Go to the documentation of this file.
39 { 36, 68, 60, 92, 34, 66, 58, 90, },
40 { 100, 4, 124, 28, 98, 2, 122, 26, },
41 { 52, 84, 44, 76, 50, 82, 42, 74, },
42 { 116, 20, 108, 12, 114, 18, 106, 10, },
43 { 32, 64, 56, 88, 38, 70, 62, 94, },
44 { 96, 0, 120, 24, 102, 6, 126, 30, },
45 { 48, 80, 40, 72, 54, 86, 46, 78, },
46 { 112, 16, 104, 8, 118, 22, 110, 14, },
47 { 36, 68, 60, 92, 34, 66, 58, 90, },
51 64, 64, 64, 64, 64, 64, 64, 64
58 uint8_t *ptr = plane +
stride * y;
67 const int32_t *filterPos,
int filterSize)
72 const uint16_t *
src = (
const uint16_t *)
_src;
82 for (
i = 0;
i < dstW;
i++) {
84 int srcPos = filterPos[
i];
87 for (j = 0; j < filterSize; j++) {
97 const int32_t *filterPos,
int filterSize)
101 const uint16_t *
src = (
const uint16_t *)
_src;
102 int sh =
desc->comp[0].depth - 1;
110 for (
i = 0;
i < dstW;
i++) {
112 int srcPos = filterPos[
i];
115 for (j = 0; j < filterSize; j++) {
125 const uint8_t *
src,
const int16_t *
filter,
126 const int32_t *filterPos,
int filterSize)
129 for (
i = 0;
i < dstW;
i++) {
131 int srcPos = filterPos[
i];
133 for (j = 0; j < filterSize; j++) {
141 const uint8_t *
src,
const int16_t *
filter,
142 const int32_t *filterPos,
int filterSize)
146 for (
i = 0;
i < dstW;
i++) {
148 int srcPos = filterPos[
i];
150 for (j = 0; j < filterSize; j++) {
160 uint32_t _coeff,
int64_t _offset)
162 uint16_t
coeff = _coeff;
168 dstU[
i] =
FFMIN(
U, (1 << 15) - 1);
169 dstV[
i] =
FFMIN(
V, (1 << 15) - 1);
174 uint32_t _coeff,
int64_t _offset)
176 uint16_t
coeff = _coeff;
186 uint32_t _coeff,
int64_t _offset)
188 uint16_t
coeff = _coeff;
198 uint32_t _coeff,
int64_t _offset)
200 uint16_t
coeff = _coeff;
216 dstU[
i] =
FFMIN(
U, (1 << 19) - 1);
217 dstV[
i] =
FFMIN(
V, (1 << 19) - 1);
254 #define DEBUG_SWSCALE_BUFFERS 0
255 #define DEBUG_BUFFERS(...) \
256 if (DEBUG_SWSCALE_BUFFERS) \
257 av_log(c, AV_LOG_DEBUG, __VA_ARGS__)
260 int srcSliceY,
int srcSliceH, uint8_t *
const dst[],
261 const int dstStride[],
int dstSliceY,
int dstSliceH)
263 const int scale_dst = dstSliceY > 0 || dstSliceH <
c->opts.dst_h;
267 const int dstW =
c->opts.dst_w;
268 int dstH =
c->opts.dst_h;
271 const int flags =
c->opts.flags;
272 int32_t *vLumFilterPos =
c->vLumFilterPos;
273 int32_t *vChrFilterPos =
c->vChrFilterPos;
275 const int vLumFilterSize =
c->vLumFilterSize;
276 const int vChrFilterSize =
c->vChrFilterSize;
285 const int chrSrcSliceY = srcSliceY >>
c->chrSrcVSubSample;
286 const int chrSrcSliceH =
AV_CEIL_RSHIFT(srcSliceH,
c->chrSrcVSubSample);
287 int should_dither =
isNBPS(
c->opts.src_format) ||
293 int lastInLumBuf =
c->lastInLumBuf;
294 int lastInChrBuf =
c->lastInChrBuf;
297 int lumEnd =
c->descIndex[0];
298 int chrStart = lumEnd;
299 int chrEnd =
c->descIndex[1];
301 int vEnd =
c->numDesc;
302 SwsSlice *src_slice = &
c->slice[lumStart];
303 SwsSlice *hout_slice = &
c->slice[
c->numSlice-2];
304 SwsSlice *vout_slice = &
c->slice[
c->numSlice-1];
307 int needAlpha =
c->needAlpha;
312 const uint8_t *
src2[4];
323 srcStride2[3] = srcStride[0];
326 memcpy(srcStride2, srcStride,
sizeof(srcStride2));
329 srcStride2[1] *= 1 <<
c->vChrDrop;
330 srcStride2[2] *= 1 <<
c->vChrDrop;
332 DEBUG_BUFFERS(
"swscale() %p[%d] %p[%d] %p[%d] %p[%d] -> %p[%d] %p[%d] %p[%d] %p[%d]\n",
333 src2[0], srcStride2[0],
src2[1], srcStride2[1],
334 src2[2], srcStride2[2],
src2[3], srcStride2[3],
335 dst[0], dstStride[0],
dst[1], dstStride[1],
336 dst[2], dstStride[2],
dst[3], dstStride[3]);
337 DEBUG_BUFFERS(
"srcSliceY: %d srcSliceH: %d dstY: %d dstH: %d\n",
338 srcSliceY, srcSliceH, dstY, dstH);
340 vLumFilterSize, vChrFilterSize);
342 if (dstStride[0]&15 || dstStride[1]&15 ||
343 dstStride[2]&15 || dstStride[3]&15) {
348 "Warning: dstStride is not aligned!\n"
349 " ->cannot do aligned memory accesses anymore\n");
354 if ( (uintptr_t)
dst[0]&15 || (uintptr_t)
dst[1]&15 || (uintptr_t)
dst[2]&15
355 || (uintptr_t)
src2[0]&15 || (uintptr_t)
src2[1]&15 || (uintptr_t)
src2[2]&15
356 || dstStride[0]&15 || dstStride[1]&15 || dstStride[2]&15 || dstStride[3]&15
357 || srcStride2[0]&15 || srcStride2[1]&15 || srcStride2[2]&15 || srcStride2[3]&15
370 dstH = dstY + dstSliceH;
373 }
else if (srcSliceY == 0) {
