Go to the documentation of this file.
37 #define ON2AVC_SUBFRAME_SIZE 1024
93 int w,
b, band_off = 0;
98 for (
w = 0;
w <
c->num_windows;
w++) {
99 if (!
c->grouping[
w]) {
100 memcpy(
c->ms_info + band_off,
101 c->ms_info + band_off -
c->num_bands,
102 c->num_bands *
sizeof(*
c->ms_info));
103 band_off +=
c->num_bands;
106 for (
b = 0;
b <
c->num_bands;
b++)
114 int bits_per_sect =
c->is_long ? 5 : 3;
115 int esc_val = (1 << bits_per_sect) - 1;
129 }
while (
run == esc_val);
147 for (
w = 0;
w <
c->num_windows;
w++) {
148 if (!
c->grouping[
w]) {
149 memcpy(
c->band_scales + band_off,
150 c->band_scales + band_off -
c->num_bands,
151 c->num_bands *
sizeof(*
c->band_scales));
152 band_off +=
c->num_bands;
155 for (
b = 0;
b <
c->num_bands;
b++) {
156 if (!
c->band_type[band_off]) {
158 for (w2 =
w + 1; w2 <
c->num_windows; w2++) {
161 if (
c->band_type[w2 *
c->num_bands +
b]) {
167 c->band_scales[band_off++] = 0;
177 if (scale < 0 || scale > 127) {
182 c->band_scales[band_off++] =
c->scale_tab[
scale];
196 int dst_size,
int type,
float band_scale)
200 for (
i = 0;
i < dst_size;
i += 4) {
203 for (j = 0; j < 4; j++) {
229 int dst_size,
int type,
float band_scale)
231 int i,
val, val1, val2, sign;
233 for (
i = 0;
i < dst_size;
i += 2) {
239 if (val1 <= -16 || val1 >= 16) {
240 sign = 1 - (val1 < 0) * 2;
243 if (val2 <= -16 || val2 >= 16) {
244 sign = 1 - (val2 < 0) * 2;
267 coeff_ptr =
c->coeffs[ch];
270 for (
w = 0;
w <
c->num_windows;
w++) {
271 for (
b = 0;
b <
c->num_bands;
b++) {
272 int band_size =
c->band_start[
b + 1] -
c->band_start[
b];
276 coeff_ptr += band_size;
281 c->band_scales[band_idx +
b]);
284 c->band_scales[band_idx +
b]);
285 coeff_ptr += band_size;
287 band_idx +=
c->num_bands;
297 float *ch0 =
c->coeffs[0];
298 float *ch1 =
c->coeffs[1];
300 for (
w = 0;
w <
c->num_windows;
w++) {
301 for (
b = 0;
b <
c->num_bands;
b++) {
302 if (
c->ms_info[band_off +
b]) {
304 float l = *ch0,
r = *ch1;
309 ch0 +=
c->band_start[
b + 1] -
c->band_start[
b];
310 ch1 +=
c->band_start[
b + 1] -
c->band_start[
b];
313 band_off +=
c->num_bands;
320 memset(
src, 0,
sizeof(*
src) * order0);
321 memset(
src +
len - order1, 0,
sizeof(*
src) * order1);
325 int step,
int order0,
int order1,
const double *
const *
tabs)
333 for (
i = 0;
i < tab_step;
i++) {
335 for (j = 0; j < order0; j++)
336 sum +=
src[j] *
tab[j * tab_step +
i];
340 out = dst + dst_len - tab_step;
342 src2 =
src + (dst_len - tab_step) /
step + 1 + order0;
343 for (
i = 0;
i < tab_step;
i++) {
345 for (j = 0; j < order1; j++)
