Go to the documentation of this file.
36 #define FREQUENCY_DOMAIN 1
93 int len,
i, channel_id = 0;
96 if (sscanf(*
arg,
"%7[A-Z]%n",
buf, &
len)) {
100 for (
i = 32;
i > 0;
i >>= 1) {
106 if (channel_id >= 64 || layout0 != 1LL << channel_id)
108 *rchannel = channel_id;
128 for (
i = 0;
i < 64;
i++) {
141 s->mapping[
s->nb_irs] = out_ch_id;
148 s->nb_inputs =
s->nb_irs + 1;
171 int *write = &
td->write[jobnr];
172 const int *
const delay =
td->delay[jobnr];
173 const float *
const ir =
td->ir[jobnr];
174 int *n_clippings = &
td->n_clippings[jobnr];
175 float *ringbuffer =
td->ringbuffer[jobnr];
176 float *temp_src =
td->temp_src[jobnr];
177 const int ir_len =
s->ir_len;
178 const int air_len =
s->air_len;
179 const float *
src = (
const float *)
in->data[0];
180 float *dst = (
float *)
out->data[0];
182 const int buffer_length =
s->buffer_length;
183 const uint32_t modulo = (uint32_t)buffer_length - 1;
190 for (l = 0; l < in_channels; l++) {
191 buffer[l] = ringbuffer + l * buffer_length;
194 for (
i = 0;
i <
in->nb_samples;
i++) {
195 const float *temp_ir = ir;
198 for (l = 0; l < in_channels; l++) {
202 for (l = 0; l < in_channels; l++) {
203 const float *
const bptr =
buffer[l];
205 if (l ==
s->lfe_channel) {
206 *dst += *(
buffer[
s->lfe_channel] + wr) *
s->gain_lfe;
211 read = (wr - *(delay + l) - (ir_len - 1) + buffer_length) & modulo;
213 if (read + ir_len < buffer_length) {
214 memcpy(temp_src, bptr + read, ir_len *
sizeof(*temp_src));
216 int len =
FFMIN(air_len - (read % ir_len), buffer_length - read);
218 memcpy(temp_src, bptr + read,
len *
sizeof(*temp_src));
219 memcpy(temp_src +
len, bptr, (air_len -
len) *
sizeof(*temp_src));
222 dst[0] +=
s->fdsp->scalarproduct_float(temp_ir, temp_src,
FFALIGN(ir_len, 32));
226 if (fabsf(dst[0]) > 1)
231 wr = (wr + 1) & modulo;
245 int *write = &
td->write[jobnr];
247 int *n_clippings = &
td->n_clippings[jobnr];
248 float *ringbuffer =
td->ringbuffer[jobnr];
249 const int ir_len =
s->ir_len;
250 const float *
src = (
const float *)
in->data[0];
251 float *dst = (
float *)
out->data[0];
253 const int buffer_length =
s->buffer_length;
254 const uint32_t modulo = (uint32_t)buffer_length - 1;
259 const int n_fft =
s->n_fft;
260 const float fft_scale = 1.0f /
s->n_fft;
268 n_read =
FFMIN(ir_len,
in->nb_samples);
269 for (j = 0; j < n_read; j++) {
270 dst[2 * j] = ringbuffer[wr];
271 ringbuffer[wr] = 0.0;
272 wr = (wr + 1) & modulo;
275 for (j = n_read; j <
in->nb_samples; j++) {
279 memset(fft_acc, 0,
sizeof(
FFTComplex) * n_fft);
281 for (
i = 0;
i < in_channels;
i++) {
282 if (
i ==
s->lfe_channel) {
283 for (j = 0; j <
in->nb_samples; j++) {
284 dst[2 * j] +=
src[
i + j * in_channels] *
s->gain_lfe;
290 hrtf_offset = hrtf +
offset;
292 memset(fft_in, 0,
sizeof(
FFTComplex) * n_fft);
294 for (j = 0; j <
in->nb_samples; j++) {
295 fft_in[j].
re =
src[j * in_channels +
i];
300 for (j = 0; j < n_fft; j++) {
302 const float re = fft_in[j].
re;
303 const float im = fft_in[j].
im;
305 fft_acc[j].