382 if (!should_dither) {
388 yuv2packed1, yuv2packed2, yuv2packedX, yuv2anyX,
c->use_mmx_vfilter);
391 srcSliceY, srcSliceH, chrSrcSliceY, chrSrcSliceH, 1);
394 dstY, dstSliceH, dstY >>
c->chrDstVSubSample,
396 if (srcSliceY == 0) {
406 hout_slice->
width = dstW;
409 for (; dstY < dstH; dstY++) {
410 const int chrDstY = dstY >>
c->chrDstVSubSample;
411 int use_mmx_vfilter=
c->use_mmx_vfilter;
414 const int firstLumSrcY =
FFMAX(1 - vLumFilterSize, vLumFilterPos[dstY]);
415 const int firstLumSrcY2 =
FFMAX(1 - vLumFilterSize, vLumFilterPos[
FFMIN(dstY | ((1 <<
c->chrDstVSubSample) - 1),
c->opts.dst_h - 1)]);
417 const int firstChrSrcY =
FFMAX(1 - vChrFilterSize, vChrFilterPos[chrDstY]);
420 int lastLumSrcY =
FFMIN(
c->opts.src_h, firstLumSrcY + vLumFilterSize) - 1;
421 int lastLumSrcY2 =
FFMIN(
c->opts.src_h, firstLumSrcY2 + vLumFilterSize) - 1;
422 int lastChrSrcY =
FFMIN(
c->chrSrcH, firstChrSrcY + vChrFilterSize) - 1;
426 int posY, cPosY, firstPosY, lastPosY, firstCPosY, lastCPosY;
429 if (firstLumSrcY > lastInLumBuf) {
431 hasLumHoles = lastInLumBuf != firstLumSrcY - 1;
439 lastInLumBuf = firstLumSrcY - 1;
441 if (firstChrSrcY > lastInChrBuf) {
443 hasChrHoles = lastInChrBuf != firstChrSrcY - 1;
451 lastInChrBuf = firstChrSrcY - 1;
455 DEBUG_BUFFERS(
"\tfirstLumSrcY: %d lastLumSrcY: %d lastInLumBuf: %d\n",
456 firstLumSrcY, lastLumSrcY, lastInLumBuf);
457 DEBUG_BUFFERS(
"\tfirstChrSrcY: %d lastChrSrcY: %d lastInChrBuf: %d\n",
458 firstChrSrcY, lastChrSrcY, lastInChrBuf);
461 enough_lines = lastLumSrcY2 < srcSliceY + srcSliceH &&
462 lastChrSrcY <
AV_CEIL_RSHIFT(srcSliceY + srcSliceH,
c->chrSrcVSubSample);
465 lastLumSrcY = srcSliceY + srcSliceH - 1;
466 lastChrSrcY = chrSrcSliceY + chrSrcSliceH - 1;
467 DEBUG_BUFFERS(
"buffering slice: lastLumSrcY %d lastChrSrcY %d\n",
468 lastLumSrcY, lastChrSrcY);
476 if (posY <= lastLumSrcY && !hasLumHoles) {
477 firstPosY =
FFMAX(firstLumSrcY, posY);
481 lastPosY = lastLumSrcY;
485 if (cPosY <= lastChrSrcY && !hasChrHoles) {
486 firstCPosY =
FFMAX(firstChrSrcY, cPosY);
490 lastCPosY = lastChrSrcY;
495 if (posY < lastLumSrcY + 1) {
496 for (
i = lumStart;
i < lumEnd; ++
i)
500 lastInLumBuf = lastLumSrcY;
502 if (cPosY < lastChrSrcY + 1) {
503 for (
i = chrStart;
i < chrEnd; ++
i)
507 lastInChrBuf = lastChrSrcY;
514 c->dstW_mmx =
c->opts.dst_w;
520 if (dstY >=
c->opts.dst_h - 2) {
524 &yuv2packed1, &yuv2packed2, &yuv2packedX, &yuv2anyX);
527 yuv2packed1, yuv2packed2, yuv2packedX, yuv2anyX, use_mmx_vfilter);
530 for (
i = vStart;
i < vEnd; ++
i)
534 int offset = lastDstY - dstSliceY;
536 int height = dstY - lastDstY;
541 1,
desc->comp[3].depth,
543 }
else if (
is32BPS(dstFormat)) {
546 1,
desc->comp[3].depth,
552 #if HAVE_MMXEXT_INLINE
554 __asm__ volatile (
"sfence" :::
"memory");
560 c->lastInLumBuf = lastInLumBuf;
561 c->lastInChrBuf = lastInChrBuf;
563 return dstY - lastDstY;
575 uint16_t dst_min, uint16_t dst_max,
576 int src_bits,
int src_shift,
int mult_shift,
579 uint16_t src_range = src_max - src_min;
580 uint16_t dst_range = dst_max - dst_min;
581 int total_shift = mult_shift + src_shift;
590 const int src_bits =
bit_depth <= 14 ? 15 : 19;
591 const int src_shift = src_bits -
bit_depth;
592 const int mult_shift =
bit_depth <= 14 ? 14 : 18;
593 const uint16_t mpeg_min = 16
U << (
bit_depth - 8);
594 const uint16_t mpeg_max_lum = 235
U << (
bit_depth - 8);
595 const uint16_t mpeg_max_chr = 240
U << (
bit_depth - 8);
596 const uint16_t jpeg_max = (1
U <<
bit_depth) - 1;
597 uint16_t src_min, src_max_lum, src_max_chr;
598 uint16_t dst_min, dst_max_lum, dst_max_chr;
599 if (
c->opts.src_range) {
601 src_max_lum = jpeg_max;
602 src_max_chr = jpeg_max;
604 dst_max_lum = mpeg_max_lum;
605 dst_max_chr = mpeg_max_chr;
608 src_max_lum = mpeg_max_lum;
609 src_max_chr = mpeg_max_chr;
611 dst_max_lum = jpeg_max;
612 dst_max_chr = jpeg_max;
615 src_bits, src_shift, mult_shift,
616 &
c->lumConvertRange_coeff, &
c->lumConvertRange_offset);
618 src_bits, src_shift, mult_shift,
619 &
c->chrConvertRange_coeff, &
c->chrConvertRange_offset);
624 c->lumConvertRange =
NULL;
625 c->chrConvertRange =
NULL;
626 if (
c->opts.src_range !=
c->opts.dst_range && !
