jobs];
2556 for (mb_x = 0; mb_x <
s->mb_width; mb_x++,
mb++) {
2560 (mb_x + 1) + (
s->mb_width + 3), mb_y - 1);
2562 if (next_td != &
s->thread_data[0])
2565 if (num_jobs == 1) {
2566 if (
s->filter.simple)
2571 dst[1], dst[2],
s->linesize,
s->uvlinesize, 0);
2574 if (
s->filter.simple)
2587 int jobnr,
int threadnr)
2593 int jobnr,
int threadnr)
2600 int threadnr,
int is_vp7)
2606 int mb_y, num_jobs =
s->num_jobs;
2612 for (mb_y = jobnr; mb_y <
s->mb_height; mb_y += num_jobs) {
2614 ret =
s->decode_mb_row_no_filter(avctx, tdata, jobnr, threadnr);
2619 if (
s->deblock_filter)
2620 s->filter_mb_row(avctx, tdata, jobnr, threadnr);
2634 int jobnr,
int threadnr)
2640 int jobnr,
int threadnr)
2650 int ret,
i, referenced, num_jobs;
2662 if (!is_vp7 &&
s->actually_webp) {
2670 if (
s->pix_fmt < 0) {
2688 memcpy(&
s->next_framep[0], &
s->framep[0],
sizeof(
s->framep[0]) * 4);
2694 for (
i = 0;
i < 5;
i++)
2695 if (
s->frames[
i].tf.f &&
2696 &
s->frames[
i] != prev_frame &&
2719 "Discarding interframe without a prior keyframe!\n");
2751 if (!is_vp7 && !
s->actually_webp)
2769 s->linesize = curframe->tf.f->linesize[0];
2770 s->uvlinesize = curframe->tf.f->linesize[1];
2772 memset(
s->top_nnz, 0,
s->mb_width *
sizeof(*
s->top_nnz));
2776 memset(
s->macroblocks +
s->mb_height * 2 - 1, 0,
2777 (
s->mb_width + 1) *
sizeof(*
s->macroblocks));
2778 if (!
s->mb_layout &&
s->keyframe)
2779 memset(
s->intra4x4_pred_mode_top,
DC_PRED,
s->mb_width * 4);
2781 memset(
s->ref_count, 0,
sizeof(
s->ref_count));
2783 if (
s->mb_layout == 1) {
2786 if (prev_frame &&
s->segmentation.enabled &&
2787 !
s->segmentation.update_map)
2801 s->num_jobs = num_jobs;
2802 s->curframe = curframe;
2803 s->prev_frame = prev_frame;
2804 s->mv_bounds.mv_min.y = -
MARGIN;
2805 s->mv_bounds.mv_max.y = ((
s->mb_height - 1) << 6) +
MARGIN;
2820 memcpy(&
s->framep[0], &
s->next_framep[0],
sizeof(
s->framep[0]) * 4);
2825 if (!
s->update_probabilities)
2826 s->prob[0] =
s->prob[1];
2828 if (!
s->invisible) {
2836 memcpy(&
s->next_framep[0], &
s->framep[0],
sizeof(
s->framep[0]) * 4);
2846 #if CONFIG_VP7_DECODER
2873 if (CONFIG_VP7_DECODER && is_vp7) {
2878 }
else if (CONFIG_VP8_DECODER && !is_vp7) {
2891 #if CONFIG_VP7_DECODER
2903 #if CONFIG_VP8_DECODER
2910 src->hwaccel_picture_private);
2913 #define REBASE(pic) ((pic) ? (pic) - &s_src->frames[0] + &s->frames[0] : NULL)
2920 if (
s->macroblocks_base &&
2921 (s_src->mb_width !=
s->mb_width || s_src->mb_height !=
s->mb_height)) {
2923 s->mb_width = s_src->mb_width;
2924 s->mb_height = s_src->mb_height;
2927 s->pix_fmt = s_src->pix_fmt;
2928 s->prob[0] = s_src->prob[!s_src->update_probabilities];
2929 s->segmentation = s_src->segmentation;
2930 s->lf_delta = s_src->lf_delta;
2931 memcpy(
s->sign_bias, s_src->sign_bias,
sizeof(
s->sign_bias));
2934 vp8_replace_frame(&
s->frames[
i], &s_src->frames[
i]);
2936 s->framep[0] = REBASE(s_src->next_framep[0]);
2937 s->framep[1] = REBASE(s_src->next_framep[1]);
2938 s->framep[2] = REBASE(s_src->next_framep[2]);
2939 s->framep[3] = REBASE(s_src->next_framep[3]);
2946 #if CONFIG_VP7_DECODER
2953 .
