FFmpeg
filter.c
Go to the documentation of this file.
1 /*
2  * VVC filters
3  *
4  * Copyright (C) 2021 Nuo Mi
5  *
6  * This file is part of FFmpeg.
7  *
8  * FFmpeg is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * FFmpeg is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with FFmpeg; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21  */
22 #include "libavutil/frame.h"
23 #include "libavutil/imgutils.h"
24 
25 #include "ctu.h"
26 #include "data.h"
27 #include "filter.h"
28 #include "refs.h"
29 
30 #define LEFT 0
31 #define TOP 1
32 #define RIGHT 2
33 #define BOTTOM 3
34 #define MAX_EDGES 4
35 
36 #define DEFAULT_INTRA_TC_OFFSET 2
37 
38 #define POS(c_idx, x, y) \
39  &fc->frame->data[c_idx][((y) >> fc->ps.sps->vshift[c_idx]) * fc->frame->linesize[c_idx] + \
40  (((x) >> fc->ps.sps->hshift[c_idx]) << fc->ps.sps->pixel_shift)]
41 
42 //Table 43 Derivation of threshold variables beta' and tc' from input Q
43 static const uint16_t tctable[66] = {
44  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
45  0, 0, 3, 4, 4, 4, 4, 5, 5, 5, 5, 7, 7, 8, 9, 10,
46  10, 11, 13, 14, 15, 17, 19, 21, 24, 25, 29, 33, 36, 41, 45, 51,
47  57, 64, 71, 80, 89, 100, 112, 125, 141, 157, 177, 198, 222, 250, 280, 314,
48  352, 395,
49 };
50 
51 //Table 43 Derivation of threshold variables beta' and tc' from input Q
52 static const uint8_t betatable[64] = {
53  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
54  6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 22, 24,
55  26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56,
56  58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88,
57 };
58 
59 // One vertical and one horizontal virtual boundary in a CTU at most. The CTU will be divided into 4 subblocks.
60 #define MAX_VBBS 4
61 
62 static int get_virtual_boundary(const VVCFrameContext *fc, const int ctu_pos, const int vertical)
63 {
64  const VVCSPS *sps = fc->ps.sps;
65  const VVCPH *ph = &fc->ps.ph;
66  const uint16_t *vbs = vertical ? ph->vb_pos_x : ph->vb_pos_y;
67  const uint8_t nb_vbs = vertical ? ph->num_ver_vbs : ph->num_hor_vbs;
68  const int pos = ctu_pos << sps->ctb_log2_size_y;
69 
70  if (sps->r->sps_virtual_boundaries_enabled_flag) {
71  for (int i = 0; i < nb_vbs; i++) {
72  const int o = vbs[i] - pos;
73  if (o >= 0 && o < sps->ctb_size_y)
74  return vbs[i];
75  }
76  }
77  return 0;
78 }
79 
80 static int is_virtual_boundary(const VVCFrameContext *fc, const int pos, const int vertical)
81 {
82  return get_virtual_boundary(fc, pos >> fc->ps.sps->ctb_log2_size_y, vertical) == pos;
83 }
84 
85 static int get_qPc(const VVCFrameContext *fc, const int x0, const int y0, const int chroma)
86 {
87  const int x = x0 >> MIN_TU_LOG2;
88  const int y = y0 >> MIN_TU_LOG2;
89  const int min_tu_width = fc->ps.pps->min_tu_width;
90  return fc->tab.qp[chroma][x + y * min_tu_width];
91 }
92 
93 static void copy_ctb(uint8_t *dst, const uint8_t *src, const int width, const int height,
94  const ptrdiff_t dst_stride, const ptrdiff_t src_stride)
95 {
96  for (int y = 0; y < height; y++) {
97  memcpy(dst, src, width);
98 
99  dst += dst_stride;
100  src += src_stride;
101  }
102 }
103 
104 static void copy_pixel(uint8_t *dst, const uint8_t *src, const int pixel_shift)
105 {
106  if (pixel_shift)
107  *(uint16_t *)dst = *(uint16_t *)src;
108  else
109  *dst = *src;
110 }
111 
112 static void copy_vert(uint8_t *dst, const uint8_t *src, const int pixel_shift, const int height,
113  const ptrdiff_t dst_stride, const ptrdiff_t src_stride)
114 {
115  int i;
116  if (pixel_shift == 0) {
117  for (i = 0; i < height; i++) {
118  *dst = *src;
119  dst += dst_stride;
120  src += src_stride;
121  }
122  } else {
123  for (i = 0; i < height; i++) {
124  *(uint16_t *)dst = *(uint16_t *)src;
125  dst += dst_stride;
126  src += src_stride;
127  }
128  }
129 }
130 
131 static void copy_ctb_to_hv(VVCFrameContext *fc, const uint8_t *src,
132  const ptrdiff_t src_stride, const int x, const int y, const int width, const int height,
133  const int c_idx, const int rx, const int ry, const int top)
134 {
135  const int ps = fc->ps.sps->pixel_shift;
136  const int w = fc->ps.pps->width >> fc->ps.sps->hshift[c_idx];
137  const int h = fc->ps.pps->height >> fc->ps.sps->vshift[c_idx];
138 
139  if (top) {
140  /* top */
141  memcpy(fc->tab.sao_pixel_buffer_h[c_idx] + (((2 * ry) * w + x) << ps),
142  src, width << ps);
143  } else {
144  /* bottom */
145  memcpy(fc->tab.sao_pixel_buffer_h[c_idx] + (((2 * ry + 1) * w + x) << ps),
146  src + src_stride * (height - 1), width << ps);
147 
148  /* copy vertical edges */
149  copy_vert(fc->tab.sao_pixel_buffer_v[c_idx] + (((2 * rx) * h + y) << ps), src, ps, height, 1 << ps, src_stride);
150  copy_vert(fc->tab.sao_pixel_buffer_v[c_idx] + (((2 * rx + 1) * h + y) << ps), src + ((width - 1) << ps), ps, height, 1 << ps, src_stride);
151  }
152 }
153 
154 static void sao_copy_ctb_to_hv(VVCLocalContext *lc, const int rx, const int ry, const int top)
155 {
156  VVCFrameContext *fc = lc->fc;
157  const int ctb_size_y = fc->ps.sps->ctb_size_y;
158  const int x0 = rx << fc->ps.sps->ctb_log2_size_y;
159  const int y0 = ry << fc->ps.sps->ctb_log2_size_y;
160 
161  for (int c_idx = 0; c_idx < (fc->ps.sps->r->sps_chroma_format_idc ? 3 : 1); c_idx++) {
162  const int x = x0 >> fc->ps.sps->hshift[c_idx];
163  const int y = y0 >> fc->ps.sps->vshift[c_idx];
164  const ptrdiff_t src_stride = fc->frame->linesize[c_idx];
165  const int ctb_size_h = ctb_size_y >> fc->ps.sps->hshift[c_idx];
166  const int ctb_size_v = ctb_size_y >> fc->ps.sps->vshift[c_idx];
167  const int width = FFMIN(ctb_size_h, (fc->ps.pps->width >> fc->ps.sps->hshift[c_idx]) - x);
168  const int height = FFMIN(ctb_size_v, (fc->ps.pps->height >> fc->ps.sps->vshift[c_idx]) - y);
169  const uint8_t *src = POS(c_idx, x0, y0);
170  copy_ctb_to_hv(fc, src, src_stride, x, y, width, height, c_idx, rx, ry, top);
171  }
172 }
173 
174 void ff_vvc_sao_copy_ctb_to_hv(VVCLocalContext *lc, const int rx, const int ry, const int last_row)
175 {
176  if (ry)
177  sao_copy_ctb_to_hv(lc, rx, ry - 1, 0);
178 
179  sao_copy_ctb_to_hv(lc, rx, ry, 1);
180 
181  if (last_row)
182  sao_copy_ctb_to_hv(lc, rx, ry, 0);
183 }
184 
185 static int sao_can_cross_slices(const VVCFrameContext *fc, const int rx, const int ry, const int dx, const int dy)
186 {
187  const uint8_t lfase = fc->ps.pps->r->pps_loop_filter_across_slices_enabled_flag;
188 
189  return lfase || CTB(fc->tab.slice_idx, rx, ry) == CTB(fc->tab.slice_idx, rx + dx, ry + dy);
190 }
191 
192 static void sao_get_edges(uint8_t vert_edge[2], uint8_t horiz_edge[2], uint8_t diag_edge[4], int *restore,
193  const VVCLocalContext *lc, const int edges[4], const int rx, const int ry)
194 {
195  const VVCFrameContext *fc = lc->fc;
196  const VVCSPS *sps = fc->ps.sps;
197  const H266RawSPS *rsps = sps->r;
198  const VVCPPS *pps = fc->ps.pps;
199  const int subpic_idx = lc->sc->sh.r->curr_subpic_idx;
200  const uint8_t lfase = fc->ps.pps->r->pps_loop_filter_across_slices_enabled_flag;
201  const uint8_t no_tile_filter = pps->r->num_tiles_in_pic > 1 && !pps->r->pps_loop_filter_across_tiles_enabled_flag;
202  const uint8_t no_subpic_filter = rsps->sps_num_subpics_minus1 && !rsps->sps_loop_filter_across_subpic_enabled_flag[subpic_idx];
203  uint8_t lf_edge[] = { 0, 0, 0, 0 };
204 
205  *restore = no_subpic_filter || no_tile_filter || !lfase || rsps->sps_virtual_boundaries_enabled_flag;
206 
207  if (!*restore)
208  return;
209 
210  if (!edges[LEFT]) {
211  lf_edge[LEFT] = no_tile_filter && pps->ctb_to_col_bd[rx] == rx;
212  lf_edge[LEFT] |= no_subpic_filter && rsps->sps_subpic_ctu_top_left_x[subpic_idx] == rx;
213  lf_edge[LEFT] |= is_virtual_boundary(fc, rx << sps->ctb_log2_size_y, 1);
214  vert_edge[0] = !sao_can_cross_slices(fc, rx, ry, -1, 0) || lf_edge[LEFT];
215  }
216  if (!edges[RIGHT]) {
217  lf_edge[RIGHT] = no_tile_filter && pps->ctb_to_col_bd[rx] != pps->ctb_to_col_bd[rx + 1];
218  lf_edge[RIGHT] |= no_subpic_filter && rsps->sps_subpic_ctu_top_left_x[subpic_idx] + rsps->sps_subpic_width_minus1[subpic_idx] == rx;
219  lf_edge[RIGHT] |= is_virtual_boundary(fc, (rx + 1) << sps->ctb_log2_size_y, 1);
220  vert_edge[1] = !sao_can_cross_slices(fc, rx, ry, 1, 0) || lf_edge[RIGHT];
221  }
222  if (!edges[TOP]) {
223  lf_edge[TOP] = no_tile_filter && pps->ctb_to_row_bd[ry] == ry;
224  lf_edge[TOP] |= no_subpic_filter && rsps->sps_subpic_ctu_top_left_y[subpic_idx] == ry;
225  lf_edge[TOP] |= is_virtual_boundary(fc, ry << sps->ctb_log2_size_y, 0);
226  horiz_edge[0] = !sao_can_cross_slices(fc, rx, ry, 0, -1) || lf_edge[TOP];
227  }
228  if (!edges[BOTTOM]) {
229  lf_edge[BOTTOM] = no_tile_filter && pps->ctb_to_row_bd[ry] != pps->ctb_to_row_bd[ry + 1];
230  lf_edge[BOTTOM] |= no_subpic_filter && rsps->sps_subpic_ctu_top_left_y[subpic_idx] + rsps->sps_subpic_height_minus1[subpic_idx] == ry;
231  lf_edge[BOTTOM] |= is_virtual_boundary(fc, (ry + 1) << sps->ctb_log2_size_y, 0);
232  horiz_edge[1] = !sao_can_cross_slices(fc, rx, ry, 0, 1) || lf_edge[BOTTOM];
233  }
234 
235  if (!edges[LEFT] && !edges[TOP])
236  diag_edge[0] = !sao_can_cross_slices(fc, rx, ry, -1, -1) || lf_edge[LEFT] || lf_edge[TOP];
237 
238  if (!edges[TOP] && !edges[RIGHT])
239  diag_edge[1] = !sao_can_cross_slices(fc, rx, ry, 1, -1) || lf_edge[RIGHT] || lf_edge[TOP];
240 
241  if (!edges[RIGHT] && !edges[BOTTOM])
242  diag_edge[2] = !sao_can_cross_slices(fc, rx, ry, 1, 1) || lf_edge[RIGHT] || lf_edge[BOTTOM];
243 
244  if (!edges[LEFT] && !edges[BOTTOM])
245  diag_edge[3] = !sao_can_cross_slices(fc, rx, ry, -1, 1) || lf_edge[LEFT] || lf_edge[BOTTOM];