346 sum +=
src2[j] *
tab[j * tab_step +
i];
352 const double *
tab,
int tab_len,
int step,
353 int order0,
int order1,
const double *
const *
tabs)
359 steps = (src2_len - tab_len) /
step + 1;
363 for (
i = 0;
i < steps;
i++) {
364 float in0 =
src1[order0 +
i];
365 int pos = (src2_len - 1) &
mask;
368 const double *t =
tab;
369 for (j =
pos; j >= 0; j--)
370 src2[j] += in0 * *t++;
371 for (j = 0; j < tab_len -
pos - 1; j++)
372 src2[src2_len - j - 1] += in0 *
tab[
pos + 1 + j];
374 for (j = 0; j < tab_len; j++)
381 #define CMUL1_R(s, t, is, it) \
382 s[is + 0] * t[it + 0] - s[is + 1] * t[it + 1]
383 #define CMUL1_I(s, t, is, it) \
384 s[is + 0] * t[it + 1] + s[is + 1] * t[it + 0]
385 #define CMUL2_R(s, t, is, it) \
386 s[is + 0] * t[it + 0] + s[is + 1] * t[it + 1]
387 #define CMUL2_I(s, t, is, it) \
388 s[is + 0] * t[it + 1] - s[is + 1] * t[it + 0]
390 #define CMUL0(dst, id, s0, s1, s2, s3, t0, t1, t2, t3, is, it) \
391 dst[id] = s0[is] * t0[it] + s1[is] * t1[it] \
392 + s2[is] * t2[it] + s3[is] * t3[it]; \
393 dst[id + 1] = s0[is] * t0[it + 1] + s1[is] * t1[it + 1] \
394 + s2[is] * t2[it + 1] + s3[is] * t3[it + 1];
396 #define CMUL1(dst, s0, s1, s2, s3, t0, t1, t2, t3, is, it) \
397 *dst++ = CMUL1_R(s0, t0, is, it) \
398 + CMUL1_R(s1, t1, is, it) \
399 + CMUL1_R(s2, t2, is, it) \
400 + CMUL1_R(s3, t3, is, it); \
401 *dst++ = CMUL1_I(s0, t0, is, it) \
402 + CMUL1_I(s1, t1, is, it) \
403 + CMUL1_I(s2, t2, is, it) \
404 + CMUL1_I(s3, t3, is, it);
406 #define CMUL2(dst, s0, s1, s2, s3, t0, t1, t2, t3, is, it) \
407 *dst++ = CMUL2_R(s0, t0, is, it) \
408 + CMUL2_R(s1, t1, is, it) \
409 + CMUL2_R(s2, t2, is, it) \
410 + CMUL2_R(s3, t3, is, it); \
411 *dst++ = CMUL2_I(s0, t0, is, it) \
412 + CMUL2_I(s1, t1, is, it) \
413 + CMUL2_I(s2, t2, is, it) \
414 + CMUL2_I(s3, t3, is, it);
417 const float *
t0,
const float *
t1,
418 const float *
t2,
const float *
t3,
int len,
int step)
420 const float *
h0, *h1, *h2, *h3;
423 int len2 =
len >> 1, len4 =
len >> 2;
428 for (
half = len2;
tmp > 1; half <<= 1, tmp >>= 1);
435 CMUL0(dst, 0,
s0,
s1,
s2,
s3,
t0,
t1,
t2,
t3, 0, 0);
437 hoff = 2 *
step * (len4 >> 1);
442 d2 = dst + 2 + (
len >> 1);
443 for (
i = 0;
i < (len4 - 1) >> 1;
i++) {
444 CMUL1(d1,
s0,
s1,
s2,
s3,
t0,
t1,
t2,
t3, j, k);
445 CMUL1(d2,
s0,
s1,
s2,
s3,
h0, h1, h2, h3, j, k);
449 CMUL0(dst, len4,
s0,
s1,
s2,
s3,
t0,
t1,
t2,
t3, 1, hoff);
450 CMUL0(dst, len4 + len2,
s0,
s1,
s2,
s3,
h0, h1, h2, h3, 1, hoff);
453 k = hoff + 2 *
step * len4;
455 d2 = dst + len4 + 2 + len2;
456 for (