init = vp7_decode_init,
2962 #if CONFIG_VP8_DECODER
2978 #if CONFIG_VP8_VAAPI_HWACCEL
2981 #if CONFIG_VP8_NVDEC_HWACCEL
static const int vp8_mode_contexts[6][4]
static const uint8_t vp8_dct_cat1_prob[]
void ff_progress_frame_report(ProgressFrame *f, int n)
Notify later decoding threads when part of their reference frame is ready.
static av_always_inline void decode_mb_mode(VP8Context *s, const VP8mvbounds *mv_bounds, VP8Macroblock *mb, int mb_x, int mb_y, uint8_t *segment, const uint8_t *ref, int layout, int is_vp7)
#define VP7_MV_PRED_COUNT
const struct AVHWAccel * hwaccel
Hardware accelerator in use.
av_cold int ff_vp8_decode_free(AVCodecContext *avctx)
static const uint8_t vp7_pred4x4_mode[]
static av_always_inline int decode_block_coeffs_internal(VPXRangeCoder *r, int16_t block[16], uint8_t probs[16][3][NUM_DCT_TOKENS - 1], int i, const uint8_t *token_prob, const int16_t qmul[2], const uint8_t scan[16], int vp7)
static void vp8_release_frame(VP8Frame *f)
static const VP7MVPred vp7_mv_pred[VP7_MV_PRED_COUNT]
#define AV_LOG_WARNING
Something somehow does not look correct.
@ AV_PIX_FMT_CUDA
HW acceleration through CUDA.
AVPixelFormat
Pixel format.
static int vp8_decode_block_coeffs_internal(VPXRangeCoder *r, int16_t block[16], uint8_t probs[16][3][NUM_DCT_TOKENS - 1], int i, const uint8_t *token_prob, const int16_t qmul[2])
static int vp7_read_mv_component(VPXRangeCoder *c, const uint8_t *p)
static int vp7_calculate_mb_offset(int mb_x, int mb_y, int mb_width, int xoffset, int yoffset, int boundary, int *edge_x, int *edge_y)
The vp7 reference decoder uses a padding macroblock column (added to right edge of the frame) to guar...
#define atomic_store(object, desired)
static av_always_inline void backup_mb_border(uint8_t *top_border, const uint8_t *src_y, const uint8_t *src_cb, const uint8_t *src_cr, ptrdiff_t linesize, ptrdiff_t uvlinesize, int simple)
static void vp7_filter_mb_row(AVCodecContext *avctx, void *tdata, int jobnr, int threadnr)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
enum AVColorSpace colorspace
YUV colorspace type.
static av_always_inline int vp78_decode_init(AVCodecContext *avctx, int is_vp7)
int ff_get_format(AVCodecContext *avctx, const enum AVPixelFormat *fmt)
Select the (possibly hardware accelerated) pixel format.