isAnyRGB(
c->opts.dst_format)) {
628 if (
c->dstBpc <= 14) {
629 if (
c->opts.src_range) {
637 if (
c->opts.src_range) {
648 #elif ARCH_LOONGARCH64
663 &
c->yuv2nv12cX, &
c->yuv2packed1,
664 &
c->yuv2packed2, &
c->yuv2packedX, &
c->yuv2anyX);
667 &
c->readLumPlanar, &
c->readAlpPlanar, &
c->readChrPlanar);
669 if (
c->srcBpc == 8) {
670 if (
c->dstBpc <= 14) {
688 c->needs_hcscale = 1;
703 #elif ARCH_LOONGARCH64
723 const int linesizes[4])
730 for (
i = 0;
i < 4;
i++) {
731 int plane =
desc->comp[
i].plane;
732 if (!
data[plane] || !linesizes[plane])
740 const uint8_t *
src,
int src_stride,
int w,
int h)
744 for (
int yp = 0; yp <
h; yp++) {
745 const uint16_t *src16 = (
const uint16_t *)
src;
746 uint16_t *dst16 = (uint16_t *)
dst;
748 for (
int xp = 0; xp < 3 *
w; xp += 3) {
749 int x, y, z,
r,
g,
b;
761 x =
c->xyzgamma[x >> 4];
762 y =
c->xyzgamma[y >> 4];
763 z =
c->xyzgamma[z >> 4];
766 r =
c->xyz2rgb_matrix[0][0] * x +
767 c->xyz2rgb_matrix[0][1] * y +
768 c->xyz2rgb_matrix[0][2] * z >> 12;
769 g =
c->xyz2rgb_matrix[1][0] * x +
770 c->xyz2rgb_matrix[1][1] * y +
771 c->xyz2rgb_matrix[1][2] * z >> 12;
772 b =
c->xyz2rgb_matrix[2][0] * x +
773 c->xyz2rgb_matrix[2][1] * y +
774 c->xyz2rgb_matrix[2][2] * z >> 12;
783 AV_WB16(dst16 + xp + 0,
c->rgbgamma[
r] << 4);
784 AV_WB16(dst16 + xp + 1,
c->rgbgamma[
g] << 4);
785 AV_WB16(dst16 + xp + 2,
c->rgbgamma[
b] << 4);
787 AV_WL16(dst16 + xp + 0,
c->rgbgamma[
r] << 4);
788 AV_WL16(dst16 + xp + 1,
c->rgbgamma[
g] << 4);
789 AV_WL16(dst16 + xp + 2,
c->rgbgamma[
b] << 4);
799 const uint8_t *
src,
int src_stride,
int w,
int h)
803 for (
int yp = 0; yp <
h; yp++) {
804 uint16_t *src16 = (uint16_t *)
src;
805 uint16_t *dst16 = (uint16_t *)
dst;
807 for (
int xp = 0; xp < 3 *
w; xp += 3) {
808 int x, y, z,
r,
g,
b;
820 r =
c->rgbgammainv[
r>>4];
821 g =
c->rgbgammainv[
g>>4];
822 b =
c->rgbgammainv[
b>>4];
825 x =
c->rgb2xyz_matrix[0][0] *
r +
826 c->rgb2xyz_matrix[0][1] *
g +
827 c->rgb2xyz_matrix[0][2] *
b >> 12;
828 y =
c->rgb2xyz_matrix[1][0] *
r +
829 c->rgb2xyz_matrix[1][1] *
g +
830 c->rgb2xyz_matrix[1][2] *
b >> 12;
831 z =
c->rgb2xyz_matrix[2][0] *
r +
832 c->rgb2xyz_matrix[2][1] *
g +
833 c->rgb2xyz_matrix[2][2] *
b >> 12;
842 AV_WB16(dst16 + xp + 0,
c->xyzgammainv[x] << 4);
843 AV_WB16(dst16 + xp + 1,
c->xyzgammainv[y] << 4);
844 AV_WB16(dst16 + xp + 2,
c->xyzgammainv[z] << 4);
846 AV_WL16(dst16 + xp + 0,
c->xyzgammainv[x] << 4);
847 AV_WL16(dst16 + xp + 1,
c->xyzgammainv[y] << 4);
848 AV_WL16(dst16 + xp + 2,
c->xyzgammainv[z] << 4);
859 for (
int i = 0;
i < 256;
i++) {
860 int r,
g,
b, y,
u, v,
a = 0xff;
863 a = (p >> 24) & 0xFF;
864 r = (p >> 16) & 0xFF;
869 g = ((
i >> 2) & 7) * 36;
873 g = ((
i >> 3) & 7) * 36;
876 r = (
i >> 3 ) * 255;
877 g = ((
i >> 1) & 3) * 85;
883 b = (
i >> 3 ) * 255;
884 g = ((
i >> 1) & 3) * 85;
887 #define RGB2YUV_SHIFT 15
888 #define BY ( (int) (0.114 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
889 #define BV (-(int) (0.081 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
890 #define BU ( (int) (0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
891 #define GY ( (int) (0.587 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
892 #define GV (-(int) (0.419 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
893 #define GU (-(int) (0.331 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
894 #define RY ( (int) (0.299 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
895 #define RV ( (int) (0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
896 #define RU (-(int) (0.169 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
901 c->pal_yuv[
i]= y + (
u<<8) + (v<<16) + ((unsigned)
a<<24);
903 switch (
c->opts.dst_format) {
908 c->pal_rgb[
i]=
r + (
g<<8) + (
b<<16) + ((unsigned)
a<<24);
914 c->pal_rgb[
i]=
a + (
r<<8) + (
g<<16) + ((unsigned)
b<<24);
920 c->pal_rgb[
i]=
a + (
b<<8) + (
g<<16) + ((unsigned)
r<<24);
925 c->pal_rgb[
i]=
a + (
r<<8) + (
b<<16) + ((unsigned)
g<<24);
927 c->pal_rgb[
i]=
g + (
b<<8) + (
r<<16) + ((unsigned)
a<<24);
935 c->pal_rgb[
i]=
b + (
g<<8) + (
r<<16) + ((unsigned)
a<<24);
941 const uint8_t *
const srcSlice[],
const int srcStride[],
942 int srcSliceY,