i = 0;
i < (len4 - 2) >> 1;
i++) {
457 CMUL2(d1,
s0,
s1,
s2,
s3,
t0,
t1,
t2,
t3, j, k);
458 CMUL2(d2,
s0,
s1,
s2,
s3,
h0, h1, h2, h3, j, k);
462 CMUL0(dst, len2 + 4,
s0,
s1,
s2,
s3,
t0,
t1,
t2,
t3, 0, k);
466 float *tmp0,
float *tmp1)
468 memcpy(
src, tmp0, 384 *
sizeof(*tmp0));
469 memcpy(tmp0 + 384,
src + 384, 128 *
sizeof(*tmp0));
495 memcpy(
src, tmp1, 512 *
sizeof(
float));
499 float *tmp0,
float *tmp1)
501 memcpy(
src, tmp0, 768 *
sizeof(*tmp0));
502 memcpy(tmp0 + 768,
src + 768, 256 *
sizeof(*tmp0));
528 memcpy(
src, tmp1, 1024 *
sizeof(
float));
533 float *tmp0 =
c->temp, *tmp1 =
c->temp + 1024;
535 memset(tmp0, 0,
sizeof(*tmp0) * 1024);
536 memset(tmp1, 0,
sizeof(*tmp1) * 1024);
560 memset(tmp0, 0, 64 *
sizeof(*tmp0));
598 memset(tmp0, 0, 128 *
sizeof(*tmp0));
619 float *tmp0 =
c->temp, *tmp1 =
c->temp + 1024;
621 memset(tmp0, 0,
sizeof(*tmp0) * 1024);
622 memset(tmp1, 0,
sizeof(*tmp1) * 1024);
642 memset(tmp0, 0, 64 *
sizeof(*tmp0));
674 memset(tmp0, 0, 128 *
sizeof(*tmp0));
695 for (ch = 0; ch <
c->avctx->ch_layout.nb_channels; ch++) {
697 float *in =
c->coeffs[ch];
698 float *saved =
c->delay[ch];
699 float *buf =
c->mdct_buf;
700 float *wout =
out + 448;
702 switch (
c->window_type) {
704 c->mdct.imdct_half(&
c->mdct, buf, in);
707 c->wtf(
c, buf, in, 1024);
710 c->wtf(
c, buf, in, 512);
711 c->mdct.imdct_half(&
c->mdct_half, buf + 512, in + 512);
712 for (
i = 0;
i < 256;
i++) {
713 FFSWAP(
float, buf[
i + 512], buf[1023 -
i]);
717 c->mdct.imdct_half(&
c->mdct_half, buf, in);
718 for (
i = 0;
i < 256;
i++) {
719 FFSWAP(
float, buf[
i], buf[511 -
i]);
721 c->wtf(
c, buf + 512, in + 512, 512);
725 memcpy(
out, saved, 448 *
sizeof(
float));
726 c->fdsp->vector_fmul_window(wout, saved + 448, buf,
c->short_win, 64);
727 memcpy(wout + 128, buf + 64, 448 *
sizeof(
float));
728 memcpy(saved, buf + 512, 448 *
sizeof(
float));
729 memcpy(saved + 448, buf + 7*128 + 64, 64 *
sizeof(
float));
743 float *buf =
c->mdct_buf;
744 float *
temp =
c->temp;
746 switch (
c->window_type) {
750 c->mdct.imdct_half(&
c->mdct, buf, in);
754 c->mdct_small.imdct_half(&
c->mdct_small, buf +
i, in +
i);
762 c->fdsp->vector_fmul_window(
out, saved, buf,
c->long_win, 512);
764 float *wout =
out + 448;
765 memcpy(
out, saved, 448 *
sizeof(
float));
768 c->fdsp->vector_fmul_window(wout + 0*128, saved + 448, buf + 0*128,
c->short_win, 64);
769 c->fdsp->vector_fmul_window(wout + 1*128, buf + 0*128 + 64, buf + 1*128,
c->short_win, 64);
770 c->fdsp->vector_fmul_window(wout + 2*128, buf + 1*128 + 64, buf + 2*128,