246 }
247 
248 static void sao_copy_hor(uint8_t *dst, const ptrdiff_t dst_stride,
249  const uint8_t *src, const ptrdiff_t src_stride, const int width, const int edges[4], const int ps)
250 {
251  const int left = 1 - edges[LEFT];
252  const int right = 1 - edges[RIGHT];
253  int pos = 0;
254 
255  src -= left << ps;
256  dst -= left << ps;
257 
258  if (left) {
259  copy_pixel(dst, src, ps);
260  pos += (1 << ps);
261  }
262  memcpy(dst + pos, src + pos, width << ps);
263  if (right) {
264  pos += width << ps;
265  copy_pixel(dst + pos, src + pos, ps);
266  }
267 }
268 
269 static void sao_extends_edges(uint8_t *dst, const ptrdiff_t dst_stride,
270  const uint8_t *src, const ptrdiff_t src_stride, const int width, const int height,
271  const VVCFrameContext *fc, const int x0, const int y0, const int rx, const int ry, const int edges[4], const int c_idx)
272 {
273  const uint8_t *sao_h = fc->tab.sao_pixel_buffer_h[c_idx];
274  const uint8_t *sao_v = fc->tab.sao_pixel_buffer_v[c_idx];
275  const int x = x0 >> fc->ps.sps->hshift[c_idx];
276  const int y = y0 >> fc->ps.sps->vshift[c_idx];
277  const int w = fc->ps.pps->width >> fc->ps.sps->hshift[c_idx];
278  const int h = fc->ps.pps->height >> fc->ps.sps->vshift[c_idx];
279  const int ps = fc->ps.sps->pixel_shift;
280 
281  if (!edges[TOP])
282  sao_copy_hor(dst - dst_stride, dst_stride, sao_h + (((2 * ry - 1) * w + x) << ps), src_stride, width, edges, ps);
283 
284  if (!edges[BOTTOM])
285  sao_copy_hor(dst + height * dst_stride, dst_stride, sao_h + (((2 * ry + 2) * w + x) << ps), src_stride, width, edges, ps);
286 
287  if (!edges[LEFT])
288  copy_vert(dst - (1 << ps), sao_v + (((2 * rx - 1) * h + y) << ps), ps, height, dst_stride, 1 << ps);
289 
290  if (!edges[RIGHT])
291  copy_vert(dst + (width << ps), sao_v + (((2 * rx + 2) * h + y) << ps), ps, height, dst_stride, 1 << ps);
292 
293  copy_ctb(dst, src, width << ps, height, dst_stride, src_stride);
294 }
295 
296 static void sao_restore_vb(uint8_t *dst, ptrdiff_t dst_stride, const uint8_t *src, ptrdiff_t src_stride,
297  const int width, const int height, const int vb_pos, const int ps, const int vertical)
298 {
299  int w = 2;
300  int h = (vertical ? height : width);
301  int dx = vb_pos - 1;
302  int dy = 0;
303 
304  if (!vertical) {
305  FFSWAP(int, w, h);
306  FFSWAP(int, dx, dy);
307  }
308  dst += dy * dst_stride +(dx << ps);
309  src += dy * src_stride +(dx << ps);
310 
311  av_image_copy_plane(dst, dst_stride, src, src_stride, w << ps, h);
312 }
313 
314 void ff_vvc_sao_filter(VVCLocalContext *lc, int x0, int y0)
315 {
316  VVCFrameContext *fc = lc->fc;
317  const VVCSPS *sps = fc->ps.sps;
318  const int rx = x0 >> sps->ctb_log2_size_y;
319  const int ry = y0 >> sps->ctb_log2_size_y;
320  const int edges[4] = { !rx, !ry, rx == fc->ps.pps->ctb_width - 1, ry == fc->ps.pps->ctb_height - 1 };
321  const SAOParams *sao = &CTB(fc->tab.sao, rx, ry);
322  // flags indicating unfilterable edges
323  uint8_t vert_edge[] = { 0, 0 };
324  uint8_t horiz_edge[] = { 0, 0 };
325  uint8_t diag_edge[] = { 0, 0, 0, 0 };
326  int restore, vb_x = 0, vb_y = 0;;
327 
328  if (sps->r->sps_virtual_boundaries_enabled_flag) {
329  vb_x = get_virtual_boundary(fc, rx, 1);
330  vb_y = get_virtual_boundary(fc, ry, 0);
331  }
332 
333  sao_get_edges(vert_edge, horiz_edge, diag_edge, &restore, lc, edges, rx, ry);
334 
335  for (int c_idx = 0; c_idx < (sps->r->sps_chroma_format_idc ? 3 : 1); c_idx++) {
336  static const uint8_t sao_tab[16] = { 0, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8 };
337  const ptrdiff_t src_stride = fc->frame->linesize[c_idx];
338  uint8_t *src = POS(c_idx, x0, y0);
339  const int hs = sps->hshift[c_idx];
340  const int vs = sps->vshift[c_idx];
341  const int ps = sps->pixel_shift;
342  const int width = FFMIN(sps->ctb_size_y, fc->ps.pps->width - x0) >> hs;
343  const int height = FFMIN(sps->ctb_size_y, fc->ps.pps->height - y0) >> vs;
344  const int tab = sao_tab[(FFALIGN(width, 8) >> 3) - 1];
345  const int sao_eo_class = sao->eo_class[c_idx];
346 
347  switch (sao->type_idx[c_idx]) {
348  case SAO_BAND:
349  fc->vvcdsp.sao.band_filter[tab](src, src, src_stride, src_stride,
350  sao->offset_val[c_idx], sao->band_position[c_idx], width, height);
351  break;
352  case SAO_EDGE:
353  {
354  const ptrdiff_t dst_stride = 2 * MAX_PB_SIZE + AV_INPUT_BUFFER_PADDING_SIZE;
355  uint8_t *dst = lc->sao_buffer + dst_stride + AV_INPUT_BUFFER_PADDING_SIZE;
356 
357  sao_extends_edges(dst, dst_stride, src, src_stride, width, height, fc, x0, y0, rx, ry, edges, c_idx);
358 
359  fc->vvcdsp.sao.edge_filter[tab](src, dst, src_stride, sao->offset_val[c_idx],
360  sao->eo_class[c_idx], width, height);
361  fc->vvcdsp.sao.edge_restore[restore](src, dst, src_stride, dst_stride,
362  sao, edges, width, height, c_idx, vert_edge, horiz_edge, diag_edge);
363 
364  if (vb_x > x0 && sao_eo_class != SAO_EO_VERT)
365  sao_restore_vb(src, src_stride, dst, dst_stride, width, height, (vb_x - x0) >> hs, ps, 1);
366  if (vb_y > y0 && sao_eo_class != SAO_EO_HORIZ)
367  sao_restore_vb(src, src_stride, dst, dst_stride, width, height, (vb_y - y0) >> vs, ps, 0);
368 
369  break;
370  }
371  }
372  }
373 }
374 
375 #define TAB_BS(t, x, y) (t)[((y) >> MIN_TU_LOG2) * (fc->ps.pps->min_tu_width) + ((x) >> MIN_TU_LOG2)]
376 #define TAB_MAX_LEN(t, x, y) (t)[((y) >> MIN_TU_LOG2) * (fc->ps.pps->min_tu_width) + ((x) >> MIN_TU_LOG2)]
377 
378 //8 samples a time
379 #define DEBLOCK_STEP 8
380 #define LUMA_GRID 4
381 #define CHROMA_GRID 8
382 
383 static int boundary_strength(const VVCLocalContext *lc, const MvField *curr, const MvField *neigh,
384  const RefPicList *neigh_rpl)
385 {
386  RefPicList *rpl = lc->sc->rpl;
387 
388  if (curr->pred_flag == PF_IBC)
389  return FFABS(neigh->mv[0].x - curr->mv[0].x) >= 8 || FFABS(neigh->mv[0].y - curr->mv[0].y) >= 8;
390 
391  if (curr->pred_flag == PF_BI && neigh->pred_flag == PF_BI) {
392  // same L0 and L1
393  if (rpl[L0].refs[curr->ref_idx[L0]].poc == neigh_rpl[L0].refs[neigh->ref_idx[L0]].poc &&
394  rpl[L0].refs[curr->ref_idx[L0]].poc == rpl[L1].refs[curr->ref_idx[L1]].poc &&
395  neigh_rpl[L0].refs[neigh->ref_idx[L0]].poc == neigh_rpl[L1].refs[neigh->ref_idx[L1]].poc) {
396  if ((FFABS(neigh->mv[0].x - curr->mv[0].x) >= 8 || FFABS(neigh->mv[0].y - curr->mv[0].y) >= 8 ||
397  FFABS(neigh->mv[1].x - curr->mv[1].x) >= 8 || FFABS(neigh->mv[1].y - curr->mv[1].y) >= 8) &&
398  (FFABS(neigh->mv[1].x - curr->mv[0].x) >= 8 || FFABS(neigh->mv[1].y - curr->mv[0].y) >= 8 ||
399  FFABS(neigh->mv[0].x - curr->mv[1].x) >= 8 || FFABS(neigh->mv[0].y - curr->mv[1].y) >= 8))
400  return 1;
401  else
402  return 0;
403  } else if (neigh_rpl[L0].refs[neigh->ref_idx[L0]].poc == rpl[L0].refs[curr->ref_idx[L0]].poc &&
404  neigh_rpl[L1].refs[neigh->ref_idx[L1]].poc == rpl[L1].refs[curr->ref_idx[L1]].poc) {
405  if (FFABS(neigh->mv[0].x - curr->mv[0].x) >= 8 || FFABS(neigh->mv[0].y - curr->mv[0].y) >= 8 ||
406  FFABS(neigh->mv[1].x - curr->mv[1].x) >= 8 || FFABS(neigh->mv[1].y - curr->mv[1].y) >= 8)
407  return 1;
408  else
409  return 0;
410  } else if (neigh_rpl[L1].refs[neigh->ref_idx[L1]].poc == rpl[L0].refs[curr->ref_idx[L0]].poc &&
411  neigh_rpl[L0].refs[neigh->ref_idx[L0]].poc == rpl[L1].refs[curr->ref_idx[L1]].poc) {
412  if (FFABS(neigh->mv[1].x - curr->mv[0].x) >= 8 || FFABS(neigh->mv[1].y - curr->mv[0].y) >= 8 ||
413  FFABS(neigh->mv[0].x - curr->mv[1].x) >= 8 || FFABS(neigh->mv[0].y - curr->mv[1].y) >= 8)
414  return 1;
415  else
416  return 0;
417  } else {
418  return 1;
419  }
420  } else if ((curr->pred_flag != PF_BI) && (neigh->pred_flag != PF_BI)){ // 1 MV
421  Mv A, B;
422  int ref_A, ref_B;
423 
424  if (curr->pred_flag & 1) {
425  A = curr->mv[0];
426  ref_A = rpl[L0].refs[curr->ref_idx[L0]].poc;
427  } else {
428  A = curr->mv[1];
429  ref_A = rpl[L1].refs[curr->ref_idx[L1]].poc;
430  }
431 
432  if (neigh->pred_flag & 1) {
433  B = neigh->mv[0];
434  ref_B = neigh_rpl[L0].refs[neigh->ref_idx[L0]].poc;
435  } else {
436  B = neigh->mv[1];
437  ref_B = neigh_rpl[L1].refs[neigh->ref_idx[L1]].poc;
438  }
439 
440  if (ref_A == ref_B) {
441  if (FFABS(A.x - B.x) >= 8 || FFABS(A.y - B.y) >= 8)
442  return 1;
443  else
444  return 0;
445  } else
446  return 1;
447  }
448 
449  return 1;
450 }
451 
452 //part of 8.8.3.3 Derivation process of transform block boundary
453 static void derive_max_filter_length_luma(const VVCFrameContext *fc, const int qx, const int qy,
454  const int size_q, const int has_subblock, const int vertical, uint8_t *max_len_p, uint8_t *max_len_q)
455 {
456  const int px = vertical ? qx - 1 : qx;
457  const int py = !vertical ? qy - 1 : qy;
458  const uint8_t *tb_size = vertical ? fc->tab.tb_width[LUMA] : fc->tab.tb_height[LUMA];
459  const int size_p = tb_size[(py >> MIN_TU_LOG2) * fc->ps.pps->min_tu_width + (px >> MIN_TU_LOG2)];
460  const int min_cb_log2 = fc->ps.sps->min_cb_log2_size_y;
461  const int off_p = (py >> min_cb_log2) * fc->ps.pps->min_cb_width + (px >> min_cb_log2);
462 
463  if (size_p <= 4 || size_q <= 4) {
464  *max_len_p = *max_len_q = 1;
465  } else {
466  *max_len_p = *max_len_q = 3;
467  if (size_p >= 32)
468  *max_len_p = 7;
469  if (size_q >= 32)
470  *max_len_q = 7;
471  }
472  if (has_subblock)
473  *max_len_q = FFMIN(5, *max_len_q);
474  if (fc->tab.msf[off_p] || fc->tab.iaf[off_p])
475  *max_len_p = FFMIN(5, *max_len_p);
476 }
477 
479  const int cb, int x0, int y0, int width, int height, const int vertical)
480 {
481  const VVCFrameContext *fc = lc->fc;