int srcSliceH,
943 uint8_t *
const dstSlice[],
const int dstStride[],
944 int dstSliceY,
int dstSliceH);
947 const uint8_t *
const srcSlice[],
const int srcStride[],
948 int srcSliceY,
int srcSliceH,
949 uint8_t *
const dstSlice[],
const int dstStride[],
950 int dstSliceY,
int dstSliceH)
953 srcSlice, srcStride, srcSliceY, srcSliceH,
954 c->cascaded_tmp[0],
c->cascaded_tmpStride[0], 0,
c->opts.src_h);
959 if (
c->cascaded_context[2])
961 c->cascaded_tmpStride[0], srcSliceY, srcSliceH,
962 c->cascaded_tmp[1],
c->cascaded_tmpStride[1], 0,
c->opts.dst_h);
965 c->cascaded_tmpStride[0], srcSliceY, srcSliceH,
966 dstSlice, dstStride, dstSliceY, dstSliceH);
971 if (
c->cascaded_context[2]) {
974 c->cascaded_tmpStride[1], dstY1 -
ret, dstY1,
975 dstSlice, dstStride, dstSliceY, dstSliceH);
981 const uint8_t *
const srcSlice[],
const int srcStride[],
982 int srcSliceY,
int srcSliceH,
983 uint8_t *
const dstSlice[],
const int dstStride[],
984 int dstSliceY,
int dstSliceH)
986 const int dstH0 =
c->cascaded_context[0]->dst_h;
988 srcSlice, srcStride, srcSliceY, srcSliceH,
989 c->cascaded_tmp[0],
c->cascaded_tmpStride[0],
994 (
const uint8_t *
const * )
c->cascaded_tmp[0],
c->cascaded_tmpStride[0],
995 0, dstH0, dstSlice, dstStride, dstSliceY, dstSliceH);
1000 const uint8_t *
const srcSlice[],
const int srcStride[],
1001 int srcSliceY,
int srcSliceH,
1002 uint8_t *
const dstSlice[],
const int dstStride[],
1003 int dstSliceY,
int dstSliceH)
1006 const int scale_dst = dstSliceY > 0 || dstSliceH <
sws->
dst_h;
1009 const uint8_t *
src2[4];
1016 int srcSliceY_internal = srcSliceY;
1018 if (!srcStride || !dstStride || !dstSlice || !srcSlice) {
1019 av_log(
c,
AV_LOG_ERROR,
"One of the input parameters to sws_scale() is NULL, please check the calling code\n");
1023 if ((srcSliceY & (macro_height_src - 1)) ||
1024 ((srcSliceH & (macro_height_src - 1)) && srcSliceY + srcSliceH !=
sws->
src_h) ||
1025 srcSliceY + srcSliceH >
sws->
src_h ||
1031 if ((dstSliceY & (macro_height_dst - 1)) ||
1032 ((dstSliceH & (macro_height_dst - 1)) && dstSliceY + dstSliceH !=
sws->
dst_h) ||
1033 dstSliceY + dstSliceH >
sws->
dst_h) {
1052 return scale_gamma(
c, srcSlice, srcStride, srcSliceY, srcSliceH,
1053 dstSlice, dstStride, dstSliceY, dstSliceH);
1055 if (
c->cascaded_context[0] && srcSliceY == 0 && srcSliceH ==
c->cascaded_context[0]->src_h)
1057 dstSlice, dstStride, dstSliceY, dstSliceH);
1060 for (
i = 0;
i < 4;
i++)
1061 memset(
c->dither_error[
i], 0,
sizeof(
c->dither_error[0][0]) * (
sws->
dst_w+2));
1066 memcpy(
src2, srcSlice,
sizeof(
src2));
1067 memcpy(dst2, dstSlice,
sizeof(dst2));
1068 memcpy(srcStride2, srcStride,
sizeof(srcStride2));
1069 memcpy(dstStride2, dstStride,
sizeof(dstStride2));
1072 if (srcSliceY != 0 && srcSliceY + srcSliceH !=
sws->
src_h) {
1077 c->sliceDir = (srcSliceY == 0) ? 1 : -1;
1078 }
else if (scale_dst)
1086 FFABS(srcStride[0]) * srcSliceH + 32);
1087 if (!
c->rgb0_scratch)
1090 base = srcStride[0] < 0 ?
c->rgb0_scratch - srcStride[0] * (srcSliceH-1) :
1092 for (y=0; y<srcSliceH; y++){
1094 for (x=
c->src0Alpha-1; x<4*sws->src_w; x+=4) {
1095 base[ srcStride[0]*y + x] = 0xFF;
1105 FFABS(srcStride[0]) * srcSliceH + 32);
1106 if (!
c->xyz_scratch)
1109 base = srcStride[0] < 0 ?
c->xyz_scratch - srcStride[0] * (srcSliceH-1) :
1116 if (
c->sliceDir != 1) {
1118 for (
i=0;
i<4;
i++) {
1119 srcStride2[
i] *= -1;
1120 dstStride2[
i] *= -1;
1123 src2[0] += (srcSliceH - 1) * srcStride[0];
1125 src2[1] += ((srcSliceH >>
c->chrSrcVSubSample) - 1) * srcStride[1];
1126 src2[2] += ((srcSliceH >>
c->chrSrcVSubSample) - 1) * srcStride[2];
1127 src2[3] += (srcSliceH - 1) * srcStride[3];
1128 dst2[0] += (
sws->
dst_h - 1) * dstStride[0];
1129 dst2[1] += ((
sws->
dst_h >>
c->chrDstVSubSample) - 1) * dstStride[1];
1130 dst2[2] += ((
sws->
dst_h >>
c->chrDstVSubSample) - 1) * dstStride[2];
1131 dst2[3] += (
sws->
dst_h - 1) * dstStride[3];
1133 srcSliceY_internal =
sws->
src_h-srcSliceY-srcSliceH;
1138 if (
c->convert_unscaled) {
1139 int offset = srcSliceY_internal;
1140 int slice_h = srcSliceH;
1145 for (
i = 0;
i < 4 &&
src2[
i];
i++) {
1148 src2[
i] += (dstSliceY >> ((
i == 1 ||
i == 2) ?