c->short_win, 64);
771 c->fdsp->vector_fmul_window(wout + 3*128, buf + 2*128 + 64, buf + 3*128,
c->short_win, 64);
772 c->fdsp->vector_fmul_window(
temp, buf + 3*128 + 64, buf + 4*128,
c->short_win, 64);
773 memcpy(wout + 4*128,
temp, 64 *
sizeof(
float));
775 c->fdsp->vector_fmul_window(wout, saved + 448, buf,
c->short_win, 64);
776 memcpy(wout + 128, buf + 64, 448 *
sizeof(
float));
781 switch (
c->window_type) {
783 memcpy(saved,
temp + 64, 64 *
sizeof(
float));
784 c->fdsp->vector_fmul_window(saved + 64, buf + 4*128 + 64, buf + 5*128,
c->short_win, 64);
785 c->fdsp->vector_fmul_window(saved + 192, buf + 5*128 + 64, buf + 6*128,
c->short_win, 64);
786 c->fdsp->vector_fmul_window(saved + 320, buf + 6*128 + 64, buf + 7*128,
c->short_win, 64);
787 memcpy(saved + 448, buf + 7*128 + 64, 64 *
sizeof(
float));
790 memcpy(saved, buf + 512, 448 *
sizeof(
float));
791 memcpy(saved + 448, buf + 7*128 + 64, 64 *
sizeof(
float));
795 memcpy(saved, buf + 512, 512 *
sizeof(
float));
814 c->prev_window_type =
c->window_type;
817 c->band_start =
c->modes[
c->window_type].band_start;
818 c->num_windows =
c->modes[
c->window_type].num_windows;
819 c->num_bands =
c->modes[
c->window_type].num_bands;
823 for (
i = 1;
i <
c->num_windows;
i++)
827 for (
i = 0;
i <
c->avctx->ch_layout.nb_channels;
i++)
830 if (
c->avctx->ch_layout.nb_channels == 2 &&
c->ms_present)
833 for (
i = 0;
i <
c->avctx->ch_layout.nb_channels;
i++)
843 int *got_frame_ptr,
AVPacket *avpkt)
845 const uint8_t *buf = avpkt->
data;
846 int buf_size = avpkt->
size;
887 frame, audio_off)) < 0)
904 for (
i = 1;
i < 16;
i++)
931 "Stereo mode support is not good, patch is welcome\n");
936 for (
i = 0;
i < 20;
i++)
943 1024 *
sizeof(*
c->long_win));
946 1024 *
sizeof(*
c->long_win));
970 for (
i = 1;
i < 16;
i++) {
974 syms, 2, 2, 0, 0,
avctx);
static int on2avc_decode_quads(On2AVCContext *c, GetBitContext *gb, float *dst, int dst_size, int type, float band_scale)
static int get_egolomb(GetBitContext *gb)
@ AV_SAMPLE_FMT_FLTP
float, planar
static av_cold int on2avc_decode_init(AVCodecContext *avctx)
#define AV_LOG_WARNING
Something somehow does not look correct.
static const float h0[64]
static int on2avc_apply_ms(On2AVCContext *c)
const FFCodec ff_on2avc_decoder
static av_always_inline double ff_exp10(double x)
Compute 10^x for floating point values.
static float on2avc_scale(int v, float scale)
#define FF_CODEC_CAP_INIT_CLEANUP
The codec allows calling the close function for deallocation even if the init function returned a fai...