482  const MvField *tab_mvf = fc->tab.mvf;
483  const RefPicList *rpl = lc->sc->rpl;
484  int stridea = fc->ps.pps->min_pu_width;
485  int strideb = 1;
486  const int log2_min_pu_size = MIN_PU_LOG2;
487 
488  if (!vertical) {
489  FFSWAP(int, x0, y0);
490  FFSWAP(int, width, height);
491  FFSWAP(int, stridea, strideb);
492  }
493 
494  // bs for TU internal vertical PU boundaries
495  for (int i = 8 - ((x0 - cb) % 8); i < width; i += 8) {
496  const int is_vb = is_virtual_boundary(fc, x0 + i, vertical);
497  const int xp_pu = (x0 + i - 1) >> log2_min_pu_size;
498  const int xq_pu = (x0 + i) >> log2_min_pu_size;
499 
500  for (int j = 0; j < height; j += 4) {
501  const int y_pu = (y0 + j) >> log2_min_pu_size;
502  const MvField *mvf_p = &tab_mvf[y_pu * stridea + xp_pu * strideb];
503  const MvField *mvf_q = &tab_mvf[y_pu * stridea + xq_pu * strideb];
504  const int bs = is_vb ? 0 : boundary_strength(lc, mvf_q, mvf_p, rpl);
505  int x = x0 + i;
506  int y = y0 + j;
507  uint8_t max_len_p = 0, max_len_q = 0;
508 
509  if (!vertical)
510  FFSWAP(int, x, y);
511 
512  TAB_BS(fc->tab.bs[vertical][LUMA], x, y) = bs;
513 
514  if (i == 4 || i == width - 4)
515  max_len_p = max_len_q = 1;
516  else if (i == 8 || i == width - 8)
517  max_len_p = max_len_q = 2;
518  else
519  max_len_p = max_len_q = 3;
520 
521  TAB_MAX_LEN(fc->tab.max_len_p[vertical], x, y) = max_len_p;
522  TAB_MAX_LEN(fc->tab.max_len_q[vertical], x, y) = max_len_q;
523  }
524  }
525 }
526 
528  const int x_p, const int y_p, const int x_q, const int y_q, const CodingUnit *cu, const TransformUnit *tu,
529  const RefPicList *rpl_p, const int c_idx, const int off_to_cb, const uint8_t has_sub_block)
530 {
531  const VVCFrameContext *fc = lc->fc;
532  const MvField *tab_mvf = fc->tab.mvf;
533  const int log2_min_pu_size = MIN_PU_LOG2;
534  const int log2_min_tu_size = MIN_TU_LOG2;
535  const int log2_min_cb_size = fc->ps.sps->min_cb_log2_size_y;
536  const int min_pu_width = fc->ps.pps->min_pu_width;
537  const int min_tu_width = fc->ps.pps->min_tu_width;
538  const int min_cb_width = fc->ps.pps->min_cb_width;
539  const int pu_p = (y_p >> log2_min_pu_size) * min_pu_width + (x_p >> log2_min_pu_size);
540  const int pu_q = (y_q >> log2_min_pu_size) * min_pu_width + (x_q >> log2_min_pu_size);
541  const MvField *mvf_p = &tab_mvf[pu_p];
542  const MvField *mvf_q = &tab_mvf[pu_q];
543  const uint8_t chroma = !!c_idx;
544  const int tu_p = (y_p >> log2_min_tu_size) * min_tu_width + (x_p >> log2_min_tu_size);
545  const int cb_p = (y_p >> log2_min_cb_size) * min_cb_width + (x_p >> log2_min_cb_size);
546  const uint8_t pcmf = fc->tab.pcmf[chroma][cb_p] && cu->bdpcm_flag[chroma];
547  const uint8_t intra = fc->tab.cpm[chroma][cb_p] == MODE_INTRA || cu->pred_mode == MODE_INTRA;
548  const uint8_t same_mode = fc->tab.cpm[chroma][cb_p] == cu->pred_mode;
549 
550  if (pcmf)
551  return 0;
552 
553  if (intra || mvf_p->ciip_flag || mvf_q->ciip_flag)
554  return 2;
555 
556  if (chroma) {
557  return fc->tab.tu_coded_flag[c_idx][tu_p] ||
558  fc->tab.tu_joint_cbcr_residual_flag[tu_p] ||
559  tu->coded_flag[c_idx] ||
561  }
562 
563  if (fc->tab.tu_coded_flag[LUMA][tu_p] || tu->coded_flag[LUMA])
564  return 1;
565 
566  if ((off_to_cb && ((off_to_cb % 8) || !has_sub_block)))
567  return 0; // inside a cu, not aligned to 8 or with no subblocks
568 
569  if (!same_mode)
570  return 1;
571 
572  return boundary_strength(lc, mvf_q, mvf_p, rpl_p);
573 }
574 
575 static int deblock_is_boundary(const VVCLocalContext *lc, const int boundary,
576  const int pos, const int rs, const int vertical)
577 {
578  const VVCFrameContext *fc = lc->fc;
579  const H266RawSPS *rsps = fc->ps.sps->r;
580  const H266RawPPS *rpps = fc->ps.pps->r;
581  int flag;
582  if (boundary && (pos % fc->ps.sps->ctb_size_y) == 0) {
584  if (lc->boundary_flags & flag &&
586  return 0;
587 
589  if (lc->boundary_flags & flag &&
591  return 0;
592 
594  if (lc->boundary_flags & flag) {
595  const int q_rs = rs - (vertical ? 1 : fc->ps.pps->ctb_width);
596  const SliceContext *q_slice = lc->fc->slices[lc->fc->tab.slice_idx[q_rs]];
597 
598  if (!rsps->sps_loop_filter_across_subpic_enabled_flag[q_slice->sh.r->curr_subpic_idx] ||
600  return 0;
601  }
602  }
603  return boundary;
604 }
605 
606 static void vvc_deblock_bs_luma(const VVCLocalContext *lc,
607  const int x0, const int y0, const int width, const int height,
608  const CodingUnit *cu, const TransformUnit *tu, int rs, const int vertical)
609 {
610  const VVCFrameContext *fc = lc->fc;
611  const PredictionUnit *pu = &cu->pu;
612  const int mask = LUMA_GRID - 1;
613  const int pos = vertical ? x0 : y0;
614  const int cb = vertical ? cu->x0 : cu->y0;
615  const int is_intra = cu->pred_mode == MODE_INTRA;
616  const int cb_size = vertical ? cu->cb_width : cu->cb_height;
617  const int has_sb = !is_intra && (pu->merge_subblock_flag || pu->inter_affine_flag) && cb_size > 8;
618 
619  if (deblock_is_boundary(lc, pos > 0 && !(pos & mask), pos, rs, vertical)) {
620  const int is_vb = is_virtual_boundary(fc, pos, vertical);
621  const int size = vertical ? height : width;
622  const int size_q = vertical ? width : height;
623  const int off = cb - pos;
624  const int flag = vertical ? BOUNDARY_LEFT_SLICE : BOUNDARY_UPPER_SLICE;
625  const RefPicList *rpl_p =
626  (lc->boundary_flags & flag) ? ff_vvc_get_ref_list(fc, fc->ref, x0 - vertical, y0 - !vertical) : lc->sc->rpl;
627 
628  for (int i = 0; i < size; i += 4) {
629  const int x = x0 + i * !vertical;
630  const int y = y0 + i * vertical;
631  uint8_t max_len_p, max_len_q;
632  const int bs = is_vb ? 0 : deblock_bs(lc, x - vertical, y - !vertical, x, y, cu, tu, rpl_p, LUMA, off, has_sb);
633 
634  TAB_BS(fc->tab.bs[vertical][LUMA], x, y) = bs;
635 
636  derive_max_filter_length_luma(fc, x, y, size_q, has_sb, vertical, &max_len_p, &max_len_q);
637  TAB_MAX_LEN(fc->tab.max_len_p[vertical], x, y) = max_len_p;
638  TAB_MAX_LEN(fc->tab.max_len_q[vertical], x, y) = max_len_q;
639  }
640  }
641 
642  if (has_sb)
643  vvc_deblock_subblock_bs(lc, cb, x0, y0, width, height, vertical);
644 }
645 
647  const int x0, const int y0, const int width, const int height,
648  const CodingUnit *cu, const TransformUnit *tu, const int rs, const int vertical)
649 {
650  const VVCFrameContext *fc = lc->fc;
651  const int shift = (vertical ? fc->ps.sps->hshift : fc->ps.sps->vshift)[CHROMA];
652  const int mask = (CHROMA_GRID << shift) - 1;
653  const int pos = vertical ? x0 : y0;
654 
655  if (deblock_is_boundary(lc, pos > 0 && !(pos & mask), pos, rs, vertical)) {
656  const int is_vb = is_virtual_boundary(fc, pos, vertical);
657  const int size = vertical ? height : width;
658 
659  for (int c_idx = CB; c_idx <= CR; c_idx++) {
660  for (int i = 0; i < size; i += 2) {
661  const int x = x0 + i * !vertical;
662  const int y = y0 + i * vertical;
663  const int bs = is_vb ? 0 : deblock_bs(lc, x - vertical, y - !vertical, x, y, cu, tu, NULL, c_idx, 0, 0);
664 
665  TAB_BS(fc->tab.bs[vertical][c_idx], x, y) = bs;
666  }
667  }
668  }
669 }
670 
671 typedef void (*deblock_bs_fn)(const VVCLocalContext *lc, const int x0, const int y0,
672  const int width, const int height, const int rs, const int vertical);
673 
674 void ff_vvc_deblock_bs(VVCLocalContext *lc, const int rx, const int ry, const int rs)
675 {
676  const VVCFrameContext *fc = lc->fc;
677  const VVCSPS *sps = fc->ps.sps;
678  const int x0 = rx << sps->ctb_log2_size_y;
679  const int y0 = ry << sps->ctb_log2_size_y;
680 
681  ff_vvc_decode_neighbour(lc, x0, y0, rx, ry, rs);
682  for (const CodingUnit *cu = fc->tab.cus[rs]; cu; cu = cu->next) {
683  for (const TransformUnit *tu = cu->tus.head; tu; tu = tu->next) {
684  for (int vertical = 0; vertical <= 1; vertical++) {
685  if (tu->avail[LUMA])
686  vvc_deblock_bs_luma(lc, tu->x0, tu->y0, tu->width, tu->height, cu, tu, rs, vertical);
687  if (tu->avail[CHROMA]) {
688  if (cu->isp_split_type != ISP_NO_SPLIT && cu->tree_type == SINGLE_TREE)
689  vvc_deblock_bs_chroma(lc, cu->x0, cu->y0, cu->cb_width, cu->cb_height, cu, tu, rs, vertical);
690  else
691  vvc_deblock_bs_chroma(lc, tu->x0, tu->y0, tu->width, tu->height, cu, tu, rs, vertical);
692  }
693  }
694  }
695  }
696 }
697 
698 //part of 8.8.3.3 Derivation process of transform block boundary
699 static void max_filter_length_luma(const VVCFrameContext *fc, const int qx, const int qy,
700  const int vertical, uint8_t *max_len_p, uint8_t *max_len_q)
701 {
702  *max_len_p = TAB_MAX_LEN(fc->tab.max_len_p[vertical], qx, qy);
703  *max_len_q = TAB_MAX_LEN(fc->tab.max_len_q[vertical], qx, qy);
704 }
705 
706 //part of 8.8.3.3 Derivation process of transform block boundary
707 static void max_filter_length_chroma(const VVCFrameContext *fc, const int qx, const int qy,
708  const int vertical, const int horizontal_ctu_edge, const int bs, uint8_t *max_len_p, uint8_t *max_len_q)
709 {
710  const int px = vertical ? qx - 1 : qx;
711  const int py = !vertical ? qy - 1 : qy;
712  const uint8_t *tb_size = vertical ? fc->tab.tb_width[CHROMA] : fc->tab.tb_height[CHROMA];
713 
714  const int size_p = tb_size[(py >> MIN_TU_LOG2) * fc->ps.pps->min_tu_width + (px >> MIN_TU_LOG2)];
715  const int size_q = tb_size[(qy >> MIN_TU_LOG2) * fc->ps.pps->min_tu_width + (qx >> MIN_TU_LOG2)];
716  if (size_p >= 8 && size_q >= 8) {
717  *max_len_p = *max_len_q = 3;
718  if (horizontal_ctu_edge)
719  *max_len_p = 1;
720  } else {
721  //part of 8.8.3.6.4 Decision process for chroma block edges
722  *max_len_p = *max_len_q = (bs == 2);
723  }
724 }
725 