c->chrSrcVSubSample : 0)) * srcStride2[
i];
1151 for (
i = 0;
i < 4 && dst2[
i];
i++) {
1154 dst2[
i] -= (dstSliceY >> ((
i == 1 ||
i == 2) ?
c->chrDstVSubSample : 0)) * dstStride2[
i];
1157 slice_h = dstSliceH;
1163 dst2[0] += dstSliceY * dstStride2[0];
1166 dst2, dstStride2, dstSliceY, dstSliceH);
1175 int dstY =
c->dstY ?
c->dstY : srcSliceY + srcSliceH;
1180 dst = dst2[0] + (dstY -
ret) * dstStride2[0];
1188 if ((srcSliceY_internal + srcSliceH ==
sws->
src_h) || scale_dst)
1199 c->src_ranges.nb_ranges = 0;
1205 int ret, allocated = 0;
1234 unsigned int slice_height)
1252 return c->dst_slice_align;
1256 unsigned int slice_height)
1263 if (!(
c->src_ranges.nb_ranges == 1 &&
1264 c->src_ranges.ranges[0].start == 0 &&
1265 c->src_ranges.ranges[0].len ==
sws->
src_h))
1268 if ((
slice_start > 0 || slice_height < sws->dst_h) &&
1271 "Incorrectly aligned output: %u/%u not multiples of %u\n",
1276 if (
c->slicethread) {
1277 int nb_jobs =
c->nb_slice_ctx;
1284 c->dst_slice_height = slice_height;
1288 for (
int i = 0;
i <
c->nb_slice_ctx;
i++) {
1289 if (
c->slice_err[
i] < 0) {
1290 ret =
c->slice_err[
i];
1295 memset(
c->slice_err, 0,
c->nb_slice_ctx *
sizeof(*
c->slice_err));
1301 ptrdiff_t
offset =
c->frame_dst->linesize[
i] * (ptrdiff_t)(
slice_start >>
c->chrDstVSubSample);
1311 int linesize[4],
int field)
1313 for (
int i = 0;
i < 4;
i++) {
1315 linesize[
i] =
frame->linesize[
i];
1326 for (
int i = 0;
i < 4;
i++) {
1334 for (
int i = 0;
i < 4;
i++)
1350 memcpy(
dst->data,
src->data,
sizeof(
src->data));
1351 memcpy(
dst->linesize,
src->linesize,
sizeof(
src->linesize));
1387 src->buf[0] && !
dst->buf[0] && !
dst->data[0])
1394 if (!
dst->data[0]) {
1402 uint8_t *dst_data[4], *src_data[4];
1403 int dst_linesize[4], src_linesize[4];
1407 (
const uint8_t **) src_data, src_linesize);
1418 #define VALIDATE(field, min, max) \
1419 if (ctx->field < min || ctx->field > max) { \
1420 av_log(ctx, AV_LOG_ERROR, "'%s' (%d) out of range [%d, %d]\n", \
1421 #field, (int) ctx->field, min, max); \
1422 return AVERROR(EINVAL); \
1434 const char *err_msg;
1448 err_msg =
"Cannot convert interlaced to progressive frames or vice versa.\n";
1455 if ((!src_ok || !dst_ok) && !
ff_props_equal(&src_fmt, &dst_fmt)) {
1456 err_msg = src_ok ?
"Unsupported output" :
"Unsupported input";
1463 err_msg =
"Failed initializing scaling graph";
1468 err_msg =
"Incomplete scaling graph";
1482 " fmt:%s csp:%s prim:%s trc:%s\n",
1503 const uint8_t *
const srcSlice[],
1504 const int srcStride[],
int srcSliceY,
1505 int srcSliceH, uint8_t *
const dst[],
1506 const int dstStride[])
1509 if (
c->nb_slice_ctx) {
1510 sws =
c->slice_ctx[0];
1519 int nb_jobs,
int nb_threads)
1526 c->dst_slice_align);
1535 const int vshift = (
i == 1 ||
i == 2) ?
c->chrDstVSubSample : 0;
static av_cold void sws_init_swscale(SwsInternal *c)
static av_always_inline int isBayer(enum AVPixelFormat pix_fmt)
void(* yuv2planar1_fn)(const int16_t *src, uint8_t *dest, int dstW, const uint8_t *dither, int offset)
Write one line of horizontally scaled data to planar output without any additional vertical scaling (...
#define AV_LOG_WARNING
Something somehow does not look correct.
static void process(NormalizeContext *s, AVFrame *in, AVFrame *out)
AVPixelFormat
Pixel format.
int sliceH
number of lines
static av_always_inline int isPacked(enum AVPixelFormat pix_fmt)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
int av_frame_get_buffer(AVFrame *frame, int align)
Allocate new buffer(s) for audio or video data.
#define u(width, name, range_min, range_max)
void ff_rgb48Toxyz12(const SwsInternal *c, uint8_t *dst, int dst_stride, const uint8_t *src, int src_stride, int w, int h)
static void lumRangeToJpeg16_c(int16_t *_dst, int width, uint32_t coeff, int64_t offset)
static void lumRangeToJpeg_c(int16_t *dst, int width, uint32_t _coeff, int64_t _offset)
av_cold void ff_sws_init_range_convert_aarch64(SwsInternal *c)
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
int src_w
Deprecated frame property overrides, for the legacy API only.
int ff_sws_graph_reinit(SwsContext *ctx, const SwsFormat *dst, const SwsFormat *src, int field, SwsGraph **out_graph)
Wrapper around ff_sws_graph_create() that reuses the existing graph if the format is compatible.
int ff_rotate_slice(SwsSlice *s, int lum, int chr)
#define AV_PIX_FMT_FLAG_FLOAT
The pixel format contains IEEE-754 floating point values.