re +=
re * hcomplex->
re -
im * hcomplex->
im;
306 fft_acc[j].
im +=
re * hcomplex->
im +
im * hcomplex->
re;
313 for (j = 0; j <
in->nb_samples; j++) {
314 dst[2 * j] += fft_acc[j].
re * fft_scale;
317 for (j = 0; j < ir_len - 1; j++) {
318 int write_pos = (wr + j) & modulo;
320 *(ringbuffer + write_pos) += fft_acc[
in->nb_samples + j].
re * fft_scale;
323 for (
i = 0;
i <
out->nb_samples;
i++) {
324 if (fabsf(dst[0]) > 1) {
340 int ir_len, max_ir_len;
344 if (ir_len > max_ir_len) {
348 s->in[input_number].ir_len = ir_len;
349 s->ir_len =
FFMAX(ir_len,
s->ir_len);
357 int n_clippings[2] = { 0 };
369 td.delay =
s->delay;
td.ir =
s->data_ir;
td.n_clippings = n_clippings;
370 td.ringbuffer =
s->ringbuffer;
td.temp_src =
s->temp_src;
371 td.temp_fft =
s->temp_fft;
372 td.temp_afft =
s->temp_afft;
381 if (n_clippings[0] + n_clippings[1] > 0) {
383 n_clippings[0] + n_clippings[1],
out->nb_samples * 2);
395 int nb_input_channels =
ctx->inputs[0]->channels;
396 float gain_lin =
expf((
s->gain - 3 * nb_input_channels) / 20 *
M_LN10);
401 float *data_ir_l =
NULL;
402 float *data_ir_r =
NULL;
408 s->buffer_length = 1 << (32 -
ff_clz(
s->air_len));
414 if (!fft_in_l || !fft_in_r) {
428 if (!
s->fft[0] || !
s->fft[1] || !
s->ifft[0] || !
s->ifft[1]) {
435 s->data_ir[0] =
av_calloc(
s->air_len,
sizeof(
float) *
s->nb_irs);
436 s->data_ir[1] =
av_calloc(
s->air_len,
sizeof(
float) *
s->nb_irs);
441 s->ringbuffer[0] =
av_calloc(
s->buffer_length,
sizeof(
float) * nb_input_channels);
442 s->ringbuffer[1] =
av_calloc(
s->buffer_length,
sizeof(
float) * nb_input_channels);
444 s->ringbuffer[0] =
av_calloc(
s->buffer_length,
sizeof(
float));
445 s->ringbuffer[1] =
av_calloc(
s->buffer_length,
sizeof(
float));
450 if (!
s->temp_fft[0] || !
s->temp_fft[1] ||
451 !
s->temp_afft[0] || !
s->temp_afft[1]) {
457 if (!
s->data_ir[0] || !
s->data_ir[1] ||
458 !
s->ringbuffer[0] || !
s->ringbuffer[1]) {
464 s->temp_src[0] =
av_calloc(
s->air_len,
sizeof(
float));
465 s->temp_src[1] =
av_calloc(
s->air_len,
sizeof(
float));
469 if (!data_ir_r || !data_ir_l || !
s->temp_src[0] || !
s->temp_src[1]) {
476 if (!data_hrtf_r || !data_hrtf_l) {
482 for (
i = 0;
i <
s->nb_inputs - 1;
i++) {
483 int len =
s->in[
i + 1].ir_len;
484 int delay_l =
s->in[
i + 1].delay_l;
485 int delay_r =
s->in[
i + 1].delay_r;
491 ptr = (
float *)
s->in[
i + 1].frame->extended_data[0];
496 for (j = 0; j <
inlink->channels; j++) {
497 if (
s->mapping[
i] < 0) {
511 for (j = 0; j <
len; j++) {
512 data_ir_l[
offset + j] = ptr[
len * 2 - j * 2 - 2] * gain_lin;
513 data_ir_r[
offset + j] = ptr[
len * 2 - j * 2 - 1] * gain_lin;
516 memset(fft_in_l, 0,
n_fft *
sizeof(*fft_in_l));
517 memset(fft_in_r, 0,
n_fft *
sizeof(*fft_in_r));
520 for (j = 0; j <
len; j++) {
521 fft_in_l[delay_l + j].