726 static void max_filter_length(const VVCFrameContext *fc, const int qx, const int qy,
727  const int c_idx, const int vertical, const int horizontal_ctu_edge, const int bs, uint8_t *max_len_p, uint8_t *max_len_q)
728 {
729  if (!c_idx)
730  max_filter_length_luma(fc, qx, qy, vertical, max_len_p, max_len_q);
731  else
732  max_filter_length_chroma(fc, qx, qy, vertical, horizontal_ctu_edge, bs, max_len_p, max_len_q);
733 }
734 
735 #define TC_CALC(qp, bs) \
736  tctable[av_clip((qp) + DEFAULT_INTRA_TC_OFFSET * ((bs) - 1) + \
737  (tc_offset & -2), \
738  0, MAX_QP + DEFAULT_INTRA_TC_OFFSET)]
739 
740 // part of 8.8.3.6.2 Decision process for luma block edges
741 static int get_qp_y(const VVCFrameContext *fc, const uint8_t *src, const int x, const int y, const int vertical)
742 {
743  const VVCSPS *sps = fc->ps.sps;
744  const int qp = (ff_vvc_get_qPy(fc, x - vertical, y - !vertical) + ff_vvc_get_qPy(fc, x, y) + 1) >> 1;
745  int qp_offset = 0;
746  int level;
747 
748  if (!sps->r->sps_ladf_enabled_flag)
749  return qp;
750 
751  level = fc->vvcdsp.lf.ladf_level[vertical](src, fc->frame->linesize[LUMA]);
752  qp_offset = sps->r->sps_ladf_lowest_interval_qp_offset;
753  for (int i = 0; i < sps->num_ladf_intervals - 1 && level > sps->ladf_interval_lower_bound[i + 1]; i++)
754  qp_offset = sps->r->sps_ladf_qp_offset[i];
755 
756  return qp + qp_offset;
757 }
758 
759 // part of 8.8.3.6.2 Decision process for luma block edges
760 static int get_qp_c(const VVCFrameContext *fc, const int x, const int y, const int c_idx, const int vertical)
761 {
762  const VVCSPS *sps = fc->ps.sps;
763  return (get_qPc(fc, x - vertical, y - !vertical, c_idx) + get_qPc(fc, x, y, c_idx) - 2 * sps->qp_bd_offset + 1) >> 1;
764 }
765 
766 static int get_qp(const VVCFrameContext *fc, const uint8_t *src, const int x, const int y, const int c_idx, const int vertical)
767 {
768  if (!c_idx)
769  return get_qp_y(fc, src, x, y, vertical);
770  return get_qp_c(fc, x, y, c_idx, vertical);
771 }
772 
773 static void vvc_deblock(const VVCLocalContext *lc, int x0, int y0, const int rs, const int vertical)
774 {
775  VVCFrameContext *fc = lc->fc;
776  const VVCSPS *sps = fc->ps.sps;
777  const int c_end = sps->r->sps_chroma_format_idc ? VVC_MAX_SAMPLE_ARRAYS : 1;
778  const int ctb_size = fc->ps.sps->ctb_size_y;
779  const DBParams *params = fc->tab.deblock + rs;
780  int x_end = FFMIN(x0 + ctb_size, fc->ps.pps->width);
781  int y_end = FFMIN(y0 + ctb_size, fc->ps.pps->height);
782  const int log2_min_cb_size = fc->ps.sps->min_cb_log2_size_y;
783  const int min_cb_width = fc->ps.pps->min_cb_width;
784 
785  if (!vertical) {
786  FFSWAP(int, x_end, y_end);
787  FFSWAP(int, x0, y0);
788  }
789 
790  for (int c_idx = 0; c_idx < c_end; c_idx++) {
791  const int hs = (vertical ? sps->hshift : sps->vshift)[c_idx];
792  const int vs = (vertical ? sps->vshift : sps->hshift)[c_idx];
793  const int grid = c_idx ? (CHROMA_GRID << hs) : LUMA_GRID;
794  const int tc_offset = params->tc_offset[c_idx];
795  const int beta_offset = params->beta_offset[c_idx];
796  const int src_stride = fc->frame->linesize[c_idx];
797 
798  for (int y = y0; y < y_end; y += (DEBLOCK_STEP << vs)) {
799  for (int x = x0 ? x0 : grid; x < x_end; x += grid) {
800  const uint8_t horizontal_ctu_edge = !vertical && !(x % ctb_size);
801  int32_t bs[4], beta[4], tc[4] = { 0 }, all_zero_bs = 1;
802  uint8_t max_len_p[4], max_len_q[4];
803  uint8_t no_p[4] = { 0 };
804  uint8_t no_q[4] = { 0 };
805 
806  for (int i = 0; i < DEBLOCK_STEP >> (2 - vs); i++) {
807  int tx = x;
808  int ty = y + (i << 2);
809  const int end = ty >= y_end;
810 
811  if (!vertical)
812  FFSWAP(int, tx, ty);
813 
814  bs[i] = end ? 0 : TAB_BS(fc->tab.bs[vertical][c_idx], tx, ty);
815  if (bs[i]) {
816  const int qp = get_qp(fc, POS(c_idx, tx, ty), tx, ty, c_idx, vertical);
817  beta[i] = betatable[av_clip(qp + beta_offset, 0, MAX_QP)];
818  tc[i] = TC_CALC(qp, bs[i]) ;
819  max_filter_length(fc, tx, ty, c_idx, vertical, horizontal_ctu_edge, bs[i], &max_len_p[i], &max_len_q[i]);
820  all_zero_bs = 0;
821 
822  if (sps->r->sps_palette_enabled_flag) {
823  const int cu_q = (ty >> log2_min_cb_size) * min_cb_width + (tx >> log2_min_cb_size);
824  const int cu_p = (ty - !vertical >> log2_min_cb_size) * min_cb_width + (tx - vertical >> log2_min_cb_size);
825  no_q[i] = fc->tab.cpm[!!c_idx][cu_q] == MODE_PLT;
826  no_p[i] = cu_p >= 0 && fc->tab.cpm[!!c_idx][cu_p] == MODE_PLT;
827  }
828  }
829  }
830 
831  if (!all_zero_bs) {
832  uint8_t *src = vertical ? POS(c_idx, x, y) : POS(c_idx, y, x);
833  if (!c_idx)
834  fc->vvcdsp.lf.filter_luma[vertical](src, src_stride, beta, tc, no_p, no_q, max_len_p, max_len_q, horizontal_ctu_edge);
835  else
836  fc->vvcdsp.lf.filter_chroma[vertical](src, src_stride, beta, tc, no_p, no_q, max_len_p, max_len_q, vs);
837  }
838  }
839  }
840  }
841 }
842 
843 void ff_vvc_deblock_vertical(const VVCLocalContext *lc, const int x0, const int y0, const int rs)
844 {
845  vvc_deblock(lc, x0, y0, rs, 1);
846 }
847 
848 void ff_vvc_deblock_horizontal(const VVCLocalContext *lc, const int x0, const int y0, const int rs)
849 {
850  vvc_deblock(lc, x0, y0, rs, 0);
851 }
852 
853 static void alf_copy_border(uint8_t *dst, const uint8_t *src,
854  const int pixel_shift, int width, const int height, const ptrdiff_t dst_stride, const ptrdiff_t src_stride)
855 {
856  width <<= pixel_shift;
857  for (int i = 0; i < height; i++) {
858  memcpy(dst, src, width);
859  dst += dst_stride;
860  src += src_stride;
861  }
862 }
863 
864 static void alf_extend_vert(uint8_t *_dst, const uint8_t *_src,
865  const int pixel_shift, const int width, const int height, ptrdiff_t stride)
866 {
867  if (pixel_shift == 0) {
868  for (int i = 0; i < height; i++) {
869  memset(_dst, *_src, width);
870  _src += stride;
871  _dst += stride;
872  }
873  } else {
874  const uint16_t *src = (const uint16_t *)_src;
875  uint16_t *dst = (uint16_t *)_dst;
876  stride >>= pixel_shift;
877 
878  for (int i = 0; i < height; i++) {
879  for (int j = 0; j < width; j++)
880  dst[j] = *src;
881  src += stride;
882  dst += stride;
883  }
884  }
885 }
886 
887 static void alf_extend_horz(uint8_t *dst, const uint8_t *src,
888  const int pixel_shift, int width, const int height, const ptrdiff_t stride)
889 {
890  width <<= pixel_shift;
891  for (int i = 0; i < height; i++) {
892  memcpy(dst, src, width);
893  dst += stride;
894  }
895 }
896 
897 static void alf_copy_ctb_to_hv(VVCFrameContext *fc, const uint8_t *src, const ptrdiff_t src_stride,
898  const int x, const int y, const int width, const int height, const int rx, const int ry, const int c_idx)
899 {
900  const int ps = fc->ps.sps->pixel_shift;
901  const int w = fc->ps.pps->width >> fc->ps.sps->hshift[c_idx];
902  const int h = fc->ps.pps->height >> fc->ps.sps->vshift[c_idx];
903  const int border_pixels = (c_idx == 0) ? ALF_BORDER_LUMA : ALF_BORDER_CHROMA;
904  const int offset_h[] = { 0, height - border_pixels };
905  const int offset_v[] = { 0, width - border_pixels };
906 
907  /* copy horizontal edges */
908  for (int i = 0; i < FF_ARRAY_ELEMS(offset_h); i++) {
909  alf_copy_border(fc->tab.alf_pixel_buffer_h[c_idx][i] + ((border_pixels * ry * w + x)<< ps),
910  src + offset_h[i] * src_stride, ps, width, border_pixels, w << ps, src_stride);
911  }
912  /* copy vertical edges */
913  for (int i = 0; i < FF_ARRAY_ELEMS(offset_v); i++) {
914  alf_copy_border(fc->tab.alf_pixel_buffer_v[c_idx][i] + ((h * rx + y) * (border_pixels << ps)),
915  src + (offset_v[i] << ps), ps, border_pixels, height, border_pixels << ps, src_stride);
916  }
917 }
918 
919 static void alf_fill_border_h(uint8_t *dst, const ptrdiff_t dst_stride, const uint8_t *src, const ptrdiff_t src_stride,
920  const uint8_t *border, const int width, const int border_pixels, const int ps, const int edge)
921 {
922  if (edge)
923  alf_extend_horz(dst, border, ps, width, border_pixels, dst_stride);
924  else
925  alf_copy_border(dst, src, ps, width, border_pixels, dst_stride, src_stride);
926 }
927 
928 static void alf_fill_border_v(uint8_t *dst, const ptrdiff_t dst_stride, const uint8_t *src,
929  const uint8_t *border, const int border_pixels, const int height, const int pixel_shift, const int *edges, const int edge)
930 {
931  const ptrdiff_t src_stride = (border_pixels << pixel_shift);
932 
933  if (edge) {
934  alf_extend_vert(dst, border, pixel_shift, border_pixels, height + 2 * border_pixels, dst_stride);
935  return;
936  }
937 
938  //left/right
939  alf_copy_border(dst + dst_stride * border_pixels * edges[TOP], src + src_stride * border_pixels * edges[TOP],
940  pixel_shift, border_pixels, height + (!edges[TOP] + !edges[BOTTOM]) * border_pixels, dst_stride, src_stride);
941 
942  //top left/right
943  if (edges[TOP])
944  alf_extend_horz(dst, dst + dst_stride * border_pixels, pixel_shift, border_pixels, border_pixels, dst_stride);
945 
946  //bottom left/right
947  if (edges[BOTTOM]) {
948  dst += dst_stride * (border_pixels + height);
949  alf_extend_horz(dst, dst - dst_stride, pixel_shift, border_pixels, border_pixels, dst_stride);
950  }
951 }
952 
953 static void alf_prepare_buffer(VVCFrameContext *fc, uint8_t *_dst, const uint8_t *_src, const int x, const int y,
954  const int rx, const int ry, const int width, const int height, const ptrdiff_t dst_stride, const ptrdiff_t src_stride,
955  const int c_idx, const int *edges)
956 {
957  const int ps = fc->ps.sps->pixel_shift;
958  const int w = fc->ps.pps->width >> fc->ps.sps->hshift[c_idx];
959  const int h = fc->ps.pps->height >> fc->ps.sps->vshift[c_idx];