SwsPlane plane[MAX_SLICE_PLANES]
color planes
void avpriv_slicethread_execute(AVSliceThread *ctx, int nb_jobs, int execute_main)
Execute slice threading.
av_cold void ff_sws_init_range_convert_loongarch(SwsInternal *c)
This structure describes decoded (raw) audio or video data.
static av_always_inline int isGray(enum AVPixelFormat pix_fmt)
Struct which holds all necessary data for processing a slice.
static void FUNC() yuv2planeX(const int16_t *filter, int filterSize, const int16_t **src, uint8_t *dest, int dstW, const uint8_t *dither, int offset)
@ AV_PIX_FMT_MONOWHITE
Y , 1bpp, 0 is white, 1 is black, in each byte pixels are ordered from the msb to the lsb.
#define AV_PIX_FMT_RGB32_1
unsigned flags
Bitmask of SWS_*.
void(* filter)(uint8_t *src, int stride, int qscale)
int sws_receive_slice(SwsContext *sws, unsigned int slice_start, unsigned int slice_height)
Request a horizontal slice of the output data to be written into the frame previously provided to sws...
@ AV_PIX_FMT_BGR24
packed RGB 8:8:8, 24bpp, BGRBGR...
av_cold void ff_sws_init_swscale_riscv(SwsInternal *c)
AVBufferRef * av_buffer_ref(const AVBufferRef *buf)
Create a new reference to an AVBuffer.
int av_get_cpu_flags(void)
Return the flags which specify extensions supported by the CPU.
#define DEBUG_BUFFERS(...)
static void bit_depth(AudioStatsContext *s, const uint64_t *const mask, uint8_t *depth)
static atomic_int cpu_flags
static void hScale16To15_c(SwsInternal *c, int16_t *dst, int dstW, const uint8_t *_src, const int16_t *filter, const int32_t *filterPos, int filterSize)
uint8_t ptrdiff_t const uint8_t * _src
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
@ SWS_FAST_BILINEAR
Scaler selection options.
static av_always_inline int is16BPS(enum AVPixelFormat pix_fmt)
void ff_sws_init_input_funcs(SwsInternal *c, planar1_YV12_fn *lumToYV12, planar1_YV12_fn *alpToYV12, planar2_YV12_fn *chrToYV12, planarX_YV12_fn *readLumPlanar, planarX_YV12_fn *readAlpPlanar, planarX2_YV12_fn *readChrPlanar)
static int validate_params(SwsContext *ctx)
static void chrRangeToJpeg16_c(int16_t *_dstU, int16_t *_dstV, int width, uint32_t coeff, int64_t offset)
static int slice_end(AVCodecContext *avctx, AVFrame *pict, int *got_output)
Handle slice ends.
const char * av_color_space_name(enum AVColorSpace space)
@ AV_PIX_FMT_GBRAP
planar GBRA 4:4:4:4 32bpp
static void chrRangeFromJpeg_c(int16_t *dstU, int16_t *dstV, int width, uint32_t _coeff, int64_t _offset)
static void frame_start(MpegEncContext *s)
static void chrRangeFromJpeg16_c(int16_t *_dstU, int16_t *_dstV, int width, uint32_t coeff, int64_t offset)
int sws_frame_setup(SwsContext *ctx, const AVFrame *dst, const AVFrame *src)
Like sws_scale_frame, but without actually scaling.
static double val(void *priv, double ch)
static av_always_inline int isNBPS(enum AVPixelFormat pix_fmt)
static void init_range_convert_constants(SwsInternal *c)
enum AVColorTransferCharacteristic trc
@ AV_PIX_FMT_BGR8
packed RGB 3:3:2, 8bpp, (msb)2B 3G 3R(lsb)
static void hScale8To19_c(SwsInternal *c, int16_t *_dst, int dstW, const uint8_t *src, const int16_t *filter, const int32_t *filterPos, int filterSize)
void ff_sws_graph_run(SwsGraph *graph, uint8_t *const out_data[4], const int out_linesize[4], const uint8_t *const in_data[4], const int in_linesize[4])
Dispatch the filter graph on a single field.
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
#define FF_ARRAY_ELEMS(a)
void(* yuv2packed2_fn)(SwsInternal *c, const int16_t *lumSrc[2], const int16_t *chrUSrc[2], const int16_t *chrVSrc[2], const int16_t *alpSrc[2], uint8_t *dest, int dstW, int yalpha, int uvalpha, int y)
Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB output by doing bilinear scalin...
SwsDither dither
Dither mode.
void ff_update_palette(SwsInternal *c, const uint32_t *pal)
#define AV_CEIL_RSHIFT(a, b)
av_cold void ff_sws_init_swscale_arm(SwsInternal *c)
int flags
Flags modifying the (de)muxer behaviour.
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample format(the sample packing is implied by the sample format) and sample rate. The lists are not just lists
static enum AVPixelFormat pix_fmt
int width
Slice line width.
#define av_assert0(cond)
assert() equivalent, that is always enabled.
#define VALIDATE(field, min, max)
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_RL16
static void chrRangeToJpeg_c(int16_t *dstU, int16_t *dstV, int width, uint32_t _coeff, int64_t _offset)
void ff_hcscale_fast_c(SwsInternal *c, int16_t *dst1, int16_t *dst2, int dstWidth, const uint8_t *src1, const uint8_t *src2, int srcW, int xInc)
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this field
void ff_xyz12Torgb48(const SwsInternal *c, uint8_t *dst, int dst_stride, const uint8_t *src, int src_stride, int w, int h)
av_cold void ff_sws_init_range_convert_riscv(SwsInternal *c)
#define AV_PIX_FMT_BGR32_1
void sws_frame_end(SwsContext *sws)
Finish the scaling process for a pair of source/destination frames previously submitted with sws_fram...
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
av_cold void ff_sws_init_range_convert_x86(SwsInternal *c)
@ AV_PIX_FMT_GRAY8A
alias for AV_PIX_FMT_YA8
static int scale_internal(SwsContext *sws, const uint8_t *const srcSlice[], const int srcStride[], int srcSliceY, int srcSliceH, uint8_t *const dstSlice[], const int dstStride[], int dstSliceY, int dstSliceH)
static av_always_inline void fillPlane(uint8_t *plane, int stride, int width, int height, int y, uint8_t val)
int available_lines
max number of lines that can be hold by this plane
int gamma_flag
Use gamma correct scaling.
@ AV_PIX_FMT_MONOBLACK
Y , 1bpp, 0 is black, 1 is white, in each byte pixels are ordered from the msb to the lsb.