re = ptr[j * 2 ] * gain_lin;
522 fft_in_r[delay_r + j].
re = ptr[j * 2 + 1] * gain_lin;
527 memcpy(data_hrtf_l +
offset, fft_in_l,
n_fft *
sizeof(*fft_in_l));
530 memcpy(data_hrtf_r +
offset, fft_in_r,
n_fft *
sizeof(*fft_in_r));
533 int I,
N =
ctx->inputs[1]->channels;
535 for (k = 0; k <
N / 2; k++) {
538 for (j = 0; j <
inlink->channels; j++) {
539 if (
s->mapping[k] < 0) {
554 for (j = 0; j <
len; j++) {
555 data_ir_l[
offset + j] = ptr[
len *
N - j *
N -
N + I ] * gain_lin;
556 data_ir_r[
offset + j] = ptr[
len *
N - j *
N -
N + I + 1] * gain_lin;
559 memset(fft_in_l, 0,
n_fft *
sizeof(*fft_in_l));
560 memset(fft_in_r, 0,
n_fft *
sizeof(*fft_in_r));
563 for (j = 0; j <
len; j++) {
564 fft_in_l[delay_l + j].
re = ptr[j *
N + I ] * gain_lin;
565 fft_in_r[delay_r + j].
re = ptr[j *
N + I + 1] * gain_lin;
570 memcpy(data_hrtf_l +
offset, fft_in_l,
n_fft *
sizeof(*fft_in_l));
573 memcpy(data_hrtf_r +
offset, fft_in_r,
n_fft *
sizeof(*fft_in_r));
582 memcpy(
s->data_ir[0], data_ir_l,
sizeof(
float) *
nb_irs *
s->air_len);
583 memcpy(
s->data_ir[1], data_ir_r,
sizeof(
float) *
nb_irs *
s->air_len);
587 if (!
s->data_hrtf[0] || !
s->data_hrtf[1]) {
592 memcpy(
s->data_hrtf[0], data_hrtf_l,
594 memcpy(
s->data_hrtf[1], data_hrtf_r,
602 for (
i = 0;
i <
s->nb_inputs - 1;
i++)
627 for (
i = 1;
i <
s->nb_inputs;
i++) {
640 for (
i = 1;
i <
s->nb_inputs;
i++) {
645 if (
i !=
s->nb_inputs) {
647 for (
i = 1;
i <
s->nb_inputs;
i++) {
659 if (!
s->have_hrirs &&
s->eof_hrirs) {
717 for (
i = 1;
i <
s->nb_inputs;
i++) {
739 if (
s->nb_irs <
inlink->channels) {
771 for (
i = 1;
i <
s->nb_inputs;
i++) {
837 for (
i = 0;
i <
s->nb_inputs;
i++) {
838 if (
ctx->input_pads &&
i)
844 #define OFFSET(x) offsetof(HeadphoneContext, x)
845 #define FLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
874 .description =
NULL_IF_CONFIG_SMALL(
"Apply headphone binaural spatialization with HRTFs in additional streams."),
876 .priv_class = &headphone_class,
static int convert_coeffs(AVFilterContext *ctx, AVFilterLink *inlink)
av_cold void av_fft_end(FFTContext *s)
AVFrame * ff_get_audio_buffer(AVFilterLink *link, int nb_samples)
Request an audio samples buffer with a specific set of permissions.
A list of supported channel layouts.
#define AV_LOG_WARNING
Something somehow does not look correct.
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
enum MovChannelLayoutTag * layouts
#define AVERROR_EOF
End of file.
The exact code depends on how similar the blocks are and how related they are to the and needs to apply these operations to the correct inlink or outlink if there are several Macros are available to factor that when no extra processing is inlink
char * av_asprintf(const char *fmt,...)
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
This structure describes decoded (raw) audio or video data.
void av_fft_permute(FFTContext *s, FFTComplex *z)
Do the permutation needed BEFORE calling ff_fft_calc().
uint64_t av_get_channel_layout(const char *name)
Return a channel layout id that matches name, or 0 if no match is found.
const char * name
Filter name.
static int parse_channel_name(HeadphoneContext *s, int x, char **arg, int *rchannel, char *buf)
AVFormatInternal * internal
An opaque field for libavformat internal usage.