960  const int border_pixels = c_idx == 0 ? ALF_BORDER_LUMA : ALF_BORDER_CHROMA;
961  uint8_t *dst, *src;
962 
963  copy_ctb(_dst, _src, width << ps, height, dst_stride, src_stride);
964 
965  //top
966  src = fc->tab.alf_pixel_buffer_h[c_idx][1] + (((border_pixels * w) << ps) * (ry - 1) + (x << ps));
967  dst = _dst - border_pixels * dst_stride;
968  alf_fill_border_h(dst, dst_stride, src, w << ps, _dst, width, border_pixels, ps, edges[TOP]);
969 
970  //bottom
971  src = fc->tab.alf_pixel_buffer_h[c_idx][0] + (((border_pixels * w) << ps) * (ry + 1) + (x << ps));
972  dst = _dst + height * dst_stride;
973  alf_fill_border_h(dst, dst_stride, src, w << ps, _dst + (height - 1) * dst_stride, width, border_pixels, ps, edges[BOTTOM]);
974 
975 
976  //left
977  src = fc->tab.alf_pixel_buffer_v[c_idx][1] + (h * (rx - 1) + y - border_pixels) * (border_pixels << ps);
978  dst = _dst - (border_pixels << ps) - border_pixels * dst_stride;
979  alf_fill_border_v(dst, dst_stride, src, dst + (border_pixels << ps), border_pixels, height, ps, edges, edges[LEFT]);
980 
981  //right
982  src = fc->tab.alf_pixel_buffer_v[c_idx][0] + (h * (rx + 1) + y - border_pixels) * (border_pixels << ps);
983  dst = _dst + (width << ps) - border_pixels * dst_stride;
984  alf_fill_border_v(dst, dst_stride, src, dst - (1 << ps), border_pixels, height, ps, edges, edges[RIGHT]);
985 }
986 
987 #define ALF_MAX_BLOCKS_IN_CTU (MAX_CTU_SIZE * MAX_CTU_SIZE / ALF_BLOCK_SIZE / ALF_BLOCK_SIZE)
988 #define ALF_MAX_FILTER_SIZE (ALF_MAX_BLOCKS_IN_CTU * ALF_NUM_COEFF_LUMA)
989 
990 static void alf_get_coeff_and_clip(VVCLocalContext *lc, int16_t *coeff, int16_t *clip,
991  const uint8_t *src, ptrdiff_t src_stride, int width, int height, int vb_pos, const ALFParams *alf)
992 {
993  const VVCFrameContext *fc = lc->fc;
994  const H266RawSliceHeader *rsh = lc->sc->sh.r;
995  uint8_t fixed_clip_set[ALF_NUM_FILTERS_LUMA][ALF_NUM_COEFF_LUMA] = { 0 };
996  const int16_t *coeff_set;
997  const uint8_t *clip_idx_set;
998  const uint8_t *class_to_filt;
999  const int size = width * height / ALF_BLOCK_SIZE / ALF_BLOCK_SIZE;
1000  int class_idx[ALF_MAX_BLOCKS_IN_CTU];
1001  int transpose_idx[ALF_MAX_BLOCKS_IN_CTU];
1002 
1003  if (alf->ctb_filt_set_idx_y < 16) {
1004  coeff_set = &ff_vvc_alf_fix_filt_coeff[0][0];
1005  clip_idx_set = &fixed_clip_set[0][0];
1006  class_to_filt = ff_vvc_alf_class_to_filt_map[alf->ctb_filt_set_idx_y];
1007  } else {
1008  const int id = rsh->sh_alf_aps_id_luma[alf->ctb_filt_set_idx_y - 16];
1009  const VVCALF *aps = fc->ps.alf_list[id];
1010  coeff_set = &aps->luma_coeff[0][0];
1011  clip_idx_set = &aps->luma_clip_idx[0][0];
1012  class_to_filt = ff_vvc_alf_aps_class_to_filt_map;
1013  }
1014  fc->vvcdsp.alf.classify(class_idx, transpose_idx, src, src_stride, width, height,
1015  vb_pos, lc->alf_gradient_tmp);
1016  fc->vvcdsp.alf.recon_coeff_and_clip(coeff, clip, class_idx, transpose_idx, size,
1017  coeff_set, clip_idx_set, class_to_filt);
1018 }
1019 
1020 static void alf_filter_luma(VVCLocalContext *lc, uint8_t *dst, const uint8_t *src,
1021  const ptrdiff_t dst_stride, const ptrdiff_t src_stride, const int x0, const int y0,
1022  const int width, const int height, const int _vb_pos, const ALFParams *alf)
1023 {
1024  const VVCFrameContext *fc = lc->fc;
1025  int vb_pos = _vb_pos - y0;
1026  int16_t *coeff = (int16_t*)lc->tmp;
1027  int16_t *clip = (int16_t *)lc->tmp1;
1028 
1029  av_assert0(ALF_MAX_FILTER_SIZE <= sizeof(lc->tmp));
1030  av_assert0(ALF_MAX_FILTER_SIZE * sizeof(int16_t) <= sizeof(lc->tmp1));
1031 
1032  alf_get_coeff_and_clip(lc, coeff, clip, src, src_stride, width, height, vb_pos, alf);
1033  fc->vvcdsp.alf.filter[LUMA](dst, dst_stride, src, src_stride, width, height, coeff, clip, vb_pos);
1034 }
1035 
1036 static int alf_clip_from_idx(const VVCFrameContext *fc, const int idx)
1037 {
1038  const VVCSPS *sps = fc->ps.sps;
1039  const int offset[] = {0, 3, 5, 7};
1040 
1041  return 1 << (sps->bit_depth - offset[idx]);
1042 }
1043 
1044 static void alf_filter_chroma(VVCLocalContext *lc, uint8_t *dst, const uint8_t *src,
1045  const ptrdiff_t dst_stride, const ptrdiff_t src_stride, const int c_idx,
1046  const int width, const int height, const int vb_pos, const ALFParams *alf)
1047 {
1048  VVCFrameContext *fc = lc->fc;
1049  const H266RawSliceHeader *rsh = lc->sc->sh.r;
1050  const VVCALF *aps = fc->ps.alf_list[rsh->sh_alf_aps_id_chroma];
1051  const int idx = alf->alf_ctb_filter_alt_idx[c_idx - 1];
1052  const int16_t *coeff = aps->chroma_coeff[idx];
1053  int16_t clip[ALF_NUM_COEFF_CHROMA];
1054 
1055  for (int i = 0; i < ALF_NUM_COEFF_CHROMA; i++)
1056  clip[i] = alf_clip_from_idx(fc, aps->chroma_clip_idx[idx][i]);
1057 
1058  fc->vvcdsp.alf.filter[CHROMA](dst, dst_stride, src, src_stride, width, height, coeff, clip, vb_pos);
1059 }
1060 
1061 static void alf_filter_cc(VVCLocalContext *lc, uint8_t *dst, const uint8_t *luma,
1062  const ptrdiff_t dst_stride, const ptrdiff_t luma_stride, const int c_idx,
1063  const int width, const int height, const int hs, const int vs, const int vb_pos, const ALFParams *alf)
1064 {
1065  const VVCFrameContext *fc = lc->fc;
1066  const H266RawSliceHeader *rsh = lc->sc->sh.r;
1067  const int idx = c_idx - 1;
1068  const int cc_aps_id = c_idx == CB ? rsh->sh_alf_cc_cb_aps_id : rsh->sh_alf_cc_cr_aps_id;
1069  const VVCALF *aps = fc->ps.alf_list[cc_aps_id];
1070 
1071  if (aps) {
1072  const int16_t *coeff = aps->cc_coeff[idx][alf->ctb_cc_idc[idx] - 1];
1073 
1074  fc->vvcdsp.alf.filter_cc(dst, dst_stride, luma, luma_stride, width, height, hs, vs, coeff, vb_pos);
1075  }
1076 }
1077 
1078 void ff_vvc_alf_copy_ctu_to_hv(VVCLocalContext* lc, const int x0, const int y0)
1079 {
1080  VVCFrameContext *fc = lc->fc;
1081  const int rx = x0 >> fc->ps.sps->ctb_log2_size_y;
1082  const int ry = y0 >> fc->ps.sps->ctb_log2_size_y;
1083  const int ctb_size_y = fc->ps.sps->ctb_size_y;
1084  const int c_end = fc->ps.sps->r->sps_chroma_format_idc ? VVC_MAX_SAMPLE_ARRAYS : 1;
1085 
1086  for (int c_idx = 0; c_idx < c_end; c_idx++) {
1087  const int hs = fc->ps.sps->hshift[c_idx];
1088  const int vs = fc->ps.sps->vshift[c_idx];
1089  const int x = x0 >> hs;
1090  const int y = y0 >> vs;
1091  const int width = FFMIN(fc->ps.pps->width - x0, ctb_size_y) >> hs;
1092  const int height = FFMIN(fc->ps.pps->height - y0, ctb_size_y) >> vs;
1093 
1094  const int src_stride = fc->frame->linesize[c_idx];
1095  uint8_t *src = POS(c_idx, x0, y0);
1096 
1097  alf_copy_ctb_to_hv(fc, src, src_stride, x, y, width, height, rx, ry, c_idx);
1098  }
1099 }
1100 
1101 static void alf_get_edges(const VVCLocalContext *lc, int edges[MAX_EDGES], const int rx, const int ry)
1102 {
1103  VVCFrameContext *fc = lc->fc;
1104  const VVCSPS *sps = fc->ps.sps;
1105  const VVCPPS *pps = fc->ps.pps;
1106  const int subpic_idx = lc->sc->sh.r->curr_subpic_idx;
1107 
1108  // we can't use |= instead of || in this function; |= is not a shortcut operator
1109 
1110  if (!pps->r->pps_loop_filter_across_tiles_enabled_flag) {
1111  edges[LEFT] = edges[LEFT] || (lc->boundary_flags & BOUNDARY_LEFT_TILE);
1112  edges[TOP] = edges[TOP] || (lc->boundary_flags & BOUNDARY_UPPER_TILE);
1113  edges[RIGHT] = edges[RIGHT] || pps->ctb_to_col_bd[rx] != pps->ctb_to_col_bd[rx + 1];
1114  edges[BOTTOM] = edges[BOTTOM] || pps->ctb_to_row_bd[ry] != pps->ctb_to_row_bd[ry + 1];
1115  }
1116 
1117  if (!pps->r->pps_loop_filter_across_slices_enabled_flag) {
1118  edges[LEFT] = edges[LEFT] || (lc->boundary_flags & BOUNDARY_LEFT_SLICE);
1119  edges[TOP] = edges[TOP] || (lc->boundary_flags & BOUNDARY_UPPER_SLICE);
1120  edges[RIGHT] = edges[RIGHT] || CTB(fc->tab.slice_idx, rx, ry) != CTB(fc->tab.slice_idx, rx + 1, ry);
1121  edges[BOTTOM] = edges[BOTTOM] || CTB(fc->tab.slice_idx, rx, ry) != CTB(fc->tab.slice_idx, rx, ry + 1);
1122  }
1123 
1124  if (!sps->r->sps_loop_filter_across_subpic_enabled_flag[subpic_idx]) {
1125  edges[LEFT] = edges[LEFT] || (lc->boundary_flags & BOUNDARY_LEFT_SUBPIC);
1126  edges[TOP] = edges[TOP] || (lc->boundary_flags & BOUNDARY_UPPER_SUBPIC);
1127  edges[RIGHT] = edges[RIGHT] || fc->ps.sps->r->sps_subpic_ctu_top_left_x[subpic_idx] + fc->ps.sps->r->sps_subpic_width_minus1[subpic_idx] == rx;
1128  edges[BOTTOM] = edges[BOTTOM] || fc->ps.sps->r->sps_subpic_ctu_top_left_y[subpic_idx] + fc->ps.sps->r->sps_subpic_height_minus1[subpic_idx] == ry;
1129  }
1130 
1131  if (sps->r->sps_virtual_boundaries_enabled_flag) {
1132  edges[LEFT] = edges[LEFT] || is_virtual_boundary(fc, rx << sps->ctb_log2_size_y, 1);
1133  edges[TOP] = edges[TOP] || is_virtual_boundary(fc, ry << sps->ctb_log2_size_y, 0);
1134  edges[RIGHT] = edges[RIGHT] || is_virtual_boundary(fc, (rx + 1) << sps->ctb_log2_size_y, 1);
1135  edges[BOTTOM] = edges[BOTTOM] || is_virtual_boundary(fc, (ry + 1) << sps->ctb_log2_size_y, 0);
1136  }
1137 }
1138 
1139 static void alf_init_subblock(VVCRect *sb, int sb_edges[MAX_EDGES], const VVCRect *b, const int edges[MAX_EDGES])
1140 {
1141  *sb = *b;
1142  memcpy(sb_edges, edges, sizeof(int) * MAX_EDGES);
1143 }
1144 
1145 static void alf_get_subblock(VVCRect *sb, int edges[MAX_EDGES], const int bx, const int by, const int vb_pos[2], const int has_vb[2])
1146 {
1147  int *pos[] = { &sb->l, &sb->t, &sb->r, &sb->b };
1148 
1149  for (int vertical = 0; vertical <= 1; vertical++) {
1150  if (has_vb[vertical]) {
1151  const int c = vertical ? (bx ? LEFT : RIGHT) : (by ? TOP : BOTTOM);
1152  *pos[c] = vb_pos[vertical];
1153  edges[c] = 1;
1154  }
1155  }
1156 }
1157 