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
const uint8_t ff_on2avc_cb_lens[]
int sample_rate
samples per second
static void twiddle(float *src1, float *src2, int src2_len, const double *tab, int tab_len, int step, int order0, int order1, const double *const *tabs)
const double *const ff_on2avc_tabs_19_40_2[19]
float delay[2][ON2AVC_SUBFRAME_SIZE]
static unsigned int get_bits_long(GetBitContext *s, int n)
Read 0-32 bits.
static void wtf_44(On2AVCContext *c, float *out, float *src, int size)
#define ON2AVC_SCALE_DIFFS
This structure describes decoded (raw) audio or video data.
trying all byte sequences megabyte in length and selecting the best looking sequence will yield cases to try But a word about which is also called distortion Distortion can be quantified by almost any quality measurement one chooses the sum of squared differences is used but more complex methods that consider psychovisual effects can be used as well It makes no difference in this discussion First step
int ms_info[ON2AVC_MAX_BANDS]
float short_win[ON2AVC_SUBFRAME_SIZE/8]
static int on2avc_reconstruct_channel(On2AVCContext *c, int channel, AVFrame *dst, int offset)
static uint8_t half(int a, int b)
static int on2avc_decode_pairs(On2AVCContext *c, GetBitContext *gb, float *dst, int dst_size, int type, float band_scale)
#define AV_CHANNEL_LAYOUT_MONO
uint8_t band_run_end[ON2AVC_MAX_BANDS]
#define AV_CHANNEL_LAYOUT_STEREO
int nb_channels
Number of channels in this layout.
const double ff_on2avc_tab_84_1[]
static void combine_fft(float *s0, float *s1, float *s2, float *s3, float *dst, const float *t0, const float *t1, const float *t2, const float *t3, int len, int step)
const float ff_on2avc_window_long_32000[1024]
const double *const ff_on2avc_tabs_9_20_2[9]
static av_always_inline void bytestream2_skip(GetByteContext *g, unsigned int size)
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
void(* wtf)(struct On2AVCContext *ctx, float *out, float *in, int size)
AVCodec p
The public AVCodec.
static void wtf_end_512(On2AVCContext *c, float *out, float *src, float *tmp0, float *tmp1)
AVChannelLayout ch_layout
Audio channel layout.
static const struct twinvq_data tab
const double *const ff_on2avc_tabs_20_84_2[20]
int flags
AV_CODEC_FLAG_*.
static double val(void *priv, double ch)
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf type
static int on2avc_reconstruct_channel_ext(On2AVCContext *c, AVFrame *dst, int offset)
static av_always_inline float scale(float x, float s)
static void pretwiddle(float *src, float *dst, int dst_len, int tab_step, int step, int order0, int order1, const double *const *tabs)
const On2AVCMode ff_on2avc_modes_44[8]
const int ff_on2avc_cb_elems[]
trying all byte sequences megabyte in length and selecting the best looking sequence will yield cases to try But first
static __device__ float ceil(float a)
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
static const uint16_t mask[17]
#define FF_CODEC_DECODE_CB(func)
#define ON2AVC_SUBFRAME_SIZE
float band_scales[ON2AVC_MAX_BANDS]
const double ff_on2avc_tab_10_1[]
const double ff_on2avc_tab_84_3[]
const double *const ff_on2avc_tabs_20_84_3[20]
const uint8_t ff_on2avc_scale_diff_bits[ON2AVC_SCALE_DIFFS]
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
float coeffs[2][ON2AVC_SUBFRAME_SIZE]
const double *const ff_on2avc_tabs_20_84_4[20]
const double *const ff_on2avc_tabs_19_40_1[19]
float mdct_buf[ON2AVC_SUBFRAME_SIZE]
static unsigned int get_bits1(GetBitContext *s)
int ff_init_vlc_from_lengths(VLC *vlc, int nb_bits, int nb_codes, const int8_t *lens, int lens_wrap, const void *symbols, int symbols_wrap, int symbols_size, int offset, int flags, void *logctx)
Build VLC decoding tables suitable for use with get_vlc2()
const double *const ff_on2avc_tabs_20_84_1[20]
const uint16_t ff_on2avc_cb_syms[]
static __device__ float sqrtf(float a)
const float ff_on2avc_ctab_4[2048]
static av_always_inline int get_vlc2(GetBitContext *s, const VLCElem *table, int bits, int max_depth)
Parse a vlc code.
const double ff_on2avc_tab_84_4[]
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
const uint8_t ff_on2avc_scale_diff_syms[ON2AVC_SCALE_DIFFS]
static av_always_inline int bytestream2_get_bytes_left(GetByteContext *g)
void av_channel_layout_uninit(AVChannelLayout *channel_layout)
Free any allocated data in the channel layout and reset the channel count to 0.