A link between two filters.
int channels
Number of channels.
static int ff_insert_inpad(AVFilterContext *f, unsigned index, AVFilterPad *p)
Insert a new input pad for the filter.
#define FF_FILTER_FORWARD_STATUS_BACK_ALL(outlink, filter)
Forward the status on an output link to all input links.
static int activate(AVFilterContext *ctx)
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf type
#define AVFILTER_FLAG_DYNAMIC_INPUTS
The number of the filter inputs is not determined just by AVFilter.inputs.
#define AV_CH_LAYOUT_STEREO
static int config_input(AVFilterLink *inlink)
A filter pad used for either input or output.
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
#define AV_CH_LOW_FREQUENCY
void ff_inlink_request_frame(AVFilterLink *link)
Mark that a frame is wanted on the link.
FFTComplex * data_hrtf[2]
char * av_strtok(char *s, const char *delim, char **saveptr)
Split the string into several tokens which can be accessed by successive calls to av_strtok().
static av_cold void uninit(AVFilterContext *ctx)
static int headphone_convolute(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
Describe the class of an AVClass context structure.
int ff_inlink_consume_samples(AVFilterLink *link, unsigned min, unsigned max, AVFrame **rframe)
Take samples from the link's FIFO and update the link's stats.
static void parse_map(AVFilterContext *ctx)
static const AVFilterPad outputs[]
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several inputs
static int query_formats(AVFilterContext *ctx)
AVFILTER_DEFINE_CLASS(headphone)
static int headphone_frame(HeadphoneContext *s, AVFrame *in, AVFilterLink *outlink)
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
struct HeadphoneContext::headphone_inputs * in
AVFilterContext * src
source filter
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf offset
static const AVOption headphone_options[]
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel layout
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) #define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac) { } void ff_audio_convert_free(AudioConvert **ac) { if(! *ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);} AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map) { AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method !=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2) { ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc) { av_free(ac);return NULL;} return ac;} in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar) { ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar ? ac->channels :1;} else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;} int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in) { int use_generic=1;int len=in->nb_samples;int p;if(ac->dc) { av_log(ac->avr, AV_LOG_TRACE, "%d samples - audio_convert: %s to %s (dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> in
#define i(width, name, range_min, range_max)
uint64_t av_channel_layout_extract_channel(uint64_t channel_layout, int index)
Get the channel with the given index in channel_layout.
static av_cold int init(AVFilterContext *ctx)
Used for passing data between threads.
const char AVS_Value args
const char * name
Pad name.
int ff_inlink_queued_samples(AVFilterLink *link)
FFTContext * av_fft_init(int nbits, int inverse)
Set up a complex FFT.
void * av_calloc(size_t nmemb, size_t size)
Non-inlined equivalent of av_mallocz_array().
the frame and frame reference mechanism is intended to as much as expensive copies of that data while still allowing the filters to produce correct results The data is stored in buffers represented by AVFrame structures Several references can point to the same frame buffer
static int headphone_fast_convolute(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
int ff_outlink_get_status(AVFilterLink *link)
Get the status on an output link.
#define AVFILTER_FLAG_SLICE_THREADS
The filter supports multithreading by splitting frames into multiple parts and processing them concur...
char * av_strdup(const char *s)
Duplicate a string.
const VDPAUPixFmtMap * map
FF_FILTER_FORWARD_STATUS(inlink, outlink)
FFTComplex * temp_afft[2]
av_cold AVFloatDSPContext * avpriv_float_dsp_alloc(int bit_exact)
Allocate a float DSP context.
#define flags(name, subs,...)
the definition of that something depends on the semantic of the filter The callback must examine the status of the filter s links and proceed accordingly The status of output links is stored in the status_in and status_out fields and tested by the ff_outlink_frame_wanted() function. If this function returns true
void av_fft_calc(FFTContext *s, FFTComplex *z)
Do a complex FFT with the parameters defined in av_fft_init().
static int config_output(AVFilterLink *outlink)
static int check_ir(AVFilterLink *inlink, int input_number)