1158 static void alf_get_subblocks(const VVCLocalContext *lc, VVCRect sbs[MAX_VBBS], int sb_edges[MAX_VBBS][MAX_EDGES], int *nb_sbs,
1159  const int x0, const int y0, const int rx, const int ry)
1160 {
1161  VVCFrameContext *fc = lc->fc;
1162  const VVCSPS *sps = fc->ps.sps;
1163  const VVCPPS *pps = fc->ps.pps;
1164  const int ctu_size_y = sps->ctb_size_y;
1165  const int vb_pos[] = { get_virtual_boundary(fc, ry, 0), get_virtual_boundary(fc, rx, 1) };
1166  const int has_vb[] = { vb_pos[0] > y0, vb_pos[1] > x0 };
1167  const VVCRect b = { x0, y0, FFMIN(x0 + ctu_size_y, pps->width), FFMIN(y0 + ctu_size_y, pps->height) };
1168  int edges[MAX_EDGES] = { !rx, !ry, rx == pps->ctb_width - 1, ry == pps->ctb_height - 1 };
1169  int i = 0;
1170 
1171  alf_get_edges(lc, edges, rx, ry);
1172 
1173  for (int by = 0; by <= has_vb[0]; by++) {
1174  for (int bx = 0; bx <= has_vb[1]; bx++, i++) {
1175  alf_init_subblock(sbs + i, sb_edges[i], &b, edges);
1176  alf_get_subblock(sbs + i, sb_edges[i], bx, by, vb_pos, has_vb);
1177  }
1178  }
1179  *nb_sbs = i;
1180 }
1181 
1182 void ff_vvc_alf_filter(VVCLocalContext *lc, const int x0, const int y0)
1183 {
1184  VVCFrameContext *fc = lc->fc;
1185  const VVCSPS *sps = fc->ps.sps;
1186  const int rx = x0 >> sps->ctb_log2_size_y;
1187  const int ry = y0 >> sps->ctb_log2_size_y;
1188  const int ps = sps->pixel_shift;
1189  const int padded_stride = EDGE_EMU_BUFFER_STRIDE << ps;
1190  const int padded_offset = padded_stride * ALF_PADDING_SIZE + (ALF_PADDING_SIZE << ps);
1191  const int c_end = sps->r->sps_chroma_format_idc ? VVC_MAX_SAMPLE_ARRAYS : 1;
1192  const int has_chroma = !!sps->r->sps_chroma_format_idc;
1193  const int ctu_end = y0 + sps->ctb_size_y;
1194  const ALFParams *alf = &CTB(fc->tab.alf, rx, ry);
1195  int sb_edges[MAX_VBBS][MAX_EDGES], nb_sbs;
1196  VVCRect sbs[MAX_VBBS];
1197 
1198  alf_get_subblocks(lc, sbs, sb_edges, &nb_sbs, x0, y0, rx, ry);
1199 
1200  for (int i = 0; i < nb_sbs; i++) {
1201  const VVCRect *sb = sbs + i;
1202  for (int c_idx = 0; c_idx < c_end; c_idx++) {
1203  const int hs = fc->ps.sps->hshift[c_idx];
1204  const int vs = fc->ps.sps->vshift[c_idx];
1205  const int x = sb->l >> hs;
1206  const int y = sb->t >> vs;
1207  const int width = (sb->r - sb->l) >> hs;
1208  const int height = (sb->b - sb->t) >> vs;
1209  const int src_stride = fc->frame->linesize[c_idx];
1210  uint8_t *src = POS(c_idx, sb->l, sb->t);
1211  uint8_t *padded;
1212 
1213  if (alf->ctb_flag[c_idx] || (!c_idx && has_chroma && (alf->ctb_cc_idc[0] || alf->ctb_cc_idc[1]))) {
1214  padded = (c_idx ? lc->alf_buffer_chroma : lc->alf_buffer_luma) + padded_offset;
1215  alf_prepare_buffer(fc, padded, src, x, y, rx, ry, width, height,
1216  padded_stride, src_stride, c_idx, sb_edges[i]);
1217  }
1218  if (alf->ctb_flag[c_idx]) {
1219  if (!c_idx) {
1220  alf_filter_luma(lc, src, padded, src_stride, padded_stride, x, y,
1221  width, height, ctu_end - ALF_VB_POS_ABOVE_LUMA, alf);
1222  } else {
1223  alf_filter_chroma(lc, src, padded, src_stride, padded_stride, c_idx,
1224  width, height, ((ctu_end - sb->t) >> vs) - ALF_VB_POS_ABOVE_CHROMA, alf);
1225  }
1226  }
1227  if (c_idx && alf->ctb_cc_idc[c_idx - 1]) {
1228  padded = lc->alf_buffer_luma + padded_offset;
1229  alf_filter_cc(lc, src, padded, src_stride, padded_stride, c_idx,
1230  width, height, hs, vs, ctu_end - sb->t - ALF_VB_POS_ABOVE_LUMA, alf);
1231  }
1232  }
1233  }
1234 }
1235 
1236 
1237 void ff_vvc_lmcs_filter(const VVCLocalContext *lc, const int x, const int y)
1238 {
1239  const SliceContext *sc = lc->sc;
1240  const VVCFrameContext *fc = lc->fc;
1241  const int ctb_size = fc->ps.sps->ctb_size_y;
1242  const int width = FFMIN(fc->ps.pps->width - x, ctb_size);
1243  const int height = FFMIN(fc->ps.pps->height - y, ctb_size);
1244  uint8_t *data = POS(LUMA, x, y);
1245  if (sc->sh.r->sh_lmcs_used_flag)
1246  fc->vvcdsp.lmcs.filter(data, fc->frame->linesize[LUMA], width, height, &fc->ps.lmcs.inv_lut);
1247 }
sao_restore_vb
static void sao_restore_vb(uint8_t *dst, ptrdiff_t dst_stride, const uint8_t *src, ptrdiff_t src_stride, const int width, const int height, const int vb_pos, const int ps, const int vertical)
Definition: filter.c:296
A
#define A(x)
Definition: vpx_arith.h:28
VVCSPS
Definition: ps.h:58
_dst
uint8_t * _dst
Definition: dsp.h:56
DBParams
Definition: hevcdec.h:351
L1
F H1 F F H1 F F F F H1<-F-------F-------F v v v H2 H3 H2 ^ ^ ^ F-------F-------F-> H1<-F-------F-------F|||||||||F H1 F|||||||||F H1 Funavailable fullpel samples(outside the picture for example) shall be equalto the closest available fullpel sampleSmaller pel interpolation:--------------------------if diag_mc is set then points which lie on a line between 2 vertically, horizontally or diagonally adjacent halfpel points shall be interpolatedlinearly with rounding to nearest and halfway values rounded up.points which lie on 2 diagonals at the same time should only use the onediagonal not containing the fullpel point F--> O q O<--h1-> O q O<--F v \/v \/v O O O O O O O|/|\|q q q q q|/|\|O O O O O O O ^/\ ^/\ ^ h2--> O q O<--h3-> O q O<--h2 v \/v \/v O O O O O O O|\|/|q q q q q|\|/|O O O O O O O ^/\ ^/\ ^ F--> O q O<--h1-> O q O<--Fthe remaining points shall be bilinearly interpolated from theup to 4 surrounding halfpel and fullpel points, again rounding should be tonearest and halfway values rounded upcompliant Snow decoders MUST support 1-1/8 pel luma and 1/2-1/16 pel chromainterpolation at leastOverlapped block motion compensation:-------------------------------------FIXMELL band prediction:===================Each sample in the LL0 subband is predicted by the median of the left, top andleft+top-topleft samples, samples outside the subband shall be considered tobe 0. To reverse this prediction in the decoder apply the following.for(y=0;y< height;y++){ for(x=0;x< width;x++){ sample[y][x]+=median(sample[y-1][x], sample[y][x-1], sample[y-1][x]+sample[y][x-1]-sample[y-1][x-1]);}}sample[-1][ *]=sample[ *][-1]=0;width, height here are the width and height of the LL0 subband not of the finalvideoDequantization:===============FIXMEWavelet Transform:==================Snow supports 2 wavelet transforms, the symmetric biorthogonal 5/3 integertransform and an integer approximation of the symmetric biorthogonal 9/7daubechies wavelet.2D IDWT(inverse discrete wavelet transform) --------------------------------------------The 2D IDWT applies a 2D filter recursively, each time combining the4 lowest frequency subbands into a single subband until only 1 subbandremains.The 2D filter is done by first applying a 1D filter in the vertical directionand then applying it in the horizontal one. --------------- --------------- --------------- ---------------|LL0|HL0|||||||||||||---+---|HL1||L0|H0|HL1||LL1|HL1|||||LH0|HH0|||||||||||||-------+-------|-> L1 H1 LH1 HH1 LH1 HH1 LH1 HH1 L1
Definition: snow.txt:554
H266RawSPS::sps_subpic_height_minus1
uint16_t sps_subpic_height_minus1[VVC_MAX_SLICES]
Definition: cbs_h266.h:338
ALF_BORDER_LUMA
#define ALF_BORDER_LUMA
Definition: ctu.h:79
TAB_BS
#define TAB_BS(t, x, y)
Definition: filter.c:375
VVCPH
Definition: ps.h:147
level
uint8_t level
Definition: svq3.c:208
derive_max_filter_length_luma
static void derive_max_filter_length_luma(const VVCFrameContext *fc, const int qx, const int qy, const int size_q, const int has_subblock, const int vertical, uint8_t *max_len_p, uint8_t *max_len_q)
Definition: filter.c:453
VVCPPS
Definition: ps.h:92
av_clip
#define av_clip
Definition: common.h:100
ff_vvc_sao_filter
void ff_vvc_sao_filter(VVCLocalContext *lc, int x0, int y0)
sao filter for the CTU
Definition: filter.c:314
H266RawPPS::pps_loop_filter_across_tiles_enabled_flag
uint8_t pps_loop_filter_across_tiles_enabled_flag
Definition: cbs_h266.h:531
LUMA
#define LUMA
Definition: filter.c:31
filter.h
POS
#define POS(c_idx, x, y)
Definition: filter.c:38
cb
static double cb(void *priv, double x, double y)
Definition: vf_geq.c:247
SAO_BAND
@ SAO_BAND
Definition: hevcdec.h:166
ALF_VB_POS_ABOVE_LUMA
#define ALF_VB_POS_ABOVE_LUMA
Definition: ctu.h:82
CB
#define CB
Definition: filter.c:32
vvc_deblock
static void vvc_deblock(const VVCLocalContext *lc, int x0, int y0, const int rs, const int vertical)
Definition: filter.c:773
alf_init_subblock
static void alf_init_subblock(VVCRect *sb, int sb_edges[MAX_EDGES], const VVCRect *b, const int edges[MAX_EDGES])
Definition: filter.c:1139
deblock_is_boundary
static int deblock_is_boundary(const VVCLocalContext *lc, const int boundary, const int pos, const int rs, const int vertical)
Definition: filter.c:575
PF_IBC
@ PF_IBC
Definition: ctu.h:227
alf_prepare_buffer
static void alf_prepare_buffer(VVCFrameContext *fc, uint8_t *_dst, const uint8_t *_src, const int x, const int y, const int rx, const int ry, const int width, const int height, const ptrdiff_t dst_stride, const ptrdiff_t src_stride, const int c_idx, const int *edges)
Definition: filter.c:953
CodingUnit
Definition: hevcdec.h:292
VVCLocalContext::alf_buffer_chroma
uint8_t alf_buffer_chroma[(MAX_CTU_SIZE+2 *ALF_PADDING_SIZE) *EDGE_EMU_BUFFER_STRIDE *2]
Definition: ctu.h:400
H266RawSPS::sps_loop_filter_across_subpic_enabled_flag
uint8_t sps_loop_filter_across_subpic_enabled_flag[VVC_MAX_SLICES]
Definition: cbs_h266.h:340
VVCLocalContext::tmp
int16_t tmp[MAX_PB_SIZE *MAX_PB_SIZE]
Definition: ctu.h:394
alf_extend_horz
static void alf_extend_horz(uint8_t *dst, const uint8_t *src, const int pixel_shift, int width, const int height, const ptrdiff_t stride)
Definition: filter.c:887
CodingUnit::bdpcm_flag
int bdpcm_flag[VVC_MAX_SAMPLE_ARRAYS]
BdpcmFlag.