#define FF_PTR_ADD(ptr, off)
const char * av_color_primaries_name(enum AVColorPrimaries primaries)
@ AV_PIX_FMT_RGB8
packed RGB 3:3:2, 8bpp, (msb)3R 3G 2B(lsb)
static void hScale8To15_c(SwsInternal *c, int16_t *dst, int dstW, const uint8_t *src, const int16_t *filter, const int32_t *filterPos, int filterSize)
av_cold void ff_sws_init_range_convert(SwsInternal *c)
@ AV_PIX_FMT_GRAY8
Y , 8bpp.
static void hScale16To19_c(SwsInternal *c, int16_t *_dst, int dstW, const uint8_t *_src, const int16_t *filter, const int32_t *filterPos, int filterSize)
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
int dstY
Last destination vertical line output from last slice.
@ AV_PIX_FMT_BGR4_BYTE
packed RGB 1:2:1, 8bpp, (msb)1B 2G 1R(lsb)
int ff_range_add(RangeList *r, unsigned int start, unsigned int len)
#define attribute_align_arg
void(* yuv2packedX_fn)(SwsInternal *c, const int16_t *lumFilter, const int16_t **lumSrc, int lumFilterSize, const int16_t *chrFilter, const int16_t **chrUSrc, const int16_t **chrVSrc, int chrFilterSize, const int16_t **alpSrc, uint8_t *dest, int dstW, int y)
Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB output by doing multi-point ver...
#define AV_CPU_FLAG_SSE2
PIV SSE2 functions.
void ff_sws_graph_free(SwsGraph **pgraph)
Uninitialize any state associate with this filter graph and free it.
void ff_sws_slice_worker(void *priv, int jobnr, int threadnr, int nb_jobs, int nb_threads)
static av_always_inline int isBE(enum AVPixelFormat pix_fmt)
@ AV_PIX_FMT_RGB24
packed RGB 8:8:8, 24bpp, RGBRGB...
av_cold void ff_sws_init_swscale_loongarch(SwsInternal *c)
int av_frame_ref(AVFrame *dst, const AVFrame *src)
Set up a new reference to the data described by the source frame.
#define DECLARE_ALIGNED(n, t, v)
static void get_frame_pointers(const AVFrame *frame, uint8_t *data[4], int linesize[4], int field)
static void fillPlane16(uint8_t *plane, int stride, int width, int height, int y, int alpha, int bits, const int big_endian)
uint8_t ptrdiff_t const uint8_t ptrdiff_t int intptr_t intptr_t int int16_t * dst
static av_always_inline int usePal(enum AVPixelFormat pix_fmt)
int ff_test_fmt(const SwsFormat *fmt, int output)
static av_always_inline int isAnyRGB(enum AVPixelFormat pix_fmt)
#define av_err2str(errnum)
Convenience macro, the return value should be used only directly in function arguments but never stan...
int src_h
Width and height of the source frame.
static const uint8_t *BS_FUNC() align(BSCTX *bc)
Skip bits to a byte boundary.
static av_always_inline int is32BPS(enum AVPixelFormat pix_fmt)
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf offset
static void lumRangeFromJpeg_c(int16_t *dst, int width, uint32_t _coeff, int64_t _offset)
av_cold void ff_sws_init_swscale_ppc(SwsInternal *c)
int dst_format
Destination pixel format.
static void fillPlane32(uint8_t *plane, int stride, int width, int height, int y, int alpha, int bits, const int big_endian, int is_float)
void(* yuv2anyX_fn)(SwsInternal *c, const int16_t *lumFilter, const int16_t **lumSrc, int lumFilterSize, const int16_t *chrFilter, const int16_t **chrUSrc, const int16_t **chrVSrc, int chrFilterSize, const int16_t **alpSrc, uint8_t **dest, int dstW, int y)
Write one line of horizontally scaled Y/U/V/A to YUV/RGB output by doing multi-point vertical scaling...
av_cold void ff_sws_init_swscale_x86(SwsInternal *c)
static int scale_cascaded(SwsInternal *c, const uint8_t *const srcSlice[], const int srcStride[], int srcSliceY, int srcSliceH, uint8_t *const dstSlice[], const int dstStride[], int dstSliceY, int dstSliceH)
unsigned int dst_slice_align
static SwsContext * sws[3]
#define av_assert2(cond)
assert() equivalent, that does lie in speed critical code.
int sws_send_slice(SwsContext *sws, unsigned int slice_start, unsigned int slice_height)
Indicate that a horizontal slice of input data is available in the source frame previously provided t...
#define i(width, name, range_min, range_max)
void ff_sws_init_scale(SwsInternal *c)
#define av_assert1(cond)
assert() equivalent, that does not lie in speed critical code.
static int check_image_pointers(const uint8_t *const data[4], enum AVPixelFormat pix_fmt, const int linesizes[4])
void(* yuv2interleavedX_fn)(enum AVPixelFormat dstFormat, const uint8_t *chrDither, const int16_t *chrFilter, int chrFilterSize, const int16_t **chrUSrc, const int16_t **chrVSrc, uint8_t *dest, int dstW)
Write one line of horizontally scaled chroma to interleaved output with multi-point vertical scaling ...
#define AV_PIX_FMT_FLAG_BE
Pixel format is big-endian.
void av_frame_unref(AVFrame *frame)
Unreference all the buffers referenced by frame and reset the frame fields.
int dst_h
Width and height of the destination frame.
void ff_updateMMXDitherTables(SwsInternal *c, int dstY)
@ AV_PIX_FMT_RGB4_BYTE
packed RGB 1:2:1, 8bpp, (msb)1R 2G 1B(lsb)
Struct which defines a slice of an image to be scaled or an output for a scaled slice.
#define AV_FRAME_FLAG_INTERLACED
A flag to mark frames whose content is interlaced.
static int slice_start(SliceContext *sc, VVCContext *s, VVCFrameContext *fc, const CodedBitstreamUnit *unit, const int is_first_slice)
int ff_init_slice_from_src(SwsSlice *s, uint8_t *const src[4], const int stride[4], int srcW, int lumY, int lumH, int chrY, int chrH, int relative)
static int frame_ref(AVFrame *dst, const AVFrame *src)
@ AV_PIX_FMT_PAL8
8 bits with AV_PIX_FMT_RGB32 palette
void(* yuv2packed1_fn)(SwsInternal *c, const int16_t *lumSrc, const int16_t *chrUSrc[2], const int16_t *chrVSrc[2], const int16_t *alpSrc, uint8_t *dest, int dstW, int uvalpha, int y)
Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB output without any additional v...
static int vshift(enum AVPixelFormat fmt, int plane)
unsigned int sws_receive_slice_alignment(const SwsContext *sws)
Get the alignment required for slices.