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame.
static av_cold int on2avc_decode_close(AVCodecContext *avctx)
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() or get_encode_buffer() for allocating buffers and supports custom allocators.
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
#define CMUL2(dst, s0, s1, s2, s3, t0, t1, t2, t3, is, it)
#define CMUL1(dst, s0, s1, s2, s3, t0, t1, t2, t3, is, it)
static void wtf_40(On2AVCContext *c, float *out, float *src, int size)
An AVChannelLayout holds information about the channel layout of audio data.
#define CMUL0(dst, id, s0, s1, s2, s3, t0, t1, t2, t3, is, it)
enum AVSampleFormat sample_fmt
audio sample format
const float ff_on2avc_ctab_3[2048]
static int on2avc_decode_frame(AVCodecContext *avctx, AVFrame *frame, int *got_frame_ptr, AVPacket *avpkt)
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf offset
const double ff_on2avc_tab_40_2[]
const double ff_on2avc_tab_20_2[]
#define DECLARE_ALIGNED(n, t, v)
static int on2avc_read_channel_data(On2AVCContext *c, GetBitContext *gb, int ch)
#define i(width, name, range_min, range_max)
static void zero_head_and_tail(float *src, int len, int order0, int order1)
uint8_t ** extended_data
pointers to the data planes/channels.
float long_win[ON2AVC_SUBFRAME_SIZE]
AVSampleFormat
Audio sample formats.
#define FF_CODEC_CAP_INIT_THREADSAFE
The codec does not modify any global variables in the init function, allowing to call the init functi...
const char * name
Name of the codec implementation.
void ff_free_vlc(VLC *vlc)
static const struct @93 tabs[]
static void on2avc_read_ms_info(On2AVCContext *c, GetBitContext *gb)
static av_cold void on2avc_free_vlcs(On2AVCContext *c)
static int on2avc_decode_band_scales(On2AVCContext *c, GetBitContext *gb)
#define FFSWAP(type, a, b)
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
static int on2avc_decode_band_types(On2AVCContext *c, GetBitContext *gb)
const On2AVCMode ff_on2avc_modes_40[8]
const double *const ff_on2avc_tabs_9_20_1[9]
static const uint8_t run_len[7][16]
main external API structure.
static int on2avc_decode_subframe(On2AVCContext *c, const uint8_t *buf, int buf_size, AVFrame *dst, int offset)
const double ff_on2avc_tab_20_1[]
const double *const ff_on2avc_tabs_4_10_2[4]
static av_const int sign_extend(int val, unsigned bits)
const float ff_on2avc_window_long_24000[1024]
const double *const ff_on2avc_tabs_4_10_1[4]
const float ff_on2avc_ctab_1[2048]
#define AV_CODEC_FLAG_BITEXACT
Use only bitexact stuff (except (I)DCT).
#define avpriv_request_sample(...)
const double ff_on2avc_tab_10_2[]
const float ff_on2avc_ctab_2[2048]
const double ff_on2avc_tab_40_1[]
unsigned int codec_tag
fourcc (LSB first, so "ABCD" -> ('D'<<24) + ('C'<<16) + ('B'<<8) + 'A').
This structure stores compressed data.
static void wtf_end_1024(On2AVCContext *c, float *out, float *src, float *tmp0, float *tmp1)
av_cold AVFloatDSPContext * avpriv_float_dsp_alloc(int bit_exact)
Allocate a float DSP context.
const double ff_on2avc_tab_84_2[]
const float ff_on2avc_window_short[128]
static av_always_inline void bytestream2_init(GetByteContext *g, const uint8_t *buf, int buf_size)
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
uint8_t band_type[ON2AVC_MAX_BANDS]
float temp[ON2AVC_SUBFRAME_SIZE *2]