Definition: ctu.h:325
mask
int mask
Definition: mediacodecdec_common.c:154
data.h
max_filter_length
static void max_filter_length(const VVCFrameContext *fc, const int qx, const int qy, const int c_idx, const int vertical, const int horizontal_ctu_edge, const int bs, uint8_t *max_len_p, uint8_t *max_len_q)
Definition: filter.c:726
is_virtual_boundary
static int is_virtual_boundary(const VVCFrameContext *fc, const int pos, const int vertical)
Definition: filter.c:80
ph
static int FUNC() ph(CodedBitstreamContext *ctx, RWContext *rw, H266RawPH *current)
Definition: cbs_h266_syntax_template.c:3043
w
uint8_t w
Definition: llviddspenc.c:38
H266RawSPS::sps_subpic_ctu_top_left_y
uint16_t sps_subpic_ctu_top_left_y[VVC_MAX_SLICES]
Definition: cbs_h266.h:336
ff_vvc_deblock_vertical
void ff_vvc_deblock_vertical(const VVCLocalContext *lc, const int x0, const int y0, const int rs)
vertical deblock filter for the CTU
Definition: filter.c:843
VVCLocalContext::sc
SliceContext * sc
Definition: ctu.h:445
alf_get_coeff_and_clip
static void alf_get_coeff_and_clip(VVCLocalContext *lc, int16_t *coeff, int16_t *clip, const uint8_t *src, ptrdiff_t src_stride, int width, int height, int vb_pos, const ALFParams *alf)
Definition: filter.c:990
ff_vvc_alf_copy_ctu_to_hv
void ff_vvc_alf_copy_ctu_to_hv(VVCLocalContext *lc, const int x0, const int y0)
Definition: filter.c:1078
b
#define b
Definition: input.c:42
chroma
static av_always_inline void chroma(WaveformContext *s, AVFrame *in, AVFrame *out, int component, int intensity, int offset_y, int offset_x, int column, int mirror, int jobnr, int nb_jobs)
Definition: vf_waveform.c:1639
data
const char data[16]
Definition: mxf.c:149
Mv::y
int16_t y
vertical component of motion vector
Definition: hevcdec.h:307
deblock_bs
static av_always_inline int deblock_bs(const VVCLocalContext *lc, const int x_p, const int y_p, const int x_q, const int y_q, const CodingUnit *cu, const TransformUnit *tu, const RefPicList *rpl_p, const int c_idx, const int off_to_cb, const uint8_t has_sub_block)
Definition: filter.c:527
SAO_EDGE
@ SAO_EDGE
Definition: hevcdec.h:167
get_qPc
static int get_qPc(const VVCFrameContext *fc, const int x0, const int y0, const int chroma)
Definition: filter.c:85
VVCSH::r
const H266RawSliceHeader * r
RefStruct reference.
Definition: ps.h:239
vvc_deblock_bs_chroma
static void vvc_deblock_bs_chroma(const VVCLocalContext *lc, const int x0, const int y0, const int width, const int height, const CodingUnit *cu, const TransformUnit *tu, const int rs, const int vertical)
Definition: filter.c:646
get_qp_y
static int get_qp_y(const VVCFrameContext *fc, const uint8_t *src, const int x, const int y, const int vertical)
Definition: filter.c:741
VVCRect::t
int t
Definition: ctu.h:481
VVCFrameContext::tab
struct VVCFrameContext::@315 tab
ff_vvc_deblock_horizontal
void ff_vvc_deblock_horizontal(const VVCLocalContext *lc, const int x0, const int y0, const int rs)
horizontal deblock filter for the CTU
Definition: filter.c:848
RefPicList
Definition: hevcdec.h:196
_src
uint8_t ptrdiff_t const uint8_t * _src
Definition: dsp.h:56
av_image_copy_plane
void av_image_copy_plane(uint8_t *dst, int dst_linesize, const uint8_t *src, int src_linesize, int bytewidth, int height)
Copy image plane from src to dst.
Definition: imgutils.c:374
VVCFrameContext::slices
SliceContext ** slices
Definition: dec.h:128
BOUNDARY_LEFT_TILE
#define BOUNDARY_LEFT_TILE
Definition: hevcdec.h:442
MIN_PU_LOG2
#define MIN_PU_LOG2
Definition: dec.h:40
H266RawSliceHeader::sh_alf_cc_cr_aps_id
uint8_t sh_alf_cc_cr_aps_id
Definition: cbs_h266.h:792
ALF_NUM_COEFF_CHROMA
#define ALF_NUM_COEFF_CHROMA
Definition: ps.h:168
VVCLocalContext::sao_buffer
uint8_t sao_buffer[(MAX_CTU_SIZE+2 *SAO_PADDING_SIZE) *EDGE_EMU_BUFFER_STRIDE *2]
Definition: ctu.h:398
VVCLocalContext::fc
VVCFrameContext * fc
Definition: ctu.h:446
TAB_MAX_LEN
#define TAB_MAX_LEN(t, x, y)
Definition: filter.c:376
PredictionUnit
Definition: hevcdec.h:325
H266RawSPS::sps_subpic_width_minus1
uint16_t sps_subpic_width_minus1[VVC_MAX_SLICES]
Definition: cbs_h266.h:337
BOTTOM
#define BOTTOM
Definition: filter.c:33
VVCLocalContext::tmp1
int16_t tmp1[MAX_PB_SIZE *MAX_PB_SIZE]
Definition: ctu.h:395
tab
static const struct twinvq_data tab
Definition: twinvq_data.h:10345
sao_copy_ctb_to_hv
static void sao_copy_ctb_to_hv(VVCLocalContext *lc, const int rx, const int ry, const int top)
Definition: filter.c:154
SliceContext::rpl
RefPicList * rpl
Definition: dec.h:113
VVCRect
Definition: ctu.h:479
VVCALF
Definition: ps.h:171
ALF_MAX_FILTER_SIZE
#define ALF_MAX_FILTER_SIZE
Definition: filter.c:988
CodingUnit::cb_width
int cb_width
Definition: ctu.h:291
H266RawPPS::pps_loop_filter_across_slices_enabled_flag
uint8_t pps_loop_filter_across_slices_enabled_flag
Definition: cbs_h266.h:543
CHROMA_GRID
#define CHROMA_GRID
Definition: filter.c:381
CodingUnit::pu
PredictionUnit pu
Definition: ctu.h:338
FF_ARRAY_ELEMS
#define FF_ARRAY_ELEMS(a)
Definition: sinewin_tablegen.c:29
RefPicList::refs
VVCRefPic refs[VVC_MAX_REF_ENTRIES]
Definition: dec.h:56
DBParams::beta_offset
int beta_offset
Definition: hevcdec.h:352
clip
clip
Definition: af_crystalizer.c:122
DBParams::tc_offset
int tc_offset
Definition: hevcdec.h:353
alf_get_subblocks
static void alf_get_subblocks(const VVCLocalContext *lc, VVCRect sbs[MAX_VBBS], int sb_edges[MAX_VBBS][MAX_EDGES], int *nb_sbs, const int x0, const int y0, const int rx, const int ry)
Definition: filter.c:1158
ff_vvc_alf_class_to_filt_map
const uint8_t ff_vvc_alf_class_to_filt_map[16][25]
Definition: data.c:1712
TransformUnit::next
struct TransformUnit * next
RefStruct reference.
Definition: ctu.h:186
max_filter_length_luma
static void max_filter_length_luma(const VVCFrameContext *fc, const int qx, const int qy, const int vertical, uint8_t *max_len_p, uint8_t *max_len_q)
Definition: filter.c:699
fc
#define fc(width, name, range_min, range_max)
Definition: cbs_av1.c:493
LEFT
#define LEFT
Definition: filter.c:30
av_assert0
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:41
B
#define B
Definition: huffyuv.h:42
TransformUnit::coded_flag
uint8_t coded_flag[VVC_MAX_SAMPLE_ARRAYS]
tu_y_coded_flag, tu_cb_coded_flag, tu_cr_coded_flag
Definition: ctu.h:182
VVCFrameContext::slice_idx
int16_t * slice_idx
Definition: dec.h:148
VVCLocalContext::alf_gradient_tmp
int32_t alf_gradient_tmp[ALF_GRADIENT_SIZE *ALF_GRADIENT_SIZE *ALF_NUM_DIR]
Definition: ctu.h:401
MAX_EDGES
#define MAX_EDGES
Definition: filter.c:34
H266RawSliceHeader::sh_lmcs_used_flag
uint8_t sh_lmcs_used_flag
Definition: cbs_h266.h:794
copy_pixel
static void copy_pixel(uint8_t *dst, const uint8_t *src, const int pixel_shift)
Definition: filter.c:104
FFABS
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Definition: common.h:74
H266RawSPS
Definition: cbs_h266.h:308
H266RawPPS
Definition: cbs_h266.h:496
aps
static int FUNC() aps(CodedBitstreamContext *ctx, RWContext *rw, H266RawAPS *current, int prefix)
Definition: cbs_h266_syntax_template.c:2501
VVCLocalContext::alf_buffer_luma
uint8_t alf_buffer_luma[(MAX_CTU_SIZE+2 *ALF_PADDING_SIZE) *EDGE_EMU_BUFFER_STRIDE *2]
Definition: ctu.h:399
get_virtual_boundary
static int get_virtual_boundary(const VVCFrameContext *fc, const int ctu_pos, const int vertical)
Definition: filter.c:62
betatable
static const uint8_t betatable[64]
Definition: filter.c:52
NULL
#define NULL
Definition: coverity.c:32
VVCLocalContext
Definition: ctu.h:384
H266RawSliceHeader::curr_subpic_idx
uint16_t curr_subpic_idx
CurrSubpicIdx.
Definition: cbs_h266.h:837
get_qp
static int get_qp(const VVCFrameContext *fc, const uint8_t *src, const int x, const int y, const int c_idx, const int vertical)
Definition: filter.c:766
sao_extends_edges
static void sao_extends_edges(uint8_t *dst, const ptrdiff_t dst_stride, const uint8_t *src, const ptrdiff_t src_stride, const int width, const int height, const VVCFrameContext *fc, const int x0, const int y0, const int rx, const int ry, const int edges[4], const int c_idx)
Definition: filter.c:269
alf_filter_chroma
static void alf_filter_chroma(VVCLocalContext *lc, uint8_t *dst, const uint8_t *src, const ptrdiff_t dst_stride, const ptrdiff_t src_stride, const int c_idx, const int width, const int height, const int vb_pos, const ALFParams *alf)
Definition: filter.c:1044
L0
#define L0
Definition: hevcdec.h:58
ALF_MAX_BLOCKS_IN_CTU
#define ALF_MAX_BLOCKS_IN_CTU
Definition: filter.c:987
tctable
static const uint16_t tctable[66]
Definition: filter.c:43
BOUNDARY_UPPER_TILE
#define BOUNDARY_UPPER_TILE
Definition: hevcdec.h:444
MvField::ciip_flag
uint8_t ciip_flag
ciip_flag
Definition: ctu.h:208
Mv::x
int16_t x
horizontal component of motion vector
Definition: hevcdec.h:306
CTB
#define CTB(tab, x, y)
Definition: filter.c:267
PF_BI
@ PF_BI
Definition: hevcdec.h:123
c
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
Definition: undefined.txt:32
TransformUnit
Definition: hevcdec.h:335
sao_copy_hor
static void sao_copy_hor(uint8_t *dst, const ptrdiff_t dst_stride, const uint8_t *src, const ptrdiff_t src_stride, const int width, const int edges[4], const int ps)
Definition: filter.c:248
ff_vvc_alf_filter
void ff_vvc_alf_filter(VVCLocalContext *lc, const int x0, const int y0)
alf filter for the CTU
Definition: filter.c:1182
SliceContext
Definition: mss12.h:70
SAOParams::offset_val
int16_t offset_val[3][5]
SaoOffsetVal.