#define u(width, name, range_min, range_max)
static av_always_inline int check_tm_pred8x8_mode(int mode, int mb_x, int mb_y, int vp7)
static const uint8_t vp8_submv_prob[5][3]
static av_always_inline int pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *attr)
static const uint16_t vp7_ydc_qlookup[]
#define HOR_VP8_PRED
unaveraged version of HOR_PRED, see
static const int8_t mv[256][2]
static av_always_inline void vp7_decode_mvs(VP8Context *s, VP8Macroblock *mb, int mb_x, int mb_y, int layout)
static const uint8_t vp7_mv_default_prob[2][17]
static av_always_inline int check_intra_pred4x4_mode_emuedge(int mode, int mb_x, int mb_y, int *copy_buf, int vp7)
const uint8_t ff_vp8_token_update_probs[4][8][3][11]
static av_always_inline int check_tm_pred4x4_mode(int mode, int mb_x, int mb_y, int vp7)
static const uint16_t vp7_y2dc_qlookup[]
static av_always_inline void vp8_mc_chroma(VP8Context *s, VP8ThreadData *td, uint8_t *dst1, uint8_t *dst2, const ProgressFrame *ref, const VP8mv *mv, int x_off, int y_off, int block_w, int block_h, int width, int height, ptrdiff_t linesize, vp8_mc_func mc_func[3][3])
chroma MC function
This structure describes decoded (raw) audio or video data.
@ AVCOL_RANGE_JPEG
Full range content.
static av_always_inline int inter_predict_dc(int16_t block[16], int16_t pred[2])
int ff_progress_frame_get_buffer(AVCodecContext *avctx, ProgressFrame *f, int flags)
This function sets up the ProgressFrame, i.e.
static void vp8_get_quants(VP8Context *s)
#define FF_HW_SIMPLE_CALL(avctx, function)
static av_cold void vp8_decode_flush(AVCodecContext *avctx)
static av_always_inline void inter_predict(VP8Context *s, VP8ThreadData *td, uint8_t *const dst[3], VP8Macroblock *mb, int mb_x, int mb_y)
Apply motion vectors to prediction buffer, chapter 18.
@ VP8_SPLITMVMODE_4x4
4x4 blocks of 4x4px each
int ff_set_dimensions(AVCodecContext *s, int width, int height)
Check that the provided frame dimensions are valid and set them on the codec context.
#define VERT_VP8_PRED
for VP8, VERT_PRED is the average of
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
static int vp8_decode_mb_row_no_filter(AVCodecContext *avctx, void *tdata, int jobnr, int threadnr)
static int vp8_rac_get_sint(VPXRangeCoder *c, int bits)
static const int8_t vp8_pred8x8c_tree[3][2]
#define bit(string, value)
#define update_pos(td, mb_y, mb_x)
static const VP8mv * get_bmv_ptr(const VP8Macroblock *mb, int subblock)
static av_always_inline int update_dimensions(VP8Context *s, int width, int height, int is_vp7)
@ AVCOL_SPC_BT470BG
also ITU-R BT601-6 625 / ITU-R BT1358 625 / ITU-R BT1700 625 PAL & SECAM / IEC 61966-2-4 xvYCC601
@ VP8_SPLITMVMODE_8x8
2x2 blocks of 8x8px each
static av_cold void vp8_decode_flush_impl(AVCodecContext *avctx, int free_mem)
AVCodec p
The public AVCodec.
static const uint8_t vp8_mv_update_prob[2][19]
enum AVDiscard skip_frame
Skip decoding for selected frames.
int thread_count
thread count is used to decide how many independent tasks should be passed to execute()
uint8_t non_zero_count_cache[6][4]
This is the index plus one of the last non-zero coeff for each of the blocks in the current macrobloc...
const FFCodec ff_vp8_decoder
av_cold void ff_videodsp_init(VideoDSPContext *ctx, int bpc)
static av_always_inline void update(SilenceDetectContext *s, AVFrame *insamples, int is_silence, int current_sample, int64_t nb_samples_notify, AVRational time_base)
static av_always_inline void idct_mb(VP8Context *s, VP8ThreadData *td, uint8_t *const dst[3], const VP8Macroblock *mb)
static av_always_inline int check_intra_pred8x8_mode_emuedge(int mode, int mb_x, int mb_y, int vp7)
static av_always_inline void filter_level_for_mb(const VP8Context *s, const VP8Macroblock *mb, VP8FilterStrength *f, int is_vp7)
static av_always_inline int read_mv_component(VPXRangeCoder *c, const uint8_t *p, int vp7)
Motion vector coding, 17.1.
static void vp8_filter_mb_row(AVCodecContext *avctx, void *tdata, int jobnr, int threadnr)
static void vp7_get_quants(VP8Context *s)
@ VP8_SPLITMVMODE_16x8
2 16x8 blocks (vertical)
#define FF_CODEC_CAP_USES_PROGRESSFRAMES
The decoder might make use of the ProgressFrame API.
void ff_vp7dsp_init(VP8DSPContext *c)
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
void ff_vp8dsp_init(VP8DSPContext *c)
#define FF_ARRAY_ELEMS(a)
static const uint8_t vp8_dct_cat2_prob[]
#define AV_FRAME_FLAG_KEY
A flag to mark frames that are keyframes.