__asm__(".macro parse_r var r\n\t" "\\var = -1\n\t" _IFC_REG(0) _IFC_REG(1) _IFC_REG(2) _IFC_REG(3) _IFC_REG(4) _IFC_REG(5) _IFC_REG(6) _IFC_REG(7) _IFC_REG(8) _IFC_REG(9) _IFC_REG(10) _IFC_REG(11) _IFC_REG(12) _IFC_REG(13) _IFC_REG(14) _IFC_REG(15) _IFC_REG(16) _IFC_REG(17) _IFC_REG(18) _IFC_REG(19) _IFC_REG(20) _IFC_REG(21) _IFC_REG(22) _IFC_REG(23) _IFC_REG(24) _IFC_REG(25) _IFC_REG(26) _IFC_REG(27) _IFC_REG(28) _IFC_REG(29) _IFC_REG(30) _IFC_REG(31) ".iflt \\var\n\t" ".error \"Unable to parse register name \\r\"\n\t" ".endif\n\t" ".endm")
SwsFormat ff_fmt_from_frame(const AVFrame *frame, int field)
This function also sanitizes and strips the input data, removing irrelevant fields for certain format...
int sws_frame_start(SwsContext *sws, AVFrame *dst, const AVFrame *src)
Initialize the scaling process for a given pair of source/destination frames.
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
static const uint8_t sws_pb_64[8]
void(* yuv2planarX_fn)(const int16_t *filter, int filterSize, const int16_t **src, uint8_t *dest, int dstW, const uint8_t *dither, int offset)
Write one line of horizontally scaled data to planar output with multi-point vertical scaling between...
static void reset_ptr(const uint8_t *src[], enum AVPixelFormat format)
void ff_init_vscale_pfn(SwsInternal *c, yuv2planar1_fn yuv2plane1, yuv2planarX_fn yuv2planeX, yuv2interleavedX_fn yuv2nv12cX, yuv2packed1_fn yuv2packed1, yuv2packed2_fn yuv2packed2, yuv2packedX_fn yuv2packedX, yuv2anyX_fn yuv2anyX, int use_mmx)
setup vertical scaler functions
int attribute_align_arg sws_scale(SwsContext *sws, const uint8_t *const srcSlice[], const int srcStride[], int srcSliceY, int srcSliceH, uint8_t *const dst[], const int dstStride[])
swscale wrapper, so we don't need to export the SwsContext.
@ SWS_PRINT_INFO
Emit verbose log of scaling parameters.
static void lumRangeFromJpeg16_c(int16_t *_dst, int width, uint32_t coeff, int64_t offset)
#define atomic_exchange_explicit(object, desired, order)
@ SWS_STRICT
Return an error on underspecified conversions.
const uint8_t ff_dither_8x8_128[9][8]
#define AV_CPU_FLAG_MMXEXT
SSE integer functions or AMD MMX ext.
int ff_swscale(SwsInternal *c, const uint8_t *const src[], const int srcStride[], int srcSliceY, int srcSliceH, uint8_t *const dst[], const int dstStride[], int dstSliceY, int dstSliceH)
@ AV_PIX_FMT_GBRP
planar GBR 4:4:4 24bpp
static int ff_props_equal(const SwsFormat *fmt1, const SwsFormat *fmt2)
static int scale_gamma(SwsInternal *c, const uint8_t *const srcSlice[], const int srcStride[], int srcSliceY, int srcSliceH, uint8_t *const dstSlice[], const int dstStride[], int dstSliceY, int dstSliceH)
int sliceY
index of first line
Filter graph, which represents a 'baked' pixel format conversion.
int src_format
Source pixel format.
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
void ff_hyscale_fast_c(SwsInternal *c, int16_t *dst, int dstWidth, const uint8_t *src, int srcW, int xInc)
av_cold void ff_sws_init_output_funcs(SwsInternal *c, yuv2planar1_fn *yuv2plane1, yuv2planarX_fn *yuv2planeX, yuv2interleavedX_fn *yuv2nv12cX, yuv2packed1_fn *yuv2packed1, yuv2packed2_fn *yuv2packed2, yuv2packedX_fn *yuv2packedX, yuv2anyX_fn *yuv2anyX)
void av_fast_malloc(void *ptr, unsigned int *size, size_t min_size)
Allocate a buffer, reusing the given one if large enough.
av_cold void ff_sws_init_swscale_aarch64(SwsInternal *c)
#define flags(name, subs,...)
int linesize[AV_NUM_DATA_POINTERS]
For video, a positive or negative value, which is typically indicating the size in bytes of each pict...
static const double coeff[2][5]
static SwsInternal * sws_internal(const SwsContext *sws)
int sws_scale_frame(SwsContext *sws, AVFrame *dst, const AVFrame *src)
Scale source data from src and write the output to dst.
static void solve_range_convert(uint16_t src_min, uint16_t src_max, uint16_t dst_min, uint16_t dst_max, int src_bits, int src_shift, int mult_shift, uint32_t *coeff, int64_t *offset)
static av_always_inline int isPlanar(enum AVPixelFormat pix_fmt)
Main external API structure.
#define AV_PIX_FMT_FLAG_PAL
Pixel format has a palette in data[1], values are indexes in this palette.
const char * av_color_transfer_name(enum AVColorTransferCharacteristic transfer)
enum AVColorPrimaries prim
const char * av_get_pix_fmt_name(enum AVPixelFormat pix_fmt)
Return the short name for a pixel format, NULL in case pix_fmt is unknown.
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_WL16 uint64_t_TMPL AV_WB64 unsigned int_TMPL AV_WB32 unsigned int_TMPL AV_WB24 unsigned int_TMPL AV_RB16
static av_always_inline int isALPHA(enum AVPixelFormat pix_fmt)
static const uint8_t dither[8][8]