Definition: dsp.h:42
LUMA_GRID
#define LUMA_GRID
Definition: filter.c:380
ff_vvc_decode_neighbour
void ff_vvc_decode_neighbour(VVCLocalContext *lc, const int x_ctb, const int y_ctb, const int rx, const int ry, const int rs)
Definition: ctu.c:2798
H266RawSPS::sps_subpic_ctu_top_left_x
uint16_t sps_subpic_ctu_top_left_x[VVC_MAX_SLICES]
Definition: cbs_h266.h:335
alf_clip_from_idx
static int alf_clip_from_idx(const VVCFrameContext *fc, const int idx)
Definition: filter.c:1036
alf_fill_border_v
static void alf_fill_border_v(uint8_t *dst, const ptrdiff_t dst_stride, const uint8_t *src, const uint8_t *border, const int border_pixels, const int height, const int pixel_shift, const int *edges, const int edge)
Definition: filter.c:928
BOUNDARY_UPPER_SLICE
#define BOUNDARY_UPPER_SLICE
Definition: hevcdec.h:443
height
#define height
Definition: dsp.h:89
get_qp_c
static int get_qp_c(const VVCFrameContext *fc, const int x, const int y, const int c_idx, const int vertical)
Definition: filter.c:760
ALF_PADDING_SIZE
#define ALF_PADDING_SIZE
Definition: ctu.h:76
max_filter_length_chroma
static void max_filter_length_chroma(const VVCFrameContext *fc, const int qx, const int qy, const int vertical, const int horizontal_ctu_edge, const int bs, uint8_t *max_len_p, uint8_t *max_len_q)
Definition: filter.c:707
ff_vvc_lmcs_filter
void ff_vvc_lmcs_filter(const VVCLocalContext *lc, const int x, const int y)
lmcs filter for the CTU
Definition: filter.c:1237
shift
static int shift(int a, int b)
Definition: bonk.c:261
dst
uint8_t ptrdiff_t const uint8_t ptrdiff_t int intptr_t intptr_t int int16_t * dst
Definition: dsp.h:87
ff_vvc_deblock_bs
void ff_vvc_deblock_bs(VVCLocalContext *lc, const int rx, const int ry, const int rs)
derive boundary strength for the CTU
Definition: filter.c:674
size
int size
Definition: twinvq_data.h:10344
sao_can_cross_slices
static int sao_can_cross_slices(const VVCFrameContext *fc, const int rx, const int ry, const int dx, const int dy)
Definition: filter.c:185
ALF_BLOCK_SIZE
#define ALF_BLOCK_SIZE
Definition: ctu.h:77
VVCRefPic::poc
int poc
Definition: dec.h:47
H266RawSliceHeader::sh_alf_aps_id_chroma
uint8_t sh_alf_aps_id_chroma
Definition: cbs_h266.h:788
MvField
Definition: hevcdec.h:310
refs.h
frame.h
VVCRect::l
int l
Definition: ctu.h:480
offset
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf offset
Definition: writing_filters.txt:86
alf_fill_border_h
static void alf_fill_border_h(uint8_t *dst, const ptrdiff_t dst_stride, const uint8_t *src, const ptrdiff_t src_stride, const uint8_t *border, const int width, const int border_pixels, const int ps, const int edge)
Definition: filter.c:919
RIGHT
#define RIGHT
Definition: filter.c:32
MvField::pred_flag
int8_t pred_flag
Definition: hevcdec.h:313
SAOParams::eo_class
int eo_class[3]
sao_eo_class
Definition: dsp.h:40
ALFParams::ctb_cc_idc
uint8_t ctb_cc_idc[2]
alf_ctb_cc_cb_idc, alf_ctb_cc_cr_idc
Definition: ctu.h:476
H266RawSliceHeader
Definition: cbs_h266.h:771
VVCLocalContext::boundary_flags
int boundary_flags
Definition: ctu.h:443
MODE_INTRA
#define MODE_INTRA
Definition: vp3.c:84
CR
#define CR
Definition: filter.c:33
ff_vvc_alf_aps_class_to_filt_map
const uint8_t ff_vvc_alf_aps_class_to_filt_map[25]
Definition: data.c:1731
alf_extend_vert
static void alf_extend_vert(uint8_t *_dst, const uint8_t *_src, const int pixel_shift, const int width, const int height, ptrdiff_t stride)
Definition: filter.c:864
MODE_PLT
@ MODE_PLT
Definition: ctu.h:193
BOUNDARY_LEFT_SUBPIC
#define BOUNDARY_LEFT_SUBPIC
Definition: ctu.h:437
i
#define i(width, name, range_min, range_max)
Definition: cbs_h2645.c:256
ISP_NO_SPLIT
@ ISP_NO_SPLIT
Definition: ctu.h:120
H266RawSliceHeader::sh_alf_aps_id_luma
uint8_t sh_alf_aps_id_luma[8]
Definition: cbs_h266.h:785
ff_vvc_alf_fix_filt_coeff
const int16_t ff_vvc_alf_fix_filt_coeff[64][12]
Definition: data.c:1644
sao_get_edges
static void sao_get_edges(uint8_t vert_edge[2], uint8_t horiz_edge[2], uint8_t diag_edge[4], int *restore, const VVCLocalContext *lc, const int edges[4], const int rx, const int ry)
Definition: filter.c:192
av_always_inline
#define av_always_inline
Definition: attributes.h:49
FFMIN
#define FFMIN(a, b)
Definition: macros.h:49
EDGE_EMU_BUFFER_STRIDE
#define EDGE_EMU_BUFFER_STRIDE
Definition: hevcdec.h:68
CodingUnit::x0
int x0
Definition: ctu.h:289
VVCRect::b
int b
Definition: ctu.h:483
SAO_EO_HORIZ
@ SAO_EO_HORIZ
Definition: hevcdec.h:172
H266RawSliceHeader::sh_alf_cc_cb_aps_id
uint8_t sh_alf_cc_cb_aps_id
Definition: cbs_h266.h:790
SAOParams
Definition: dsp.h:34
vvc_deblock_subblock_bs
static void vvc_deblock_subblock_bs(const VVCLocalContext *lc, const int cb, int x0, int y0, int width, int height, const int vertical)
Definition: filter.c:478
ff_vvc_get_qPy
int ff_vvc_get_qPy(const VVCFrameContext *fc, const int xc, const int yc)
Definition: ctu.c:2865
stride
#define stride
Definition: h264pred_template.c:536
MAX_PB_SIZE
#define MAX_PB_SIZE
Definition: dsp.h:32
BOUNDARY_UPPER_SUBPIC
#define BOUNDARY_UPPER_SUBPIC
Definition: ctu.h:440
FFSWAP
#define FFSWAP(type, a, b)
Definition: macros.h:52
ALF_NUM_COEFF_LUMA
#define ALF_NUM_COEFF_LUMA
Definition: ps.h:167
CHROMA
@ CHROMA
Definition: vf_waveform.c:49
sps
static int FUNC() sps(CodedBitstreamContext *ctx, RWContext *rw, H264RawSPS *current)
Definition: cbs_h264_syntax_template.c:260
alf_copy_border
static void alf_copy_border(uint8_t *dst, const uint8_t *src, const int pixel_shift, int width, const int height, const ptrdiff_t dst_stride, const ptrdiff_t src_stride)
Definition: filter.c:853
pos
unsigned int pos
Definition: spdifenc.c:414
ALFParams::alf_ctb_filter_alt_idx
uint8_t alf_ctb_filter_alt_idx[2]
alf_ctb_filter_alt_idx[]
Definition: ctu.h:475
vvc_deblock_bs_luma
static void vvc_deblock_bs_luma(const VVCLocalContext *lc, const int x0, const int y0, const int width, const int height, const CodingUnit *cu, const TransformUnit *tu, int rs, const int vertical)
Definition: filter.c:606
PredictionUnit::inter_affine_flag
uint8_t inter_affine_flag
Definition: ctu.h:260
flag
#define flag(name)
Definition: cbs_av1.c:495
AV_INPUT_BUFFER_PADDING_SIZE
#define AV_INPUT_BUFFER_PADDING_SIZE
Definition: defs.h:40
id
enum AVCodecID id
Definition: dts2pts.c:367
CodingUnit::cb_height
int cb_height
Definition: ctu.h:292
left
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled left
Definition: snow.txt:386
H266RawSPS::sps_virtual_boundaries_enabled_flag
uint8_t sps_virtual_boundaries_enabled_flag
Definition: cbs_h266.h:464
boundary_strength
static int boundary_strength(const VVCLocalContext *lc, const MvField *curr, const MvField *neigh, const RefPicList *neigh_rpl)
Definition: filter.c:383
CodingUnit::pred_mode
enum PredMode pred_mode
PredMode.
Definition: hevcdec.h:296
H266RawSPS::sps_num_subpics_minus1
uint16_t sps_num_subpics_minus1
Definition: cbs_h266.h:332
VVCRect::r
int r
Definition: ctu.h:482
ALFParams::ctb_filt_set_idx_y
uint8_t ctb_filt_set_idx_y
AlfCtbFiltSetIdxY.
Definition: ctu.h:474
MAX_VBBS
#define MAX_VBBS
Definition: filter.c:60
pps
uint64_t pps
Definition: dovi_rpuenc.c:35
SAOParams::type_idx
uint8_t type_idx[3]
sao_type_idx
Definition: dsp.h:44
SAO_EO_VERT
@ SAO_EO_VERT
Definition: hevcdec.h:173
ALF_BORDER_CHROMA
#define ALF_BORDER_CHROMA
Definition: ctu.h:80
ff_vvc_get_ref_list
const RefPicList * ff_vvc_get_ref_list(const VVCFrameContext *fc, const VVCFrame *ref, int x0, int y0)
Definition: refs.c:70
MAX_QP
#define MAX_QP
Definition: hevcdec.h:50
MvField::mv
Mv mv[2]
mvL0, vvL1
Definition: hevcdec.h:311
ALFParams
Definition: ctu.h:472
Mv
Definition: hevcdec.h:305
MvField::ref_idx
int8_t ref_idx[2]
refIdxL0, refIdxL1
Definition: hevcdec.h:312
SINGLE_TREE
@ SINGLE_TREE
Definition: ctu.h:168
alf_filter_cc
static void alf_filter_cc(VVCLocalContext *lc, uint8_t *dst, const uint8_t *luma, const ptrdiff_t dst_stride, const ptrdiff_t luma_stride, const int c_idx, const int width, const int height, const int hs, const int vs, const int vb_pos, const ALFParams *alf)
Definition: filter.c:1061
FFALIGN
#define FFALIGN(x, a)
Definition: macros.h:78
SliceContext::sh
VVCSH sh
Definition: dec.h:110
VVCFrameContext
Definition: dec.h:117
ALFParams::ctb_flag
uint8_t ctb_flag[3]
alf_ctb_flag[]
Definition: ctu.h:473
ALF_NUM_FILTERS_LUMA
#define ALF_NUM_FILTERS_LUMA
Definition: ps.h:163
int32_t
int32_t
Definition: audioconvert.c:56
imgutils.h
coeff
static const double coeff[2][5]
Definition: vf_owdenoise.c:80
copy_ctb
static void copy_ctb(uint8_t *dst, const uint8_t *src, const int width, const int height, const ptrdiff_t dst_stride, const ptrdiff_t src_stride)
Definition: filter.c:93
TOP
#define TOP
Definition: filter.c:31
TransformUnit::joint_cbcr_residual_flag
uint8_t joint_cbcr_residual_flag
tu_joint_cbcr_residual_flag
Definition: ctu.h:180
ff_vvc_sao_copy_ctb_to_hv
void ff_vvc_sao_copy_ctb_to_hv(VVCLocalContext *lc, const int rx, const int ry, const int last_row)
Definition: filter.c:174
h
h
Definition: vp9dsp_template.c:2070
ctu.h
BOUNDARY_LEFT_SLICE
#define BOUNDARY_LEFT_SLICE
Definition: hevcdec.h:441
ALF_VB_POS_ABOVE_CHROMA
#define ALF_VB_POS_ABOVE_CHROMA
Definition: ctu.h:83
SAOParams::band_position
uint8_t band_position[3]
sao_band_position
Definition: dsp.h:38
DEBLOCK_STEP
#define DEBLOCK_STEP
Definition: filter.c:379
width
#define width
Definition: dsp.h:89
alf_copy_ctb_to_hv
static void alf_copy_ctb_to_hv(VVCFrameContext *fc, const uint8_t *src, const ptrdiff_t src_stride, const int x, const int y, const int width, const int height, const int rx, const int ry, const int c_idx)
Definition: filter.c:897
deblock_bs_fn
void(* deblock_bs_fn)(const VVCLocalContext *lc, const int x0, const int y0, const int width, const int height, const int rs, const int vertical)
Definition: filter.c:671
alf_get_subblock
static void alf_get_subblock(VVCRect *sb, int edges[MAX_EDGES], const int bx, const int by, const int vb_pos[2], const int has_vb[2])
Definition: filter.c:1145
PredictionUnit::merge_subblock_flag
uint8_t merge_subblock_flag
Definition: ctu.h:263
copy_ctb_to_hv
static void copy_ctb_to_hv(VVCFrameContext *fc, const uint8_t *src, const ptrdiff_t src_stride, const int x, const int y, const int width, const int height, const int c_idx, const int rx, const int ry, const int top)
Definition: filter.c:131
VVC_MAX_SAMPLE_ARRAYS
@ VVC_MAX_SAMPLE_ARRAYS
Definition: vvc.h:77
src
#define src
Definition: vp8dsp.c:248
MIN_TU_LOG2
#define MIN_TU_LOG2
MinTbLog2SizeY.
Definition: dec.h:39
alf_get_edges
static void alf_get_edges(const VVCLocalContext *lc, int edges[MAX_EDGES], const int rx, const int ry)
Definition: filter.c:1101
copy_vert
static void copy_vert(uint8_t *dst, const uint8_t *src, const int pixel_shift, const int height, const ptrdiff_t dst_stride, const ptrdiff_t src_stride)
Definition: filter.c:112
alf_filter_luma
static void alf_filter_luma(VVCLocalContext *lc, uint8_t *dst, const uint8_t *src, const ptrdiff_t dst_stride, const ptrdiff_t src_stride, const int x0, const int y0, const int width, const int height, const int _vb_pos, const ALFParams *alf)
Definition: filter.c:1020
CodingUnit::y0
int y0
Definition: ctu.h:290
TC_CALC
#define TC_CALC(qp, bs)
Definition: filter.c:735