#define LOCAL_ALIGNED(a, t, v,...)
uint8_t left_nnz[9]
For coeff decode, we need to know whether the above block had non-zero coefficients.
static const uint8_t vp8_pred4x4_mode[]
#define FF_CODEC_DECODE_CB(func)
int ff_hwaccel_frame_priv_alloc(AVCodecContext *avctx, void **hwaccel_picture_private)
Allocate a hwaccel frame private data if the provided avctx uses a hwaccel method that needs it.
static av_always_inline void filter_mb_simple(const VP8Context *s, uint8_t *dst, const VP8FilterStrength *f, int mb_x, int mb_y)
static av_always_inline unsigned int vpx_rac_renorm(VPXRangeCoder *c)
static const uint8_t vp8_pred8x8c_prob_inter[3]
#define AV_GET_BUFFER_FLAG_REF
The decoder will keep a reference to the frame and may reuse it later.
static av_always_inline void vp8_mc_luma(VP8Context *s, VP8ThreadData *td, uint8_t *dst, const ProgressFrame *ref, const VP8mv *mv, int x_off, int y_off, int block_w, int block_h, int width, int height, ptrdiff_t linesize, vp8_mc_func mc_func[3][3])
luma MC function
VP8FilterStrength * filter_strength
static const int8_t vp8_pred16x16_tree_intra[4][2]
static void parse_segment_info(VP8Context *s)
static const uint8_t vp8_pred4x4_prob_inter[9]
static enum AVPixelFormat pix_fmts[]
static const uint8_t vp8_mbsplits[5][16]
void ff_progress_frame_unref(ProgressFrame *f)
Give up a reference to the underlying frame contained in a ProgressFrame and reset the ProgressFrame,...
the pkt_dts and pkt_pts fields in AVFrame will work as usual Restrictions on codec whose streams don t reset across will not work because their bitstreams cannot be decoded in parallel *The contents of buffers must not be read before ff_progress_frame_await() has been called on them. reget_buffer() and buffer age optimizations no longer work. *The contents of buffers must not be written to after ff_progress_frame_report() has been called on them. This includes draw_edges(). Porting codecs to frame threading
static av_always_inline int vp78_decode_frame(AVCodecContext *avctx, AVFrame *rframe, int *got_frame, const AVPacket *avpkt, int is_vp7)
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_RL16
static const int vp7_mode_contexts[31][4]
static av_always_inline int vp78_decode_mv_mb_modes(AVCodecContext *avctx, VP8Frame *curframe, const VP8Frame *prev_frame, int is_vp7)
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
#define atomic_load(object)
@ VP8_SPLITMVMODE_8x16
2 8x16 blocks (horizontal)
#define CODEC_LONG_NAME(str)
uint8_t * seg_map
RefStruct reference.
static av_always_inline void vp8_mc_part(VP8Context *s, VP8ThreadData *td, uint8_t *const dst[3], const ProgressFrame *ref_frame, int x_off, int y_off, int bx_off, int by_off, int block_w, int block_h, int width, int height, const VP8mv *mv)
static const uint8_t vp8_mv_default_prob[2][19]
static const int8_t vp8_coeff_band_indexes[8][10]
static const uint8_t vp8_pred16x16_prob_inter[4]
#define AV_CODEC_CAP_FRAME_THREADS
Codec supports frame-level multithreading.
@ AVDISCARD_ALL
discard all
static int vp8_rac_get_nn(VPXRangeCoder *c)
static av_always_inline void clamp_mv(const VP8mvbounds *s, VP8mv *dst, const VP8mv *src)
static const int sizes[][2]
enum AVColorRange color_range
MPEG vs JPEG YUV range.
static int vp7_decode_mb_row_sliced(AVCodecContext *avctx, void *tdata, int jobnr, int threadnr)
static int vp8_update_dimensions(VP8Context *s, int width, int height)
@ AV_PICTURE_TYPE_I
Intra.
static av_unused int vp89_rac_get_uint(VPXRangeCoder *c, int bits)
#define check_thread_pos(td, otd, mb_x_check, mb_y_check)
void(* flush)(AVBSFContext *ctx)
void(* vp8_mc_func)(uint8_t *dst, ptrdiff_t dstStride, const uint8_t *src, ptrdiff_t srcStride, int h, int x, int y)
static const uint16_t vp7_yac_qlookup[]
static const uint8_t vp8_token_default_probs[4][8][3][NUM_DCT_TOKENS - 1]
static void * ff_refstruct_allocz(size_t size)
Equivalent to ff_refstruct_alloc_ext(size, 0, NULL, NULL)
static const uint8_t vp8_mbsplit_count[4]
#define UPDATE_THREAD_CONTEXT(func)
static av_always_inline void vp8_decode_mvs(VP8Context *s, const VP8mvbounds *mv_bounds, VP8Macroblock *mb, int mb_x, int mb_y, int layout)
#define FF_HW_HAS_CB(avctx, function)
static av_always_inline int decode_mb_row_no_filter(AVCodecContext *avctx, void *tdata, int jobnr, int threadnr, int is_vp7)
static const uint8_t vp7_feature_value_size[2][4]
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
av_cold int ff_vp8_decode_init(AVCodecContext *avctx)
static const uint8_t vp8_mbfirstidx[4][16]
@ AVDISCARD_NONKEY
discard all frames except keyframes
int(* init)(AVBSFContext *ctx)
static av_always_inline void xchg_mb_border(uint8_t *top_border, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, ptrdiff_t linesize, ptrdiff_t uvlinesize, int mb_x, int mb_y, int mb_width, int simple, int xchg)
const uint8_t ff_zigzag_scan[16+1]
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() or get_encode_buffer() for allocating buffers and supports custom allocators.
static const int8_t vp8_pred4x4_tree[9][2]
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled top and top right vectors is used as motion vector prediction the used motion vector is the sum of the predictor and(mvx_diff, mvy_diff) *mv_scale Intra DC Prediction block[y][x] dc[1]
static void copy(const float *p1, float *p2, const int length)
int av_frame_ref(AVFrame *dst, const AVFrame *src)
Set up a new reference to the data described by the source frame.
static const uint8_t vp8_coeff_band[16]
static const uint8_t subpel_idx[3][8]
static int vp7_update_dimensions(VP8Context *s, int width, int height)
#define EDGE_EMU_LINESIZE
static void free_buffers(VP8Context *s)
static int ref_frame(VVCFrame *dst, const VVCFrame *src)
static av_always_inline int decode_block_coeffs(VPXRangeCoder *c, int16_t block[16], uint8_t probs[16][3][NUM_DCT_TOKENS - 1], int i, int zero_nhood, const int16_t qmul[2], const uint8_t scan[16], int vp7)
#define FF_THREAD_SLICE
Decode more than one part of a single frame at once.
const uint8_t *const ff_vp8_dct_cat_prob[]
static const uint8_t vp8_pred8x8c_prob_intra[3]
static int vp8_decode_mv_mb_modes(AVCodecContext *avctx, VP8Frame *cur_frame, const VP8Frame *prev_frame)
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_RL24
static const uint8_t vp8_pred4x4_prob_intra[10][10][9]
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
#define AV_CODEC_CAP_SLICE_THREADS
Codec supports slice-based (or partition-based) multithreading.
static int vp8_decode_frame_header(VP8Context *s, const uint8_t *buf, int buf_size)
static const uint8_t vp8_mbsplit_prob[3]
static int setup_partitions(VP8Context *s, const uint8_t *buf, int buf_size)
static const int8_t vp8_pred16x16_tree_inter[4][2]
static const int8_t vp7_feature_index_tree[4][2]
enum AVDiscard skip_loop_filter
Skip loop filtering for selected frames.
#define HWACCEL_NVDEC(codec)
static av_always_inline int vpx_rac_is_end(VPXRangeCoder *c)
returns 1 if the end of the stream has been reached, 0 otherwise.
@ AV_PIX_FMT_VAAPI
Hardware acceleration through VA-API, data[3] contains a VASurfaceID.
static av_always_inline int pthread_cond_destroy(pthread_cond_t *cond)
uint8_t edge_emu_buffer[21 *EDGE_EMU_LINESIZE]
#define FF_THREAD_FRAME
Decode more than one frame at once.
#define H_LOOP_FILTER_16Y_INNER(cond)
static av_always_inline int vp78_decode_mb_row_sliced(AVCodecContext *avctx, void *tdata, int jobnr, int threadnr, int is_vp7)
static av_always_inline int pthread_mutex_destroy(pthread_mutex_t *mutex)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel layout
static VP8FrameType ref_to_update(VP8Context *s, int update, VP8FrameType ref)
Determine which buffers golden and altref should be updated with after this frame.
static int vp8_read_mv_component(VPXRangeCoder *c, const uint8_t *p)
#define i(width, name, range_min, range_max)
static const SiprModeParam modes[MODE_COUNT]
static int vp7_fade_frame(VP8Context *s, int alpha, int beta)
static av_always_inline int vpx_rac_get_prob_branchy(VPXRangeCoder *c, int prob)
static av_always_inline void intra_predict(VP8Context *s, VP8ThreadData *td, uint8_t *const dst[3], VP8Macroblock *mb, int mb_x, int mb_y, int is_vp7)
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
const char * name
Name of the codec implementation.
static void vp78_reset_probability_tables(VP8Context *s)
static int vp7_decode_frame_header(VP8Context *s, const uint8_t *buf, int buf_size)
static void fade(uint8_t *dst, ptrdiff_t dst_linesize, const uint8_t *src, ptrdiff_t src_linesize, int width, int height, int alpha, int beta)
static av_always_inline void decode_intra4x4_modes(VP8Context *s, VPXRangeCoder *c, VP8Macroblock *mb, int mb_x, int keyframe, int layout)
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
@ AVCOL_RANGE_MPEG
Narrow or limited range content.
static int vp8_decode_mb_row_sliced(AVCodecContext *avctx, void *tdata, int jobnr, int threadnr)
const FFCodec ff_vp7_decoder
@ VP8_SPLITMVMODE_NONE
(only used in prediction) no split MVs
static av_always_inline void prefetch_motion(const VP8Context *s, const VP8Macroblock *mb, int mb_x, int mb_y, int mb_xy, int ref)
static av_always_inline int vp89_rac_get_tree(VPXRangeCoder *c, const int8_t(*tree)[2], const uint8_t *probs)
static av_always_inline void decode_mb_coeffs(VP8Context *s, VP8ThreadData *td, VPXRangeCoder *c, VP8Macroblock *mb, uint8_t t_nnz[9], uint8_t l_nnz[9], int is_vp7)
#define AV_LOG_FATAL
Something went wrong and recovery is not possible.
static av_always_inline int check_dc_pred8x8_mode(int mode, int mb_x, int mb_y)
static const float pred[4]
static int vp7_decode_mb_row_no_filter(AVCodecContext *avctx, void *tdata, int jobnr, int threadnr)
#define FFSWAP(type, a, b)
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
static const uint8_t vp8_pred16x16_prob_intra[4]
static const uint16_t vp8_ac_qlookup[VP8_MAX_QUANT+1]
#define prob(name, subs,...)
static const char * hwaccel
int ff_vpx_init_range_decoder(VPXRangeCoder *c, const uint8_t *buf, int buf_size)
void ff_refstruct_replace(void *dstp, const void *src)
Ensure *dstp refers to the same object as src.
the pkt_dts and pkt_pts fields in AVFrame will work as usual Restrictions on codec whose streams don t reset across will not work because their bitstreams cannot be decoded in parallel *The contents of buffers must not be read before as well as code calling up to before the decode process starts Call ff_thread_finish_setup() afterwards. If some code can 't be moved
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled left
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_RL32
void ff_progress_frame_replace(ProgressFrame *dst, const ProgressFrame *src)
Do nothing if dst and src already refer to the same AVFrame; otherwise unreference dst and if src is ...
static av_always_inline int vp89_rac_get(VPXRangeCoder *c)
main external API structure.
int active_thread_type
Which multithreading methods are in use by the codec.
uint8_t intra4x4_pred_mode_top[4]
static av_always_inline int decode_splitmvs(const VP8Context *s, VPXRangeCoder *c, VP8Macroblock *mb, int layout, int is_vp7)
Split motion vector prediction, 16.4.
av_cold void ff_h264_pred_init(H264PredContext *h, int codec_id, const int bit_depth, int chroma_format_idc)
Set the intra prediction function pointers.
static const FFHWAccel * ffhwaccel(const AVHWAccel *codec)
static int ref[MAX_W *MAX_W]
static int vp7_decode_block_coeffs_internal(VPXRangeCoder *r, int16_t block[16], uint8_t probs[16][3][NUM_DCT_TOKENS - 1], int i, const uint8_t *token_prob, const int16_t qmul[2], const uint8_t scan[16])
static av_always_inline void filter_mb(const VP8Context *s, uint8_t *const dst[3], const VP8FilterStrength *f, int mb_x, int mb_y, int is_vp7)
static void vp78_update_probability_tables(VP8Context *s)
@ AV_PICTURE_TYPE_P
Predicted.
static void vp78_update_pred16x16_pred8x8_mvc_probabilities(VP8Context *s, int mvc_size)
#define avpriv_request_sample(...)
static void update_refs(VP8Context *s)
static int vp7_decode_mv_mb_modes(AVCodecContext *avctx, VP8Frame *cur_frame, const VP8Frame *prev_frame)
static void update_lf_deltas(VP8Context *s)
The ProgressFrame structure.
static av_always_inline void filter_mb_row(AVCodecContext *avctx, void *tdata, int jobnr, int threadnr, int is_vp7)
static const int16_t alpha[]
This structure stores compressed data.
static enum AVPixelFormat get_pixel_format(VP8Context *s)
int ff_vp8_decode_frame(AVCodecContext *avctx, AVFrame *frame, int *got_frame, AVPacket *avpkt)
#define HWACCEL_VAAPI(codec)
static VP8Frame * vp8_find_free_buffer(VP8Context *s)
int linesize[AV_NUM_DATA_POINTERS]
For video, a positive or negative value, which is typically indicating the size in bytes of each pict...
static const double coeff[2][5]
The exact code depends on how similar the blocks are and how related they are to the block
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
static av_always_inline int pthread_cond_init(pthread_cond_t *cond, const pthread_condattr_t *attr)
static const uint16_t vp7_y2ac_qlookup[]
#define atomic_init(obj, value)
static const uint8_t vp7_submv_prob[3]
@ AVDISCARD_NONREF
discard all non reference
static int vp8_rac_get_coeff(VPXRangeCoder *c, const uint8_t *prob)
static const uint8_t vp8_dc_qlookup[VP8_MAX_QUANT+1]
static void copy_chroma(AVFrame *dst, const AVFrame *src, int width, int height)
int(* execute2)(struct AVCodecContext *c, int(*func)(struct AVCodecContext *c2, void *arg, int jobnr, int threadnr), void *arg2, int *ret, int count)
The codec may call this to execute several independent things.
void ff_refstruct_unref(void *objp)
Decrement the reference count of the underlying object and automatically free the object if there are...
static int vp8_alloc_frame(VP8Context *s, VP8Frame *f, int ref)
static const av_always_inline uint8_t * get_submv_prob(uint32_t left, uint32_t top, int is_vp7)
av_cold void ff_vp78dsp_init(VP8DSPContext *dsp)
void * hwaccel_picture_private
RefStruct reference.